pipeline_utils.py 40.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
from dataclasses import dataclass
21
from pathlib import Path
22
from typing import Any, Dict, List, Optional, Union
anton-l's avatar
Style  
anton-l committed
23

24
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
25
26
import torch

27
import diffusers
28
import PIL
29
from huggingface_hub import model_info, snapshot_download
30
from packaging import version
31
from PIL import Image
hysts's avatar
hysts committed
32
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from .dynamic_modules_utils import get_class_from_dynamic_module
36
from .hub_utils import HF_HUB_OFFLINE, http_user_agent
37
from .modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
38
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
39
40
41
42
43
44
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
45
    deprecate,
46
    is_accelerate_available,
47
    is_safetensors_available,
48
    is_torch_version,
49
50
51
52
53
54
    is_transformers_available,
    logging,
)


if is_transformers_available():
55
    import transformers
56
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58

Patrick von Platen's avatar
Patrick von Platen committed
59
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
60
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
61
DUMMY_MODULES_FOLDER = "diffusers.utils"
62
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
68
69


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
70
        "ModelMixin": ["save_pretrained", "from_pretrained"],
71
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
72
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
73
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
74
75
    },
    "transformers": {
anton-l's avatar
anton-l committed
76
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
77
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
78
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
79
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
80
81
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
82
    },
Prathik Rao's avatar
Prathik Rao committed
83
84
85
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
Patrick von Platen's avatar
Patrick von Platen committed
86
87
}

88
89
90
91
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


107
108
109
110
111
112
113
114
115
116
117
118
119
120
@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


121
122
123
124
125
126
127
128
129
130
131
def is_safetensors_compatible(info) -> bool:
    filenames = set(sibling.rfilename for sibling in info.siblings)
    pt_filenames = set(filename for filename in filenames if filename.endswith(".bin"))
    is_safetensors_compatible = any(file.endswith(".safetensors") for file in filenames)
    for pt_filename in pt_filenames:
        prefix, raw = os.path.split(pt_filename)
        if raw == "pytorch_model.bin":
            # transformers specific
            sf_filename = os.path.join(prefix, "model.safetensors")
        else:
            sf_filename = pt_filename[: -len(".bin")] + ".safetensors"
132
133
        if is_safetensors_compatible and sf_filename not in filenames:
            logger.warning(f"{sf_filename} not found")
134
135
136
137
            is_safetensors_compatible = False
    return is_safetensors_compatible


Patrick von Platen's avatar
Patrick von Platen committed
138
class DiffusionPipeline(ConfigMixin):
139
140
141
142
143
144
145
146
147
148
149
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

150
        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
151
          components of the diffusion pipeline.
152
153
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
154
    """
Patrick von Platen's avatar
Patrick von Platen committed
155
    config_name = "model_index.json"
156
    _optional_components = []
Patrick von Platen's avatar
Patrick von Platen committed
157

Patrick von Platen's avatar
up  
Patrick von Platen committed
158
    def register_modules(self, **kwargs):
159
160
        # import it here to avoid circular import
        from diffusers import pipelines
161

Patrick von Platen's avatar
Patrick von Platen committed
162
        for name, module in kwargs.items():
163
            # retrieve library
164
165
166
167
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
168

169
                # check if the module is a pipeline module
170
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
171
172
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
173

174
175
176
177
178
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
179

180
181
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
182

183
                register_dict = {name: (library, class_name)}
184

Patrick von Platen's avatar
Patrick von Platen committed
185
            # save model index config
186
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189

            # set models
            setattr(self, name, module)
190

191
192
193
194
195
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        safe_serialization: bool = False,
    ):
196
197
198
199
200
201
202
203
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
204
205
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
206
        """
Patrick von Platen's avatar
Patrick von Platen committed
207
208
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
209
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
210
        model_index_dict.pop("_class_name")
211
        model_index_dict.pop("_diffusers_version")
212
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
213

214
215
216
217
218
219
220
221
222
223
224
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}

anton-l's avatar
anton-l committed
225
226
227
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
228
229

            save_method_name = None
anton-l's avatar
anton-l committed
230
231
232
233
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
234
235
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
anton-l's avatar
anton-l committed
236
237
238
239
240
241
242
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
243
244
245
246
247
248
249
250
251
252

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
            if save_method_accept_safe:
                save_method(
                    os.path.join(save_directory, pipeline_component_name), safe_serialization=safe_serialization
                )
            else:
                save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
253

Pedro Cuenca's avatar
Pedro Cuenca committed
254
255
256
257
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

258
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
259
260
261
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
262
                if module.dtype == torch.float16 and str(torch_device) in ["cpu"]:
263
                    logger.warning(
264
265
266
267
268
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                        " is not recommended to move them to `cpu` as running them will fail. Please make"
                        " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                        " support for`float16` operations on this device in PyTorch. Please, remove the"
                        " `torch_dtype=torch.float16` argument, or use another device for inference."
269
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
270
271
272
273
274
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
275
276
277
278
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
279
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
280
281
282
283
284
285
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
286
287
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
288
        r"""
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
354
355
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
Patrick von Platen's avatar
Patrick von Platen committed
356
357

            torch_dtype (`str` or `torch.dtype`, *optional*):
358
359
360
361
362
363
364
365
366
367
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
368
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
369
370
371
372
373
374
375
376
377
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
378
379
380
381
            custom_revision (`str`, *optional*, defaults to `"main"` when loading from the Hub and to local version of `diffusers` when loading from GitHub):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a diffusers version when loading a
                custom pipeline from GitHub.
382
383
384
385
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.
386
387
388
389
390
391
392
393
394
395
396
397
398
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
                also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
                model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
                setting this argument to `True` will raise an error.
399
400
            return_cached_folder (`bool`, *optional*, defaults to `False`):
                If set to `True`, path to downloaded cached folder will be returned in addition to loaded pipeline.
401
402
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
403
404
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
405
406
407

        <Tip>

408
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
apolinario's avatar
apolinario committed
409
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
apolinario's avatar
apolinario committed
431
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
432

433
        >>> # Use a different scheduler
434
435
        >>> from diffusers import LMSDiscreteScheduler

436
437
        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
438
        ```
439
440
441
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
442
        force_download = kwargs.pop("force_download", False)
443
        proxies = kwargs.pop("proxies", None)
444
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
445
        use_auth_token = kwargs.pop("use_auth_token", None)
446
        revision = kwargs.pop("revision", None)
447
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
448
        custom_pipeline = kwargs.pop("custom_pipeline", None)
449
        custom_revision = kwargs.pop("custom_revision", None)
450
        provider = kwargs.pop("provider", None)
451
        sess_options = kwargs.pop("sess_options", None)
452
        device_map = kwargs.pop("device_map", None)
453
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
454
        return_cached_folder = kwargs.pop("return_cached_folder", False)
Patrick von Platen's avatar
Patrick von Platen committed
455

patil-suraj's avatar
patil-suraj committed
456
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
457
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
458
        if not os.path.isdir(pretrained_model_name_or_path):
459
            config_dict = cls.load_config(
460
461
462
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
463
                force_download=force_download,
464
465
466
467
468
469
470
471
472
473
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

474
            # make sure we don't download flax weights
475
            ignore_patterns = ["*.msgpack"]
476

Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

480
481
482
483
484
            if cls != DiffusionPipeline:
                requested_pipeline_class = cls.__name__
            else:
                requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"pipeline_class": requested_pipeline_class}
485
            if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
486
                user_agent["custom_pipeline"] = custom_pipeline
487

488
            user_agent = http_user_agent(user_agent)
489

490
491
492
493
494
495
496
497
            if is_safetensors_available():
                info = model_info(
                    pretrained_model_name_or_path,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
                if is_safetensors_compatible(info):
                    ignore_patterns.append("*.bin")
498
499
                else:
                    ignore_patterns.append("*.safetensors")
500

501
            # download all allow_patterns
502
503
504
505
506
507
508
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
509
                revision=revision,
510
                allow_patterns=allow_patterns,
511
                ignore_patterns=ignore_patterns,
512
                user_agent=user_agent,
513
            )
Patrick von Platen's avatar
Patrick von Platen committed
514
515
        else:
            cached_folder = pretrained_model_name_or_path
516

517
        config_dict = cls.load_config(cached_folder)
518

Patrick von Platen's avatar
Patrick von Platen committed
519
        # 2. Load the pipeline class, if using custom module then load it from the hub
520
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
521
        if custom_pipeline is not None:
522
523
524
525
526
527
528
529
            if custom_pipeline.endswith(".py"):
                path = Path(custom_pipeline)
                # decompose into folder & file
                file_name = path.name
                custom_pipeline = path.parent.absolute()
            else:
                file_name = CUSTOM_PIPELINE_FILE_NAME

530
531
532
            pipeline_class = get_class_from_dynamic_module(
                custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=custom_revision
            )
Patrick von Platen's avatar
Patrick von Platen committed
533
        elif cls != DiffusionPipeline:
534
535
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
536
537
538
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        # To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

558
559
560
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
561
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
562
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
563
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
564

565
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
566

567
568
569
570
571
        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
Patrick von Platen's avatar
Patrick von Platen committed
572
573
574
575
576
577
578
579
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
580

581
        if len(unused_kwargs) > 0:
582
583
584
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )
Patrick von Platen's avatar
Patrick von Platen committed
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

613
614
        # import it here to avoid circular import
        from diffusers import pipelines
615

Patrick von Platen's avatar
Patrick von Platen committed
616
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
617
        for name, (library_name, class_name) in init_dict.items():
618
619
620
621
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

622
            is_pipeline_module = hasattr(pipelines, library_name)
623
624
            loaded_sub_model = None

625
            # if the model is in a pipeline module, then we load it from the pipeline
626
627
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
Patrick von Platen's avatar
Patrick von Platen committed
628
                if not is_pipeline_module:
629
630
631
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
632
                    class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
633
634
635

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
636
                        if class_candidate is not None and issubclass(class_obj, class_candidate):
637
638
639
640
641
642
643
644
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
645
                    logger.warning(
646
647
648
649
650
651
652
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
653
654
655
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
656
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
657
            else:
patil-suraj's avatar
patil-suraj committed
658
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
659
                library = importlib.import_module(library_name)
660

patil-suraj's avatar
patil-suraj committed
661
                class_obj = getattr(library, class_name)
662
                importable_classes = LOADABLE_CLASSES[library_name]
663
                class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
664

Patrick von Platen's avatar
Patrick von Platen committed
665
            if loaded_sub_model is None:
666
667
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
668
                    if class_candidate is not None and issubclass(class_obj, class_candidate):
669
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
670

671
672
                if load_method_name is None:
                    none_module = class_obj.__module__
673
674
675
676
                    is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
                        TRANSFORMERS_DUMMY_MODULES_FOLDER
                    )
                    if is_dummy_path and "dummy" in none_module:
677
678
679
680
681
682
683
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
684

685
                load_method = getattr(class_obj, load_method_name)
686
                loading_kwargs = {}
687

688
689
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
690
691
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
692
                    loading_kwargs["sess_options"] = sess_options
693

694
695
696
                is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
                is_transformers_model = (
                    is_transformers_available()
697
                    and issubclass(class_obj, PreTrainedModel)
698
699
700
                    and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
                )

701
                # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
702
                # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
703
                # This makes sure that the weights won't be initialized which significantly speeds up loading.
704
                if is_diffusers_model or is_transformers_model:
705
                    loading_kwargs["device_map"] = device_map
706
                    loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
707

708
709
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
710
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
711
712
                else:
                    # else load from the root directory
713
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
714

715
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
716

Patrick von Platen's avatar
Patrick von Platen committed
717
718
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
719
720
721
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
Patrick von Platen's avatar
Patrick von Platen committed
722
            for module in missing_modules:
723
                init_kwargs[module] = passed_class_obj.get(module, None)
Patrick von Platen's avatar
Patrick von Platen committed
724
        elif len(missing_modules) > 0:
725
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
726
727
728
729
730
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
731
        model = pipeline_class(**init_kwargs)
732
733
734

        if return_cached_folder:
            return model, cached_folder
Patrick von Platen's avatar
Patrick von Platen committed
735
        return model
736

737
738
739
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
740
741
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
742
743
744
        expected_modules = set(required_parameters.keys()) - set(["self"])
        return expected_modules, optional_parameters

745
746
747
748
    @property
    def components(self) -> Dict[str, Any]:
        r"""

Yuta Hayashibe's avatar
Yuta Hayashibe committed
749
        The `self.components` property can be useful to run different pipelines with the same weights and
750
751
752
753
754
755
756
757
758
759
760
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

Patrick von Platen's avatar
Patrick von Platen committed
761
762
763
        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
764
765
766
        ```

        Returns:
767
            A dictionary containing all the modules needed to initialize the pipeline.
768
        """
769
770
771
772
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }
773
774
775
776
777
778
779
780
781

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

782
783
784
785
786
787
788
789
    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
790
791
792
793
794
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]
795
796

        return pil_images
hysts's avatar
hysts committed
797

798
    def progress_bar(self, iterable=None, total=None):
hysts's avatar
hysts committed
799
800
801
802
803
804
805
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

806
807
808
809
810
811
        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")
hysts's avatar
hysts committed
812
813
814

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

    def enable_xformers_memory_efficient_attention(self):
        r"""
        Enable memory efficient attention as implemented in xformers.

        When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
        time. Speed up at training time is not guaranteed.

        Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
        is used.
        """
        self.set_use_memory_efficient_attention_xformers(True)

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention as implemented in xformers.
        """
        self.set_use_memory_efficient_attention_xformers(False)

    def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
                module.set_use_memory_efficient_attention_xformers(valid)

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for module_name in module_names:
            module = getattr(self, module_name)
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for module_name in module_names:
            module = getattr(self, module_name)
            if isinstance(module, torch.nn.Module) and hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size)