scheduling_ddpm.py 21.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
101
102
103
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
104
105
106
107
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
108
109
110
111
112
113
114
115
116
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
117
118
    """

Kashif Rasul's avatar
Kashif Rasul committed
119
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
120
    order = 1
121

122
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
123
124
    def __init__(
        self,
Partho's avatar
Partho committed
125
126
127
128
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
129
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
130
131
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
132
        prediction_type: str = "epsilon",
133
134
135
136
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
137
    ):
138
        if trained_betas is not None:
139
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
140
        elif beta_schedule == "linear":
141
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
142
143
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
144
145
146
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
147
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
148
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
149
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
150
151
152
153
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
154
155
156
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
157
        self.alphas = 1.0 - self.betas
158
159
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
160

161
162
163
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

164
        # setable values
Will Berman's avatar
Will Berman committed
165
        self.custom_timesteps = False
166
        self.num_inference_steps = None
167
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
168

169
170
        self.variance_type = variance_type

171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

Will Berman's avatar
Will Berman committed
185
186
187
188
189
190
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
191
192
193
194
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
Will Berman's avatar
Will Berman committed
195
196
197
198
199
200
201
202
203
204
            num_inference_steps (`Optional[int]`):
                the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
                `timesteps` must be `None`.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps are moved to.
            custom_timesteps (`List[int]`, optional):
                custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
                must be `None`.

205
        """
Will Berman's avatar
Will Berman committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
229

Will Berman's avatar
Will Berman committed
230
            self.num_inference_steps = num_inference_steps
231

Will Berman's avatar
Will Berman committed
232
233
234
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            self.custom_timesteps = False
235

236
        self.timesteps = torch.from_numpy(timesteps).to(device)
237

238
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
239
240
        prev_t = self.previous_timestep(t)

241
        alpha_prod_t = self.alphas_cumprod[t]
242
243
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
244

Kashif Rasul's avatar
Kashif Rasul committed
245
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
246
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
247
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
248
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
249
250

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
251
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
252

253
254
255
        if variance_type is None:
            variance_type = self.config.variance_type

256
        # hacks - were probably added for training stability
257
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
258
            variance = variance
259
        # for rl-diffuser https://arxiv.org/abs/2205.09991
260
        elif variance_type == "fixed_small_log":
261
            variance = torch.log(variance)
262
            variance = torch.exp(0.5 * variance)
263
        elif variance_type == "fixed_large":
264
            variance = current_beta_t
265
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
266
            # Glide max_log
267
            variance = torch.log(current_beta_t)
268
269
270
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
271
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
272
            max_log = torch.log(current_beta_t)
273
274
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
275
276
277

        return variance

278
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
311

312
313
    def step(
        self,
314
        model_output: torch.FloatTensor,
315
        timestep: int,
316
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
317
        generator=None,
318
        return_dict: bool = True,
319
    ) -> Union[DDPMSchedulerOutput, Tuple]:
320
321
322
323
324
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
325
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
326
            timestep (`int`): current discrete timestep in the diffusion chain.
327
            sample (`torch.FloatTensor`):
328
329
                current instance of sample being created by diffusion process.
            generator: random number generator.
330
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
331
332

        Returns:
333
334
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
335
            returning a tuple, the first element is the sample tensor.
336
337

        """
338
        t = timestep
Will Berman's avatar
Will Berman committed
339
340

        prev_t = self.previous_timestep(t)
341

342
343
344
345
346
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
347
        # 1. compute alphas, betas
348
        alpha_prod_t = self.alphas_cumprod[t]
349
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
350
351
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
352
353
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
354

355
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
356
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
357
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
358
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
359
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
360
            pred_original_sample = model_output
361
362
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
363
364
        else:
            raise ValueError(
365
366
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
367
            )
Patrick von Platen's avatar
Patrick von Platen committed
368

369
        # 3. Clip or threshold "predicted x_0"
370
371
372
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
373
374
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
375
            )
Patrick von Platen's avatar
Patrick von Platen committed
376

377
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
378
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
379
380
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
381

382
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
383
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
384
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
385

Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
        # 6. Add noise
        variance = 0
        if t > 0:
389
            device = model_output.device
390
391
392
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
393
394
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
395
396
397
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
398
399
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
400
401
402

        pred_prev_sample = pred_prev_sample + variance

403
404
405
        if not return_dict:
            return (pred_prev_sample,)

406
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
407

Partho's avatar
Partho committed
408
409
    def add_noise(
        self,
410
411
412
413
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
414
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
415
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
416
        timesteps = timesteps.to(original_samples.device)
417

418
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
419
420
421
422
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

423
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
424
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
425
426
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
427
428

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
429
        return noisy_samples
anton-l's avatar
anton-l committed
430

431
432
433
434
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
435
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
436
437
        timesteps = timesteps.to(sample.device)

438
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
439
440
441
442
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

443
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
444
445
446
447
448
449
450
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
451
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
452
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t