scheduling_ddim.py 27.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Literal, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
26
27
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
30
31


@dataclass
32
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
34
class DDIMSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
def betas_for_alpha_bar(
52
53
54
55
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
56
    """
Patrick von Platen's avatar
Patrick von Platen committed
57
58
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
59

60
61
62
63
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
64
65
66
67
68
69
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
70
71

    Returns:
72
73
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
74
    """
YiYi Xu's avatar
YiYi Xu committed
75
    if alpha_transform_type == "cosine":
76

YiYi Xu's avatar
YiYi Xu committed
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
86
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
87

88
89
90
91
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
92
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
93
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
94
95


96
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
97
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
98
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
99
100

    Args:
101
        betas (`torch.Tensor`):
102
            The betas that the scheduler is being initialized with.
103
104

    Returns:
105
106
        `torch.Tensor`:
            Rescaled betas with zero terminal SNR.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
132
class DDIMScheduler(SchedulerMixin, ConfigMixin):
133
    """
134
135
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.
136

137
138
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
139
140

    Args:
141
142
143
144
145
146
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
147
148
149
        beta_schedule (`Literal["linear", "scaled_linear", "squaredcos_cap_v2"]`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Must be one
            of `"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`.
150
151
152
153
154
155
156
157
158
159
160
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
161
            An offset added to the inference steps, as required by some model families.
162
163
164
165
        prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`):
            Prediction type of the scheduler function. Must be one of `"epsilon"` (predicts the noise of the diffusion
            process), `"sample"` (directly predicts the noisy sample), or `"v_prediction"` (see section 2.4 of [Imagen
            Video](https://huggingface.co/papers/2210.02303) paper).
166
167
168
169
170
171
172
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
173
174
175
176
        timestep_spacing (`Literal["leading", "trailing", "linspace"]`, defaults to `"leading"`):
            The way the timesteps should be scaled. Must be one of `"leading"`, `"trailing"`, or `"linspace"`. Refer to
            Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are
            Flawed](https://huggingface.co/papers/2305.08891) for more information.
177
178
179
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
180
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
181
182
    """

Kashif Rasul's avatar
Kashif Rasul committed
183
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
184
    order = 1
185

186
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
187
188
    def __init__(
        self,
189
190
191
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
192
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
193
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
194
195
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
196
        steps_offset: int = 0,
197
        prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
198
199
200
201
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
202
        timestep_spacing: Literal["leading", "trailing", "linspace"] = "leading",
203
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
204
    ):
205
        if trained_betas is not None:
206
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
207
        elif beta_schedule == "linear":
208
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
209
210
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
211
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
212
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
213
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
214
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
215
        else:
216
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
217

218
219
220
221
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

222
        self.alphas = 1.0 - self.betas
223
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
224
225
226

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
227
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
228
        # whether we use the final alpha of the "non-previous" one.
229
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
230

231
232
233
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

234
        # setable values
235
        self.num_inference_steps = None
236
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
237

238
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
239
240
241
242
243
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
244
            sample (`torch.Tensor`):
245
246
247
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
248
249

        Returns:
250
            `torch.Tensor`:
251
                A scaled input sample.
252
253
254
        """
        return sample

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
        """
        Computes the variance of the noise added at a given diffusion step.

        For a given `timestep` and its previous step, this method calculates the variance as defined in DDIM/DDPM
        literature:
            var_t = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
        where alpha_prod and beta_prod are cumulative products of alphas and betas, respectively.

        Args:
            timestep (`int`):
                The current timestep in the diffusion process.
            prev_timestep (`int`):
                The previous timestep in the diffusion process. If negative, uses `final_alpha_cumprod`.

        Returns:
            `torch.Tensor`:
                The variance for the current timestep.
        """
274
        alpha_prod_t = self.alphas_cumprod[timestep]
275
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

283
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
284
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
285
        """
286
287
        Apply dynamic thresholding to the predicted sample.

288
289
290
291
292
293
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
294
        https://huggingface.co/papers/2205.11487
295
296
297
298
299
300
301
302

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
303
304
        """
        dtype = sample.dtype
305
        batch_size, channels, *remaining_dims = sample.shape
306
307
308
309
310

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
311
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
312
313
314
315
316
317
318
319
320
321

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

322
        sample = sample.reshape(batch_size, channels, *remaining_dims)
323
324
325
        sample = sample.to(dtype)

        return sample
326

327
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None) -> None:
328
        """
329
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
330
331
332

        Args:
            num_inference_steps (`int`):
333
                The number of diffusion steps used when generating samples with a pre-trained model.
334
335
336
337
338
            device (`Union[str, torch.device]`, *optional*):
                The device to use for the timesteps.

        Raises:
            ValueError: If `num_inference_steps` is larger than `self.config.num_train_timesteps`.
339
        """
340
341
342
343
344
345
346
347

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

348
        self.num_inference_steps = num_inference_steps
349

Quentin Gallouédec's avatar
Quentin Gallouédec committed
350
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
351
352
353
354
355
356
357
358
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

375
        self.timesteps = torch.from_numpy(timesteps).to(device)
376
377
378

    def step(
        self,
379
        model_output: torch.Tensor,
380
        timestep: int,
381
        sample: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
382
383
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
384
        generator: Optional[torch.Generator] = None,
385
        variance_noise: Optional[torch.Tensor] = None,
386
        return_dict: bool = True,
387
    ) -> Union[DDIMSchedulerOutput, Tuple]:
388
        """
389
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
390
391
392
        process from the learned model outputs (most often the predicted noise).

        Args:
393
            model_output (`torch.Tensor`):
394
                The direct output from learned diffusion model.
395
            timestep (`int`):
396
                The current discrete timestep in the diffusion chain.
397
            sample (`torch.Tensor`):
398
                A current instance of a sample created by the diffusion process.
399
400
401
402
            eta (`float`, *optional*, defaults to 0.0):
                The weight of noise for added noise in diffusion step. A value of 0 corresponds to DDIM (deterministic)
                and 1 corresponds to DDPM (fully stochastic).
            use_clipped_model_output (`bool`, *optional*, defaults to `False`):
403
404
405
406
407
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
408
409
                A random number generator for reproducible sampling.
            variance_noise (`torch.Tensor`, *optional*):
410
411
412
413
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
414
415

        Returns:
416
            [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
417
418
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
419
420

        """
421
422
423
424
425
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Quentin Gallouédec's avatar
Quentin Gallouédec committed
426
        # See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
431
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
432
433
        # - std_dev_t -> sigma_t
        # - eta -> η
434
        # - pred_sample_direction -> "direction pointing to x_t"
435
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
436

437
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
438
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
439
440

        # 2. compute alphas, betas
441
        alpha_prod_t = self.alphas_cumprod[timestep]
442
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
443

Patrick von Platen's avatar
Patrick von Platen committed
444
445
        beta_prod_t = 1 - alpha_prod_t

446
        # 3. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
447
        # "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
448
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
449
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
450
            pred_epsilon = model_output
451
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
452
            pred_original_sample = model_output
453
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
454
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
455
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
456
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
457
458
        else:
            raise ValueError(
459
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
460
461
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
462

463
        # 4. Clip or threshold "predicted x_0"
464
465
466
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
467
468
469
470
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
471
472
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
473
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
474
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
475

Patrick von Platen's avatar
Patrick von Platen committed
476
        if use_clipped_model_output:
477
478
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
479

Quentin Gallouédec's avatar
Quentin Gallouédec committed
480
        # 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
481
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
482

Quentin Gallouédec's avatar
Quentin Gallouédec committed
483
        # 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502
484
485
486
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
487
488
489
490
491
492
493
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
494
                variance_noise = randn_tensor(
495
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
496
                )
497
            variance = std_dev_t * variance_noise
498
499

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
500

501
        if not return_dict:
502
503
504
505
            return (
                prev_sample,
                pred_original_sample,
            )
506

507
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
508

509
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
510
511
    def add_noise(
        self,
512
513
        original_samples: torch.Tensor,
        noise: torch.Tensor,
514
        timesteps: torch.IntTensor,
515
    ) -> torch.Tensor:
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
532
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
533
534
535
536
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
537
        timesteps = timesteps.to(original_samples.device)
538

539
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
540
541
542
543
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

544
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
545
546
547
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
548
549
550
551

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

552
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
553
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        """
        Compute the velocity prediction from the sample and noise according to the velocity formula.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            noise (`torch.Tensor`):
                The noise tensor.
            timesteps (`torch.IntTensor`):
                The timesteps for velocity computation.

        Returns:
            `torch.Tensor`:
                The computed velocity.
        """
569
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
570
571
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
572
573
        timesteps = timesteps.to(sample.device)

574
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
575
576
577
578
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

579
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
580
581
582
583
584
585
586
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

587
    def __len__(self) -> int:
Nathan Lambert's avatar
Nathan Lambert committed
588
        return self.config.num_train_timesteps