scheduling_ddim.py 25.9 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Literal, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
26
27
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
30
31


@dataclass
32
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
34
class DDIMSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
    """
Patrick von Platen's avatar
Patrick von Platen committed
57
58
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
59

60
61
62
63
64
65
66
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
67
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
73
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86

87
88
89
90
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
93
94


95
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
96
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
97
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
98
99

    Args:
100
        betas (`torch.Tensor`):
101
102
103
            the betas that the scheduler is being initialized with.

    Returns:
104
        `torch.Tensor`: rescaled betas with zero terminal SNR
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
130
class DDIMScheduler(SchedulerMixin, ConfigMixin):
131
    """
132
133
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.
134

135
136
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
137
138

    Args:
139
140
141
142
143
144
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
145
146
147
        beta_schedule (`Literal["linear", "scaled_linear", "squaredcos_cap_v2"]`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Must be one
            of `"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`.
148
149
150
151
152
153
154
155
156
157
158
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
159
            An offset added to the inference steps, as required by some model families.
160
161
162
163
        prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`):
            Prediction type of the scheduler function. Must be one of `"epsilon"` (predicts the noise of the diffusion
            process), `"sample"` (directly predicts the noisy sample), or `"v_prediction"` (see section 2.4 of [Imagen
            Video](https://huggingface.co/papers/2210.02303) paper).
164
165
166
167
168
169
170
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
171
172
173
174
        timestep_spacing (`Literal["leading", "trailing", "linspace"]`, defaults to `"leading"`):
            The way the timesteps should be scaled. Must be one of `"leading"`, `"trailing"`, or `"linspace"`. Refer to
            Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are
            Flawed](https://huggingface.co/papers/2305.08891) for more information.
175
176
177
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
178
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
179
180
    """

Kashif Rasul's avatar
Kashif Rasul committed
181
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
182
    order = 1
183

184
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
185
186
    def __init__(
        self,
187
188
189
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
190
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
191
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
192
193
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
194
        steps_offset: int = 0,
195
        prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
196
197
198
199
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
200
        timestep_spacing: Literal["leading", "trailing", "linspace"] = "leading",
201
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
202
    ):
203
        if trained_betas is not None:
204
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
205
        elif beta_schedule == "linear":
206
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
207
208
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
209
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
210
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
211
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
212
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
213
        else:
214
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
215

216
217
218
219
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

220
        self.alphas = 1.0 - self.betas
221
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
222
223
224

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
225
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
226
        # whether we use the final alpha of the "non-previous" one.
227
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
228

229
230
231
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

232
        # setable values
233
        self.num_inference_steps = None
234
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
235

236
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
237
238
239
240
241
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
242
            sample (`torch.Tensor`):
243
244
245
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
246
247

        Returns:
248
            `torch.Tensor`:
249
                A scaled input sample.
250
251
252
        """
        return sample

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
        """
        Computes the variance of the noise added at a given diffusion step.

        For a given `timestep` and its previous step, this method calculates the variance as defined in DDIM/DDPM
        literature:
            var_t = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
        where alpha_prod and beta_prod are cumulative products of alphas and betas, respectively.

        Args:
            timestep (`int`):
                The current timestep in the diffusion process.
            prev_timestep (`int`):
                The previous timestep in the diffusion process. If negative, uses `final_alpha_cumprod`.

        Returns:
            `torch.Tensor`:
                The variance for the current timestep.
        """
272
        alpha_prod_t = self.alphas_cumprod[timestep]
273
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
278
279
280
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

281
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
282
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
283
284
285
286
287
288
289
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
290
        https://huggingface.co/papers/2205.11487
291
292
        """
        dtype = sample.dtype
293
        batch_size, channels, *remaining_dims = sample.shape
294
295
296
297
298

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
299
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
300
301
302
303
304
305
306
307
308
309

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

310
        sample = sample.reshape(batch_size, channels, *remaining_dims)
311
312
313
        sample = sample.to(dtype)

        return sample
314

315
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None) -> None:
316
        """
317
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
318
319
320

        Args:
            num_inference_steps (`int`):
321
                The number of diffusion steps used when generating samples with a pre-trained model.
322
323
324
325
326
            device (`Union[str, torch.device]`, *optional*):
                The device to use for the timesteps.

        Raises:
            ValueError: If `num_inference_steps` is larger than `self.config.num_train_timesteps`.
327
        """
328
329
330
331
332
333
334
335

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

336
        self.num_inference_steps = num_inference_steps
337

Quentin Gallouédec's avatar
Quentin Gallouédec committed
338
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
339
340
341
342
343
344
345
346
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

363
        self.timesteps = torch.from_numpy(timesteps).to(device)
364
365
366

    def step(
        self,
367
        model_output: torch.Tensor,
368
        timestep: int,
369
        sample: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
370
371
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
372
        generator: Optional[torch.Generator] = None,
373
        variance_noise: Optional[torch.Tensor] = None,
374
        return_dict: bool = True,
375
    ) -> Union[DDIMSchedulerOutput, Tuple]:
376
        """
377
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
378
379
380
        process from the learned model outputs (most often the predicted noise).

        Args:
381
            model_output (`torch.Tensor`):
382
                The direct output from learned diffusion model.
383
            timestep (`int`):
384
                The current discrete timestep in the diffusion chain.
385
            sample (`torch.Tensor`):
386
                A current instance of a sample created by the diffusion process.
387
388
389
390
            eta (`float`, *optional*, defaults to 0.0):
                The weight of noise for added noise in diffusion step. A value of 0 corresponds to DDIM (deterministic)
                and 1 corresponds to DDPM (fully stochastic).
            use_clipped_model_output (`bool`, *optional*, defaults to `False`):
391
392
393
394
395
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
396
397
                A random number generator for reproducible sampling.
            variance_noise (`torch.Tensor`, *optional*):
398
399
400
401
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
402
403

        Returns:
404
            [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
405
406
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
407
408

        """
409
410
411
412
413
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Quentin Gallouédec's avatar
Quentin Gallouédec committed
414
        # See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
418
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
419
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
420
421
        # - std_dev_t -> sigma_t
        # - eta -> η
422
        # - pred_sample_direction -> "direction pointing to x_t"
423
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
424

425
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
426
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
427
428

        # 2. compute alphas, betas
429
        alpha_prod_t = self.alphas_cumprod[timestep]
430
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
431

Patrick von Platen's avatar
Patrick von Platen committed
432
433
        beta_prod_t = 1 - alpha_prod_t

434
        # 3. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
435
        # "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
436
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
437
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
438
            pred_epsilon = model_output
439
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
440
            pred_original_sample = model_output
441
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
442
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
443
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
444
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
445
446
        else:
            raise ValueError(
447
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
448
449
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
450

451
        # 4. Clip or threshold "predicted x_0"
452
453
454
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
455
456
457
458
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
459
460
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
461
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
462
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
463

Patrick von Platen's avatar
Patrick von Platen committed
464
        if use_clipped_model_output:
465
466
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
467

Quentin Gallouédec's avatar
Quentin Gallouédec committed
468
        # 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
469
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
470

Quentin Gallouédec's avatar
Quentin Gallouédec committed
471
        # 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502
472
473
474
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
475
476
477
478
479
480
481
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
482
                variance_noise = randn_tensor(
483
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
484
                )
485
            variance = std_dev_t * variance_noise
486
487

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
488

489
        if not return_dict:
490
491
492
493
            return (
                prev_sample,
                pred_original_sample,
            )
494

495
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
496

497
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
498
499
    def add_noise(
        self,
500
501
        original_samples: torch.Tensor,
        noise: torch.Tensor,
502
        timesteps: torch.IntTensor,
503
    ) -> torch.Tensor:
504
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
505
506
507
508
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
509
        timesteps = timesteps.to(original_samples.device)
510

511
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
512
513
514
515
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

516
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
517
518
519
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
520
521
522
523

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

524
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
525
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
526
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
527
528
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
529
530
        timesteps = timesteps.to(sample.device)

531
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
532
533
534
535
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

536
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
537
538
539
540
541
542
543
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

544
    def __len__(self) -> int:
Nathan Lambert's avatar
Nathan Lambert committed
545
        return self.config.num_train_timesteps