pipeline_utils.py 35.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
from dataclasses import dataclass
21
from pathlib import Path
22
from typing import Any, Dict, List, Optional, Union
anton-l's avatar
Style  
anton-l committed
23

24
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
25
26
import torch

27
import diffusers
28
import PIL
29
from huggingface_hub import model_info, snapshot_download
30
from packaging import version
31
from PIL import Image
hysts's avatar
hysts committed
32
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from .dynamic_modules_utils import get_class_from_dynamic_module
36
from .hub_utils import http_user_agent
37
from .modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
38
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
39
40
41
42
43
44
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
45
    deprecate,
46
    is_accelerate_available,
47
    is_safetensors_available,
48
    is_torch_version,
49
50
51
52
53
54
    is_transformers_available,
    logging,
)


if is_transformers_available():
55
    import transformers
56
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58

Patrick von Platen's avatar
Patrick von Platen committed
59
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
60
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
61
DUMMY_MODULES_FOLDER = "diffusers.utils"
62
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
68
69


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
70
        "ModelMixin": ["save_pretrained", "from_pretrained"],
71
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
72
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
73
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
74
75
    },
    "transformers": {
anton-l's avatar
anton-l committed
76
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
77
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
78
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
79
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
80
81
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
82
    },
Prathik Rao's avatar
Prathik Rao committed
83
84
85
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
Patrick von Platen's avatar
Patrick von Platen committed
86
87
}

88
89
90
91
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


107
108
109
110
111
112
113
114
115
116
117
118
119
120
@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def is_safetensors_compatible(info) -> bool:
    filenames = set(sibling.rfilename for sibling in info.siblings)
    pt_filenames = set(filename for filename in filenames if filename.endswith(".bin"))
    is_safetensors_compatible = any(file.endswith(".safetensors") for file in filenames)
    for pt_filename in pt_filenames:
        prefix, raw = os.path.split(pt_filename)
        if raw == "pytorch_model.bin":
            # transformers specific
            sf_filename = os.path.join(prefix, "model.safetensors")
        else:
            sf_filename = pt_filename[: -len(".bin")] + ".safetensors"
        if sf_filename not in filenames:
            logger.warning("{sf_filename} not found")
            is_safetensors_compatible = False
    return is_safetensors_compatible


Patrick von Platen's avatar
Patrick von Platen committed
138
class DiffusionPipeline(ConfigMixin):
139
140
141
142
143
144
145
146
147
148
149
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

150
        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
151
          components of the diffusion pipeline.
152
153
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
154
    """
Patrick von Platen's avatar
Patrick von Platen committed
155
    config_name = "model_index.json"
156
    _optional_components = []
Patrick von Platen's avatar
Patrick von Platen committed
157

Patrick von Platen's avatar
up  
Patrick von Platen committed
158
    def register_modules(self, **kwargs):
159
160
        # import it here to avoid circular import
        from diffusers import pipelines
161

Patrick von Platen's avatar
Patrick von Platen committed
162
        for name, module in kwargs.items():
163
            # retrieve library
164
165
166
167
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
168

169
                # check if the module is a pipeline module
170
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
171
172
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
173

174
175
176
177
178
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
179

180
181
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
182

183
                register_dict = {name: (library, class_name)}
184

Patrick von Platen's avatar
Patrick von Platen committed
185
            # save model index config
186
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189

            # set models
            setattr(self, name, module)
190

Patrick von Platen's avatar
Patrick von Platen committed
191
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
192
193
194
195
196
197
198
199
200
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
201
202
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
203
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
204
        model_index_dict.pop("_class_name")
205
        model_index_dict.pop("_diffusers_version")
206
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
207

208
209
210
211
212
213
214
215
216
217
218
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}

anton-l's avatar
anton-l committed
219
220
221
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
222
223

            save_method_name = None
anton-l's avatar
anton-l committed
224
225
226
227
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
228
229
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
anton-l's avatar
anton-l committed
230
231
232
233
234
235
236
237
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
238

Pedro Cuenca's avatar
Pedro Cuenca committed
239
240
241
242
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

243
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
244
245
246
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
247
                if module.dtype == torch.float16 and str(torch_device) in ["cpu"]:
248
                    logger.warning(
249
250
251
252
253
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                        " is not recommended to move them to `cpu` as running them will fail. Please make"
                        " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                        " support for`float16` operations on this device in PyTorch. Please, remove the"
                        " `torch_dtype=torch.float16` argument, or use another device for inference."
254
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
255
256
257
258
259
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
260
261
262
263
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
264
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
265
266
267
268
269
270
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
271
272
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
273
        r"""
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
339
340
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
Patrick von Platen's avatar
Patrick von Platen committed
341
342

            torch_dtype (`str` or `torch.dtype`, *optional*):
343
344
345
346
347
348
349
350
351
352
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
353
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
354
355
356
357
358
359
360
361
362
363
364
365
366
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.
367
368
369
370
371
372
373
374
375
376
377
378
379
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
                also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
                model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
                setting this argument to `True` will raise an error.
380
381
382

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
383
384
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
385
386
387

        <Tip>

388
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
apolinario's avatar
apolinario committed
389
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
apolinario's avatar
apolinario committed
411
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
412

413
        >>> # Use a different scheduler
414
415
        >>> from diffusers import LMSDiscreteScheduler

416
417
        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
418
        ```
419
420
421
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
422
        force_download = kwargs.pop("force_download", False)
423
424
425
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
426
        revision = kwargs.pop("revision", None)
427
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
428
        custom_pipeline = kwargs.pop("custom_pipeline", None)
429
        provider = kwargs.pop("provider", None)
430
        sess_options = kwargs.pop("sess_options", None)
431
        device_map = kwargs.pop("device_map", None)
432
433
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

434
435
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
436
            logger.warning(
437
438
439
440
441
442
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
460

patil-suraj's avatar
patil-suraj committed
461
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
462
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
463
        if not os.path.isdir(pretrained_model_name_or_path):
464
            config_dict = cls.load_config(
465
466
467
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
468
                force_download=force_download,
469
470
471
472
473
474
475
476
477
478
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

479
            # make sure we don't download flax weights
480
            ignore_patterns = ["*.msgpack"]
481

Patrick von Platen's avatar
Patrick von Platen committed
482
483
484
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

485
486
487
488
489
            if cls != DiffusionPipeline:
                requested_pipeline_class = cls.__name__
            else:
                requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"pipeline_class": requested_pipeline_class}
490
491
            if custom_pipeline is not None:
                user_agent["custom_pipeline"] = custom_pipeline
492
            user_agent = http_user_agent(user_agent)
493

494
495
496
497
498
499
500
501
502
            if is_safetensors_available():
                info = model_info(
                    pretrained_model_name_or_path,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
                if is_safetensors_compatible(info):
                    ignore_patterns.append("*.bin")

503
            # download all allow_patterns
504
505
506
507
508
509
510
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
511
                revision=revision,
512
                allow_patterns=allow_patterns,
513
                ignore_patterns=ignore_patterns,
514
                user_agent=user_agent,
515
            )
Patrick von Platen's avatar
Patrick von Platen committed
516
517
        else:
            cached_folder = pretrained_model_name_or_path
518

519
        config_dict = cls.load_config(cached_folder)
520

Patrick von Platen's avatar
Patrick von Platen committed
521
        # 2. Load the pipeline class, if using custom module then load it from the hub
522
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
523
        if custom_pipeline is not None:
524
525
526
527
528
529
530
531
            if custom_pipeline.endswith(".py"):
                path = Path(custom_pipeline)
                # decompose into folder & file
                file_name = path.name
                custom_pipeline = path.parent.absolute()
            else:
                file_name = CUSTOM_PIPELINE_FILE_NAME

Patrick von Platen's avatar
Patrick von Platen committed
532
            pipeline_class = get_class_from_dynamic_module(
533
                custom_pipeline, module_file=file_name, cache_dir=custom_pipeline
Patrick von Platen's avatar
Patrick von Platen committed
534
535
            )
        elif cls != DiffusionPipeline:
536
537
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        # To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

560
561
562
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
563
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
564
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
565
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
566

567
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
568

569
570
571
572
573
        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
577
578
579
580
581
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
582

583
        if len(unused_kwargs) > 0:
584
585
586
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )
Patrick von Platen's avatar
Patrick von Platen committed
587

588
589
        # import it here to avoid circular import
        from diffusers import pipelines
590

Patrick von Platen's avatar
Patrick von Platen committed
591
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
592
        for name, (library_name, class_name) in init_dict.items():
593
594
595
596
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

597
            is_pipeline_module = hasattr(pipelines, library_name)
598
599
            loaded_sub_model = None

600
            # if the model is in a pipeline module, then we load it from the pipeline
601
602
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
Patrick von Platen's avatar
Patrick von Platen committed
603
                if not is_pipeline_module:
604
605
606
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
607
                    class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
608
609
610

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
611
                        if class_candidate is not None and issubclass(class_obj, class_candidate):
612
613
614
615
616
617
618
619
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
620
                    logger.warning(
621
622
623
624
625
626
627
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
628
629
630
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
631
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
632
            else:
patil-suraj's avatar
patil-suraj committed
633
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
634
                library = importlib.import_module(library_name)
635

patil-suraj's avatar
patil-suraj committed
636
                class_obj = getattr(library, class_name)
637
                importable_classes = LOADABLE_CLASSES[library_name]
638
                class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
639

Patrick von Platen's avatar
Patrick von Platen committed
640
            if loaded_sub_model is None:
641
642
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
643
                    if class_candidate is not None and issubclass(class_obj, class_candidate):
644
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
645

646
647
                if load_method_name is None:
                    none_module = class_obj.__module__
648
649
650
651
                    is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
                        TRANSFORMERS_DUMMY_MODULES_FOLDER
                    )
                    if is_dummy_path and "dummy" in none_module:
652
653
654
655
656
657
658
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
659

660
                load_method = getattr(class_obj, load_method_name)
661
                loading_kwargs = {}
662

663
664
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
665
666
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
667
                    loading_kwargs["sess_options"] = sess_options
668

669
670
671
                is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
                is_transformers_model = (
                    is_transformers_available()
672
                    and issubclass(class_obj, PreTrainedModel)
673
674
675
                    and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
                )

676
                # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
677
                # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
678
                # This makes sure that the weights won't be initialized which significantly speeds up loading.
679
                if is_diffusers_model or is_transformers_model:
680
                    loading_kwargs["device_map"] = device_map
681
                    loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
682

683
684
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
685
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
686
687
                else:
                    # else load from the root directory
688
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
689

690
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
691

Patrick von Platen's avatar
Patrick von Platen committed
692
693
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
694
695
696
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
Patrick von Platen's avatar
Patrick von Platen committed
697
            for module in missing_modules:
698
                init_kwargs[module] = passed_class_obj.get(module, None)
Patrick von Platen's avatar
Patrick von Platen committed
699
        elif len(missing_modules) > 0:
700
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
701
702
703
704
705
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
706
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
707
        return model
708

709
710
711
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
712
713
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
714
715
716
        expected_modules = set(required_parameters.keys()) - set(["self"])
        return expected_modules, optional_parameters

717
718
719
720
    @property
    def components(self) -> Dict[str, Any]:
        r"""

Yuta Hayashibe's avatar
Yuta Hayashibe committed
721
        The `self.components` property can be useful to run different pipelines with the same weights and
722
723
724
725
726
727
728
729
730
731
732
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

Patrick von Platen's avatar
Patrick von Platen committed
733
734
735
        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
736
737
738
        ```

        Returns:
Yuta Hayashibe's avatar
Yuta Hayashibe committed
739
            A dictionaly containing all the modules needed to initialize the pipeline.
740
        """
741
742
743
744
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }
745
746
747
748
749
750
751
752
753

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

754
755
756
757
758
759
760
761
    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
762
763
764
765
766
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]
767
768

        return pil_images
hysts's avatar
hysts committed
769
770
771
772
773
774
775
776
777
778
779
780
781

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs