"vscode:/vscode.git/clone" did not exist on "2717dce6fe1bb4eab80abd5fbbd713211a7fc276"
scheduling_ddim.py 24.3 KB
Newer Older
1
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
26
27
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
30
31


@dataclass
32
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
34
class DDIMSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
    """
Patrick von Platen's avatar
Patrick von Platen committed
57
58
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
59

60
61
62
63
64
65
66
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
67
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
73
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86

87
88
89
90
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
93
94


95
96
97
98
99
100
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
101
        betas (`torch.Tensor`):
102
103
104
            the betas that the scheduler is being initialized with.

    Returns:
105
        `torch.Tensor`: rescaled betas with zero terminal SNR
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
131
class DDIMScheduler(SchedulerMixin, ConfigMixin):
132
    """
133
134
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.
135

136
137
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
138
139

    Args:
140
141
142
143
144
145
146
147
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
148
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
149
150
151
152
153
154
155
156
157
158
159
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
160
            An offset added to the inference steps, as required by some model families.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
178
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
179
180
    """

Kashif Rasul's avatar
Kashif Rasul committed
181
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
182
    order = 1
183

184
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
185
186
    def __init__(
        self,
187
188
189
190
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
191
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
192
193
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
194
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
195
        prediction_type: str = "epsilon",
196
197
198
199
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
200
201
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
202
    ):
203
        if trained_betas is not None:
204
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
205
        elif beta_schedule == "linear":
206
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
207
208
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
209
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
210
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
211
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
212
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
213
        else:
214
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
215

216
217
218
219
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

220
        self.alphas = 1.0 - self.betas
221
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
222
223
224

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
225
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
226
        # whether we use the final alpha of the "non-previous" one.
227
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
228

229
230
231
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

232
        # setable values
233
        self.num_inference_steps = None
234
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
235

236
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
237
238
239
240
241
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
242
            sample (`torch.Tensor`):
243
244
245
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
246
247

        Returns:
248
            `torch.Tensor`:
249
                A scaled input sample.
250
251
252
        """
        return sample

253
254
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
255
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
261
262
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

263
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
264
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
265
266
267
268
269
270
271
272
273
274
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
275
        batch_size, channels, *remaining_dims = sample.shape
276
277
278
279
280

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
281
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
282
283
284
285
286
287
288
289
290
291

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

292
        sample = sample.reshape(batch_size, channels, *remaining_dims)
293
294
295
        sample = sample.to(dtype)

        return sample
296

297
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
298
        """
299
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
300
301
302

        Args:
            num_inference_steps (`int`):
303
                The number of diffusion steps used when generating samples with a pre-trained model.
304
        """
305
306
307
308
309
310
311
312

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

313
        self.num_inference_steps = num_inference_steps
314

315
316
317
318
319
320
321
322
323
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

340
        self.timesteps = torch.from_numpy(timesteps).to(device)
341
342
343

    def step(
        self,
344
        model_output: torch.Tensor,
345
        timestep: int,
346
        sample: torch.Tensor,
Patrick von Platen's avatar
Patrick von Platen committed
347
348
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
349
        generator=None,
350
        variance_noise: Optional[torch.Tensor] = None,
351
        return_dict: bool = True,
352
    ) -> Union[DDIMSchedulerOutput, Tuple]:
353
        """
354
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
355
356
357
        process from the learned model outputs (most often the predicted noise).

        Args:
358
            model_output (`torch.Tensor`):
359
360
361
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
362
            sample (`torch.Tensor`):
363
364
365
366
367
368
369
370
371
372
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
                A random number generator.
373
            variance_noise (`torch.Tensor`):
374
375
376
377
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
378
379

        Returns:
380
            [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
381
382
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
383
384

        """
385
386
387
388
389
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
393
394
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
395
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
396
397
        # - std_dev_t -> sigma_t
        # - eta -> η
398
        # - pred_sample_direction -> "direction pointing to x_t"
399
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
400

401
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
402
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
403
404

        # 2. compute alphas, betas
405
        alpha_prod_t = self.alphas_cumprod[timestep]
406
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
407

Patrick von Platen's avatar
Patrick von Platen committed
408
409
        beta_prod_t = 1 - alpha_prod_t

410
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
411
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
412
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
413
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
414
            pred_epsilon = model_output
415
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
416
            pred_original_sample = model_output
417
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
418
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
419
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
420
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
421
422
        else:
            raise ValueError(
423
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
424
425
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
426

427
        # 4. Clip or threshold "predicted x_0"
428
429
430
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
431
432
433
434
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
435
436
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
437
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
438
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
439

Patrick von Platen's avatar
Patrick von Platen committed
440
        if use_clipped_model_output:
441
442
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
443

Patrick von Platen's avatar
Patrick von Platen committed
444
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
445
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
446
447

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
448
449
450
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
451
452
453
454
455
456
457
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
458
                variance_noise = randn_tensor(
459
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
460
                )
461
            variance = std_dev_t * variance_noise
462
463

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
464

465
        if not return_dict:
466
467
468
469
            return (
                prev_sample,
                pred_original_sample,
            )
470

471
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
472

473
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
474
475
    def add_noise(
        self,
476
477
        original_samples: torch.Tensor,
        noise: torch.Tensor,
478
        timesteps: torch.IntTensor,
479
    ) -> torch.Tensor:
480
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
481
482
483
484
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
485
        timesteps = timesteps.to(original_samples.device)
486

487
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
488
489
490
491
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

492
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
493
494
495
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
496
497
498
499

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

500
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
501
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
502
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
503
504
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
505
506
        timesteps = timesteps.to(sample.device)

507
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
508
509
510
511
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

512
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
513
514
515
516
517
518
519
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
Patrick von Platen committed
520
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
521
        return self.config.num_train_timesteps