scheduling_ddpm.py 23.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
94
            `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
101
102
103
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
104
105
106
107
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
108
109
110
111
112
113
114
115
116
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
117
118
119
120
121
122
123
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
124
125
    """

Kashif Rasul's avatar
Kashif Rasul committed
126
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
127
    order = 1
128

129
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
130
131
    def __init__(
        self,
Partho's avatar
Partho committed
132
133
134
135
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
136
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
137
138
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
139
        prediction_type: str = "epsilon",
140
141
142
143
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
144
145
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
146
    ):
147
        if trained_betas is not None:
148
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
149
        elif beta_schedule == "linear":
150
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
151
152
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
153
154
155
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
156
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
157
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
158
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
159
160
161
162
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
163
164
165
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
166
        self.alphas = 1.0 - self.betas
167
168
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
169

170
171
172
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

173
        # setable values
Will Berman's avatar
Will Berman committed
174
        self.custom_timesteps = False
175
        self.num_inference_steps = None
176
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
177

178
179
        self.variance_type = variance_type

180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

Will Berman's avatar
Will Berman committed
194
195
196
197
198
199
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
200
201
202
203
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
Will Berman's avatar
Will Berman committed
204
205
206
207
208
209
210
211
212
213
            num_inference_steps (`Optional[int]`):
                the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
                `timesteps` must be `None`.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps are moved to.
            custom_timesteps (`List[int]`, optional):
                custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
                must be `None`.

214
        """
Will Berman's avatar
Will Berman committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
238

Will Berman's avatar
Will Berman committed
239
240
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

267
        self.timesteps = torch.from_numpy(timesteps).to(device)
268

269
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
270
271
        prev_t = self.previous_timestep(t)

272
        alpha_prod_t = self.alphas_cumprod[t]
273
274
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
275

Kashif Rasul's avatar
Kashif Rasul committed
276
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
277
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
278
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
279
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
280
281

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
282
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
283

284
285
286
        if variance_type is None:
            variance_type = self.config.variance_type

287
        # hacks - were probably added for training stability
288
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
289
            variance = variance
290
        # for rl-diffuser https://arxiv.org/abs/2205.09991
291
        elif variance_type == "fixed_small_log":
292
            variance = torch.log(variance)
293
            variance = torch.exp(0.5 * variance)
294
        elif variance_type == "fixed_large":
295
            variance = current_beta_t
296
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
297
            # Glide max_log
298
            variance = torch.log(current_beta_t)
299
300
301
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
302
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
303
            max_log = torch.log(current_beta_t)
304
305
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
306
307
308

        return variance

309
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
342

343
344
    def step(
        self,
345
        model_output: torch.FloatTensor,
346
        timestep: int,
347
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
348
        generator=None,
349
        return_dict: bool = True,
350
    ) -> Union[DDPMSchedulerOutput, Tuple]:
351
352
353
354
355
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
356
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
357
            timestep (`int`): current discrete timestep in the diffusion chain.
358
            sample (`torch.FloatTensor`):
359
360
                current instance of sample being created by diffusion process.
            generator: random number generator.
361
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
362
363

        Returns:
364
365
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
366
            returning a tuple, the first element is the sample tensor.
367
368

        """
369
        t = timestep
Will Berman's avatar
Will Berman committed
370
371

        prev_t = self.previous_timestep(t)
372

373
374
375
376
377
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
378
        # 1. compute alphas, betas
379
        alpha_prod_t = self.alphas_cumprod[t]
380
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
381
382
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
383
384
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
385

386
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
387
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
388
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
389
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
390
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
391
            pred_original_sample = model_output
392
393
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
394
395
        else:
            raise ValueError(
396
397
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
398
            )
Patrick von Platen's avatar
Patrick von Platen committed
399

400
        # 3. Clip or threshold "predicted x_0"
401
402
403
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
404
405
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
406
            )
Patrick von Platen's avatar
Patrick von Platen committed
407

408
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
409
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
410
411
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
412

413
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
414
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
415
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
416

Patrick von Platen's avatar
Patrick von Platen committed
417
418
419
        # 6. Add noise
        variance = 0
        if t > 0:
420
            device = model_output.device
421
422
423
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
424
425
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
426
427
428
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
429
430
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
431
432
433

        pred_prev_sample = pred_prev_sample + variance

434
435
436
        if not return_dict:
            return (pred_prev_sample,)

437
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
438

Partho's avatar
Partho committed
439
440
    def add_noise(
        self,
441
442
443
444
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
445
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
446
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
447
        timesteps = timesteps.to(original_samples.device)
448

449
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
450
451
452
453
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

454
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
455
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
456
457
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
458
459

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
460
        return noisy_samples
anton-l's avatar
anton-l committed
461

462
463
464
465
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
466
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
467
468
        timesteps = timesteps.to(sample.device)

469
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
470
471
472
473
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

474
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
475
476
477
478
479
480
481
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
482
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
483
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t