pipeline_utils.py 34.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
from dataclasses import dataclass
21
from pathlib import Path
22
from typing import Any, Dict, List, Optional, Union
anton-l's avatar
Style  
anton-l committed
23

24
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
25
26
import torch

27
import diffusers
28
import PIL
Patrick von Platen's avatar
up  
Patrick von Platen committed
29
from huggingface_hub import snapshot_download
30
from packaging import version
31
from PIL import Image
hysts's avatar
hysts committed
32
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from .dynamic_modules_utils import get_class_from_dynamic_module
36
from .hub_utils import http_user_agent
37
from .modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
38
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
39
40
41
42
43
44
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
45
    deprecate,
46
47
    is_accelerate_available,
    is_torch_version,
48
49
50
51
52
53
    is_transformers_available,
    logging,
)


if is_transformers_available():
54
    import transformers
55
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
56

Patrick von Platen's avatar
Patrick von Platen committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
59
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
60
DUMMY_MODULES_FOLDER = "diffusers.utils"
61
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
62
63
64
65
66
67
68


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
69
        "ModelMixin": ["save_pretrained", "from_pretrained"],
70
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
71
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
72
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
73
74
    },
    "transformers": {
anton-l's avatar
anton-l committed
75
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
76
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
77
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
78
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
79
80
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
81
    },
Prathik Rao's avatar
Prathik Rao committed
82
83
84
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
Patrick von Platen's avatar
Patrick von Platen committed
85
86
}

87
88
89
90
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


106
107
108
109
110
111
112
113
114
115
116
117
118
119
@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


Patrick von Platen's avatar
Patrick von Platen committed
120
class DiffusionPipeline(ConfigMixin):
121
122
123
124
125
126
127
128
129
130
131
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

132
        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
133
          components of the diffusion pipeline.
134
135
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
136
    """
Patrick von Platen's avatar
Patrick von Platen committed
137
    config_name = "model_index.json"
138
    _optional_components = []
Patrick von Platen's avatar
Patrick von Platen committed
139

Patrick von Platen's avatar
up  
Patrick von Platen committed
140
    def register_modules(self, **kwargs):
141
142
        # import it here to avoid circular import
        from diffusers import pipelines
143

Patrick von Platen's avatar
Patrick von Platen committed
144
        for name, module in kwargs.items():
145
            # retrieve library
146
147
148
149
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
150

151
                # check if the module is a pipeline module
152
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
153
154
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
155

156
157
158
159
160
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
161

162
163
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
164

165
                register_dict = {name: (library, class_name)}
166

Patrick von Platen's avatar
Patrick von Platen committed
167
            # save model index config
168
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171

            # set models
            setattr(self, name, module)
172

Patrick von Platen's avatar
Patrick von Platen committed
173
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
174
175
176
177
178
179
180
181
182
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
183
184
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
185
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
186
        model_index_dict.pop("_class_name")
187
        model_index_dict.pop("_diffusers_version")
188
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
189

190
191
192
193
194
195
196
197
198
199
200
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}

anton-l's avatar
anton-l committed
201
202
203
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
204
205

            save_method_name = None
anton-l's avatar
anton-l committed
206
207
208
209
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
210
211
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
anton-l's avatar
anton-l committed
212
213
214
215
216
217
218
219
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
220

Pedro Cuenca's avatar
Pedro Cuenca committed
221
222
223
224
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

225
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
226
227
228
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
229
                if module.dtype == torch.float16 and str(torch_device) in ["cpu"]:
230
                    logger.warning(
231
232
233
234
235
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                        " is not recommended to move them to `cpu` as running them will fail. Please make"
                        " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                        " support for`float16` operations on this device in PyTorch. Please, remove the"
                        " `torch_dtype=torch.float16` argument, or use another device for inference."
236
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
237
238
239
240
241
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
242
243
244
245
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
246
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
247
248
249
250
251
252
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
253
254
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
255
        r"""
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
321
322
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
Patrick von Platen's avatar
Patrick von Platen committed
323
324

            torch_dtype (`str` or `torch.dtype`, *optional*):
325
326
327
328
329
330
331
332
333
334
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
335
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
336
337
338
339
340
341
342
343
344
345
346
347
348
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.
349
350
351
352
353
354
355
356
357
358
359
360
361
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
                also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
                model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
                setting this argument to `True` will raise an error.
362
363
364

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
365
366
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
367
368
369

        <Tip>

370
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
apolinario's avatar
apolinario committed
371
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
apolinario's avatar
apolinario committed
393
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
394

395
        >>> # Use a different scheduler
396
397
        >>> from diffusers import LMSDiscreteScheduler

398
399
        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
400
        ```
401
402
403
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
404
        force_download = kwargs.pop("force_download", False)
405
406
407
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
408
        revision = kwargs.pop("revision", None)
409
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
410
        custom_pipeline = kwargs.pop("custom_pipeline", None)
411
        provider = kwargs.pop("provider", None)
412
        sess_options = kwargs.pop("sess_options", None)
413
        device_map = kwargs.pop("device_map", None)
414
415
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

416
417
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
418
            logger.warning(
419
420
421
422
423
424
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
442

patil-suraj's avatar
patil-suraj committed
443
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
444
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
445
        if not os.path.isdir(pretrained_model_name_or_path):
446
            config_dict = cls.load_config(
447
448
449
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
450
                force_download=force_download,
451
452
453
454
455
456
457
458
459
460
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

461
462
463
            # make sure we don't download flax weights
            ignore_patterns = "*.msgpack"

Patrick von Platen's avatar
Patrick von Platen committed
464
465
466
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

467
468
469
470
471
            if cls != DiffusionPipeline:
                requested_pipeline_class = cls.__name__
            else:
                requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"pipeline_class": requested_pipeline_class}
472
473
            if custom_pipeline is not None:
                user_agent["custom_pipeline"] = custom_pipeline
474
            user_agent = http_user_agent(user_agent)
475

476
            # download all allow_patterns
477
478
479
480
481
482
483
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
484
                revision=revision,
485
                allow_patterns=allow_patterns,
486
                ignore_patterns=ignore_patterns,
487
                user_agent=user_agent,
488
            )
Patrick von Platen's avatar
Patrick von Platen committed
489
490
        else:
            cached_folder = pretrained_model_name_or_path
491

492
        config_dict = cls.load_config(cached_folder)
493

Patrick von Platen's avatar
Patrick von Platen committed
494
        # 2. Load the pipeline class, if using custom module then load it from the hub
495
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
496
        if custom_pipeline is not None:
497
498
499
500
501
502
503
504
            if custom_pipeline.endswith(".py"):
                path = Path(custom_pipeline)
                # decompose into folder & file
                file_name = path.name
                custom_pipeline = path.parent.absolute()
            else:
                file_name = CUSTOM_PIPELINE_FILE_NAME

Patrick von Platen's avatar
Patrick von Platen committed
505
            pipeline_class = get_class_from_dynamic_module(
506
                custom_pipeline, module_file=file_name, cache_dir=custom_pipeline
Patrick von Platen's avatar
Patrick von Platen committed
507
508
            )
        elif cls != DiffusionPipeline:
509
510
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
511
512
513
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        # To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

533
534
535
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
536
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
537
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
538
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
539

540
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
541

542
543
544
545
546
        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
Patrick von Platen's avatar
Patrick von Platen committed
547
548
549
550
551
552
553
554
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
555

556
557
        if len(unused_kwargs) > 0:
            logger.warning(f"Keyword arguments {unused_kwargs} not recognized.")
Patrick von Platen's avatar
Patrick von Platen committed
558

559
560
        # import it here to avoid circular import
        from diffusers import pipelines
561

Patrick von Platen's avatar
Patrick von Platen committed
562
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
563
        for name, (library_name, class_name) in init_dict.items():
564
565
566
567
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

568
            is_pipeline_module = hasattr(pipelines, library_name)
569
570
            loaded_sub_model = None

571
            # if the model is in a pipeline module, then we load it from the pipeline
572
573
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
Patrick von Platen's avatar
Patrick von Platen committed
574
                if not is_pipeline_module:
575
576
577
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
578
                    class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
579
580
581

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
582
                        if class_candidate is not None and issubclass(class_obj, class_candidate):
583
584
585
586
587
588
589
590
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
591
                    logger.warning(
592
593
594
595
596
597
598
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
599
600
601
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
602
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
603
            else:
patil-suraj's avatar
patil-suraj committed
604
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
605
                library = importlib.import_module(library_name)
606

patil-suraj's avatar
patil-suraj committed
607
                class_obj = getattr(library, class_name)
608
                importable_classes = LOADABLE_CLASSES[library_name]
609
                class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
610

Patrick von Platen's avatar
Patrick von Platen committed
611
            if loaded_sub_model is None:
612
613
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
614
                    if class_candidate is not None and issubclass(class_obj, class_candidate):
615
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
616

617
618
                if load_method_name is None:
                    none_module = class_obj.__module__
619
620
621
622
                    is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
                        TRANSFORMERS_DUMMY_MODULES_FOLDER
                    )
                    if is_dummy_path and "dummy" in none_module:
623
624
625
626
627
628
629
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
630

631
                load_method = getattr(class_obj, load_method_name)
632
                loading_kwargs = {}
633

634
635
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
636
637
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
638
                    loading_kwargs["sess_options"] = sess_options
639

640
641
642
                is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
                is_transformers_model = (
                    is_transformers_available()
643
                    and issubclass(class_obj, PreTrainedModel)
644
645
646
                    and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
                )

647
                # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
648
                # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
649
                # This makes sure that the weights won't be initialized which significantly speeds up loading.
650
                if is_diffusers_model or is_transformers_model:
651
                    loading_kwargs["device_map"] = device_map
652
                    loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
653

654
655
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
656
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
657
658
                else:
                    # else load from the root directory
659
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
660

661
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
662

Patrick von Platen's avatar
Patrick von Platen committed
663
664
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
665
666
667
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
Patrick von Platen's avatar
Patrick von Platen committed
668
            for module in missing_modules:
669
                init_kwargs[module] = passed_class_obj.get(module, None)
Patrick von Platen's avatar
Patrick von Platen committed
670
        elif len(missing_modules) > 0:
671
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
672
673
674
675
676
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
677
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
678
        return model
679

680
681
682
683
684
685
686
687
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default is not True}
        optional_parameters = set({k for k, v in parameters.items() if v.default is True})
        expected_modules = set(required_parameters.keys()) - set(["self"])
        return expected_modules, optional_parameters

688
689
690
691
    @property
    def components(self) -> Dict[str, Any]:
        r"""

Yuta Hayashibe's avatar
Yuta Hayashibe committed
692
        The `self.components` property can be useful to run different pipelines with the same weights and
693
694
695
696
697
698
699
700
701
702
703
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

Patrick von Platen's avatar
Patrick von Platen committed
704
705
706
        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
707
708
709
        ```

        Returns:
Yuta Hayashibe's avatar
Yuta Hayashibe committed
710
            A dictionaly containing all the modules needed to initialize the pipeline.
711
        """
712
713
714
715
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }
716
717
718
719
720
721
722
723
724

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

725
726
727
728
729
730
731
732
    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
733
734
735
736
737
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]
738
739

        return pil_images
hysts's avatar
hysts committed
740
741
742
743
744
745
746
747
748
749
750
751
752

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs