imagenet_main.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
34
35
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
36

37
NUM_IMAGES = {
38
39
40
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
98
99
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
100
      'image/class/label': tf.FixedLenFeature([], dtype=tf.int64,
101
102
103
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
104
  }
105
106
107
108
109
110
111
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
  features = tf.parse_single_example(example_serialized, feature_map)
114
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
130
131


132
def parse_record(raw_record, is_training, dtype):
133
134
135
136
137
138
139
140
141
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
142
    dtype: data type to use for images/features.
143

144
145
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
146
147
148
149
150
151
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
152
153
154
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
155
      is_training=is_training)
156
  image = tf.cast(image, dtype)
157

158
  return image, label
159
160


Toby Boyd's avatar
Toby Boyd committed
161
162
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
             dtype=tf.float32, datasets_num_private_threads=None,
Priya Gupta's avatar
Priya Gupta committed
163
             num_parallel_batches=1, parse_record_fn=parse_record):
164
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
165

166
167
168
169
170
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
171
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
172
173
    datasets_num_private_threads: Number of private threads for tf.data.
    num_parallel_batches: Number of parallel batches for tf.data.
Priya Gupta's avatar
Priya Gupta committed
174
    parse_record_fn: Function to use for parsing the records.
175
176
177
178
179
180

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
181

182
  if is_training:
183
184
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
185

186
187
188
189
190
191
192
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
  dataset = dataset.apply(tf.contrib.data.parallel_interleave(
      tf.data.TFRecordDataset, cycle_length=10))
193

194
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
195
196
197
198
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
199
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
200
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
201
202
203
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
      num_parallel_batches=num_parallel_batches
204
  )
205
206


Toby Boyd's avatar
Toby Boyd committed
207
def get_synth_input_fn(dtype):
208
  return resnet_run_loop.get_synth_input_fn(
209
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
210
      dtype=dtype)
211
212


213
214
215
###############################################################################
# Running the model
###############################################################################
216
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
217
  """Model class with appropriate defaults for Imagenet data."""
218

219
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
220
               resnet_version=resnet_model.DEFAULT_VERSION,
221
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
222
223
224
225
226
227
228
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
229
        enables users to extend the same model to their own datasets.
230
231
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
232
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
233
    """
234
235
236

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
237
      bottleneck = False
238
    else:
239
      bottleneck = True
240
241
242

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
243
        bottleneck=bottleneck,
244
        num_classes=num_classes,
245
246
247
248
249
250
251
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
252
        resnet_version=resnet_version,
253
254
255
        data_format=data_format,
        dtype=dtype
    )
256
257
258


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
259
260
261
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
262
263
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
264
265
266
267
268
269
270
271
272

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
273
274
275
276
277
278
279
280
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
281
282
  }

283
284
285
286
287
288
289
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
290
291


292
293
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
294
295
296
297
298
299
300
301
302
303

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

304
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
305
      batch_size=params['batch_size'], batch_denom=256,
306
      num_images=NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
307
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4], warmup=warmup, base_lr=base_lr)
308

309
310
311
312
313
314
315
316
317
318
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
319
      resnet_version=params['resnet_version'],
320
321
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
322
323
      dtype=params['dtype'],
      fine_tune=params['fine_tune']
324
  )
325
326


327
328
329
330
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
331
  flags_core.set_defaults(train_epochs=90)
332

333

334
335
336
337
338
339
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
Toby Boyd's avatar
Toby Boyd committed
340
341
342
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
343
344

  resnet_run_loop.resnet_main(
345
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
346
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
347
348


349
def main(_):
350
351
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
352
353


354
355
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
356
357
  define_imagenet_flags()
  absl_app.run(main)