lowering.cpp 32 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
5
#include <migraphx/op/batch_norm_inference.hpp>
Paul's avatar
Paul committed
6
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
7
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
19
20
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
21
#include <migraphx/op/rnn_var_sl_last_output.hpp>
Paul's avatar
Paul committed
22
23
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
24
#include <migraphx/par_dfor.hpp>
25
#include <migraphx/clamp.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/cpu/gemm.hpp>
27
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
28
#include <unordered_map>
Paul's avatar
Paul committed
29
#include <utility>
kahmed10's avatar
kahmed10 committed
30
#include <iostream>
Paul's avatar
Paul committed
31

Paul's avatar
Paul committed
32
namespace migraphx {
Paul's avatar
Paul committed
33
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
34
35
36
37
38
39
40
41
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
42
43
44
45
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
46
47
48
49
{
    return x;
}

50
51
52
53
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
54
55
56
57
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
58
// args[4] -> bias
59
60
61
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
62
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
63
64
65
66
67
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
68
    op::batch_norm_inference op;
69

70
71
72
73
74
75
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

76
77
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
78
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
79

Paul's avatar
Paul committed
80
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
81
    {
82
83
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
84
85
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
86
87
88
89
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
90

91
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
92
93
94
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
95
96
97
98
99
100
101
102
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx = output_shape.multi(i);
                        auto c   = idx[1];
                        assert((variance[c] + epsilon) > 0);
                        result[i] =
                            gamma[c] * (buffer[i] - mean[c]) / std::sqrt(variance[c] + epsilon) +
                            bias[c];
                    });
Scott Thornton's avatar
Scott Thornton committed
103
                });
104
105
        }

106
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
107
        {
Shucai Xiao's avatar
Shucai Xiao committed
108
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
109
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
110
111
112
113
114
115
116
117
118
119
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx   = output_shape.multi(i);
                        idx[0]     = 0;
                        auto index = output_shape.index(idx);

                        assert((variance[index] + epsilon) > 0);
                        result[i] = gamma[index] * (buffer[i] - mean[index]) /
                                        std::sqrt(variance[index] + epsilon) +
                                    bias[index];
                    });
Scott Thornton's avatar
Scott Thornton committed
120
                });
121
        }
122
123
124
125

        return output;
    }
};
126
MIGRAPHX_REGISTER_OP(cpu_batch_norm_inference)
127

Khalique's avatar
Khalique committed
128
struct cpu_lrn
Khalique's avatar
Khalique committed
129
{
Khalique's avatar
Khalique committed
130
    op::lrn op;
Khalique's avatar
Khalique committed
131

132
133
134
135
136
137
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
138
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
139
140
141
142
143
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
144
145
146
147
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
148
            float alphaoverarea = op.alpha / float(op.size);
149
150
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
151

152
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
153
                float scale = 0;
Khalique's avatar
Khalique committed
154
                dfor(channels)([&](int c) {
155
156
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
157
158
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
159
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
160
161
162
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
163
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
164
165
166
167
168
169
170
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};
171
MIGRAPHX_REGISTER_OP(cpu_lrn)
Khalique's avatar
Khalique committed
172

Paul Fultz II's avatar
Paul Fultz II committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
template <class V, class T, class... Ts>
void visit_quantize_impl(V&& v, T&& x, Ts&&... xs)
{
    x.visit([&](auto y) { visit_all(xs...)([&](auto... ys) { v(y, ys...); }); });
}

template <class T, class... Ts>
auto visit_quantize(T&& x, Ts&&... xs)
{
    return [&](auto v) {
        // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70100
        visit_quantize_impl(v, x, xs...);
    };
}

188
template <class Op>
189
struct cpu_convolution : auto_register_op<cpu_convolution<Op>>
Paul's avatar
Paul committed
190
{
191
192
193
194
    cpu_convolution() = default;

    cpu_convolution(Op pop) : op(std::move(pop)) {}

195
    Op op;
196

197
198
199
200
201
202
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

203
    std::string name() const { return "cpu::" + op.name(); }
204
205
206
207
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Paul Fultz II's avatar
Paul Fultz II committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        visit_quantize(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_lens = input.get_shape().lens();

            auto wei_lens = weights.get_shape().lens();
            auto wei_n    = wei_lens[0];
            auto wei_c    = wei_lens[1];
            std::vector<std::size_t> win_size(wei_lens.begin() + 1, wei_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto w     = idx_o[1];
                auto n_dim = idx_o.size();

                std::vector<std::ptrdiff_t> win_start;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2 = dim - 2;
                    win_start.push_back(std::ptrdiff_t(idx_o[dim] * op.stride[d_2]) -
                                        std::ptrdiff_t(op.padding[d_2]));
                }
                const auto group_id = w / (wei_n / op.group);

                shape win_shape{output_shape.type(), win_size};

                double acc = 0.0;
                shape_for_each(win_shape, [&](auto idx_win) {
                    auto k           = idx_win[0];
                    const auto in_ch = group_id * wei_c + k;
                    std::vector<std::ptrdiff_t> idx(idx_o.begin(), idx_o.end());
                    idx[1] = in_ch;
                    std::transform(idx_win.begin() + 1,
                                   idx_win.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](std::ptrdiff_t ii, std::ptrdiff_t jj) { return ii + jj; });
                    std::vector<std::ptrdiff_t> idx_wei(idx_o.size());
                    idx_wei[0] = w;
                    std::copy(idx_win.begin(), idx_win.end(), idx_wei.begin() + 1);
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx.begin(),
                                  idx.end(),
                                  in_lens.begin(),
                                  in_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        acc +=
                            input(idx.begin(), idx.end()) * weights(idx_wei.begin(), idx_wei.end());
                    }
                });

                output[i] = acc;
259
            });
260
261
262
263
264
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
265
template <class Op>
266
struct cpu_deconvolution : auto_register_op<cpu_deconvolution<Op>>
kahmed10's avatar
kahmed10 committed
267
{
268
269
270
271
    cpu_deconvolution() = default;

    cpu_deconvolution(Op pop) : op(std::move(pop)) {}

kahmed10's avatar
kahmed10 committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

kahmed10's avatar
kahmed10 committed
290
291
292
            auto in_lens = input.get_shape().lens();
            auto in_n    = in_lens[0];
            auto in_c    = in_lens[1];
kahmed10's avatar
kahmed10 committed
293
294
295
296

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
kahmed10's avatar
kahmed10 committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

            auto out_lens = output_shape.lens();
            auto kdims    = op.kdims();

            std::vector<std::size_t> win_size{in_c};
            std::copy(in_lens.begin() + 2, in_lens.end(), std::back_inserter(win_size));
            std::copy(wei.begin() + 2, wei.end(), std::back_inserter(win_size));
            shape win_shape{output_shape.type(), win_size};

            par_dfor(in_n, wei_c)([&](int o, int k) {

                shape_for_each(win_shape, [&](auto idx_win) {
                    const int w = idx_win[0];

                    auto input_dims_start = idx_win.begin() + 1;
                    auto wei_dims_start   = idx_win.begin() + kdims + 1;

                    std::vector<std::ptrdiff_t> win_start;
                    for(std::size_t n = 0; n < kdims; ++n)
                    {
                        win_start.push_back(std::ptrdiff_t(*(input_dims_start + n) * op.stride[n]) -
                                            std::ptrdiff_t(op.padding[n]));
                    }

                    const int group_id = w / (wei_n / op.group);
                    const int in_ch    = group_id * wei_c + k;

                    std::vector<std::ptrdiff_t> idx_out{o, in_ch};

                    for(size_t n = 0; n < kdims; n++)
                    {
                        idx_out.push_back(win_start[n] + *(wei_dims_start + n) * op.dilation[n]);
                    }

                    std::vector<std::ptrdiff_t> idx_wei{w, k};
                    std::copy(wei_dims_start, idx_win.end(), std::back_inserter(idx_wei));

                    std::vector<std::ptrdiff_t> idx_in{o, w};
                    std::copy(input_dims_start, wei_dims_start, std::back_inserter(idx_in));

                    if(std::all_of(
                           idx_out.begin() + 2, idx_out.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx_out.begin() + 2,
                                  idx_out.end(),
                                  out_lens.begin() + 2,
                                  out_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        output(idx_out.begin(), idx_out.end()) +=
                            input(idx_in.begin(), idx_in.end()) *
                            weights(idx_wei.begin(), idx_wei.end());
                    }
                });

kahmed10's avatar
kahmed10 committed
351
            });
kahmed10's avatar
kahmed10 committed
352

kahmed10's avatar
kahmed10 committed
353
354
355
356
357
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
358
359
struct cpu_im2col
{
360
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
361

362
363
364
365
366
367
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
368
369
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
370

wsttiger's avatar
wsttiger committed
371
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
372
    {
Scott Thornton's avatar
Scott Thornton committed
373
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
374
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
375
376
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
377
378
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
379
380
381
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
382
383
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
384
385
386
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
387
388
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
389
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
390
391
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
392
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
393
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
394
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
395
396
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
397
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
398
399
400
401
402
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
403
404
405
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
406
407
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
408
409
410
411
412
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
413
414
                }
            }
Scott Thornton's avatar
Scott Thornton committed
415
        });
Scott Thornton's avatar
Scott Thornton committed
416
417
418
        return result;
    }
};
419
MIGRAPHX_REGISTER_OP(cpu_im2col)
Scott Thornton's avatar
Scott Thornton committed
420

Paul's avatar
Paul committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
446
struct cpu_pooling : auto_register_op<cpu_pooling<Op>>
Paul's avatar
Paul committed
447
{
448
449
450
451
    cpu_pooling() = default;

    cpu_pooling(op::pooling pop) : op(std::move(pop)) {}

452
    op::pooling op;
Paul's avatar
Paul committed
453

454
455
456
457
458
459
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
460
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
461
462
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
463
464
465
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            using type   = typename decltype(output)::value_type;
            auto in_s    = input.get_shape();
            auto in_lens = in_s.lens();
            std::vector<std::size_t> vec_len(in_lens.begin() + 2, in_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto n_dim = idx_o.size();
                std::vector<std::size_t> win_start;
                std::vector<std::size_t> win_size;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2  = dim - 2;
                    int start = static_cast<int>(idx_o[dim] * op.stride[d_2]) -
                                static_cast<int>(op.padding[d_2]);
                    int end = std::min(start + op.lengths[d_2], in_lens[dim]);
                    start   = std::max(start, 0);
                    win_start.push_back(start);
                    win_size.push_back(end - start);
                }

                shape win_shape{output_shape.type(), win_size};
                auto pool_size = win_shape.elements();
                double acc     = Op::start();
                shape_for_each(win_shape, [&](auto idx_w) {
                    auto idx = idx_o;
                    std::transform(idx_w.begin(),
                                   idx_w.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](auto ii, auto jj) { return ii + jj; });
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       idx < in_lens)
                    {
                        acc = Op::apply(acc, input[in_s.index(idx)]);
                    }
Paul's avatar
Paul committed
502
                });
503
504
505

                output[i] = type(Op::final(acc, pool_size));
            });
Paul's avatar
Paul committed
506
        });
507

Paul's avatar
Paul committed
508
509
510
511
        return result;
    }
};

512
struct cpu_op
Paul's avatar
Paul committed
513
{
514
    operation op;
kahmed10's avatar
kahmed10 committed
515
516
517
518
519
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
520
    std::string name() const { return "cpu::op"; }
Paul's avatar
Paul committed
521
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
522
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
523
    {
Paul's avatar
Paul committed
524
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
525
    }
526
    friend std::ostream& operator<<(std::ostream& os, const cpu_op& x)
Paul's avatar
Paul committed
527
    {
528
529
        os << "cpu::" << x.op;
        return os;
Paul's avatar
Paul committed
530
531
    }
};
532
MIGRAPHX_REGISTER_OP(cpu_op)
Paul's avatar
Paul committed
533

Khalique's avatar
Khalique committed
534
struct cpu_pad
535
{
Khalique's avatar
Khalique committed
536
    op::pad op;
537
538
539
540
541
542
543

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

kahmed10's avatar
kahmed10 committed
544
    std::string name() const { return "cpu::pad"; }
545
546
547
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
548
        assert(output_shape.standard());
549
        argument result{output_shape};
550
551
552
553
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
554
555

        visit_all(result, args[0])([&](auto output, auto input) {
556
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
557
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
558
559
560
561
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
562
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
563
            });
Khalique's avatar
Khalique committed
564
565
        });

566
567
568
        return result;
    }
};
569
MIGRAPHX_REGISTER_OP(cpu_pad)
570

Paul's avatar
Paul committed
571
572
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
573
    op::dot op;
574
575
576
577
578
579

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
580
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
581
582
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
583
584
585
586
587
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
588
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
589
    }
Paul's avatar
Paul committed
590

Paul's avatar
Paul committed
591
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
592
593
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
594
        // 3 inputs, it is alpha * A * B + beta * C, then
595
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
618
619
620
        return result;
    }
};
621
MIGRAPHX_REGISTER_OP(cpu_gemm)
Paul's avatar
Paul committed
622

623
624
625
struct cpu_quant_gemm
{
    op::quant_dot op;
626
627
628
629
630
631
632

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
654
655
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
656
657
658
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
659
660
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
683
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
684
685
686
687

        return result;
    }
};
688
MIGRAPHX_REGISTER_OP(cpu_gemm)
689

Khalique's avatar
Khalique committed
690
691
692
693
694
695
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
696
        auto a = op.alpha;
Khalique's avatar
Khalique committed
697
698
699
700
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
701
702
703
704
705
706
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
707
        auto a = op.alpha;
Khalique's avatar
Khalique committed
708
709
710
711
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
712
template <typename Op>
713
struct cpu_unary : auto_register_op<cpu_unary<Op>>
Paul's avatar
Paul committed
714
{
715
716
717
718
719
720
721
    cpu_unary() = default;

    template <class T>
    cpu_unary(T pop) : op(Op{std::move(pop)})
    {
    }

Paul's avatar
Paul committed
722
    Op op;
723
724
725
726
727
728

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
729
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
730
    shape compute_shape(const std::vector<shape>& inputs) const
731
    {
Shucai Xiao's avatar
Shucai Xiao committed
732
733
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
734
        return {s.type(), s.lens()};
735
736
    }

Paul's avatar
Paul committed
737
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
738
739
    {
        argument result{output_shape};
740
741
742
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
743
        });
744

Paul's avatar
Paul committed
745
746
747
748
        return result;
    }
};

749
template <class Op>
750
struct cpu_softmax : auto_register_op<cpu_softmax<Op>>
Paul's avatar
Paul committed
751
{
752
753
754
755
    cpu_softmax() = default;

    cpu_softmax(Op pop) : op(std::move(pop)) {}

756
    Op op;
Khalique's avatar
Khalique committed
757
758
759
760
761
762
763

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

764
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
765
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
766
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
767
768
    {
        argument result{output_shape};
769
770
771
772
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
773
774
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
775
776
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
777
778
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
779
780
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
781
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
782
                for(std::size_t j = 0; j < n_dims; ++j)
783
                {
784
785
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
786
                }
Khalique's avatar
Khalique committed
787

Shucai Xiao's avatar
Shucai Xiao committed
788
                for(std::size_t j = 0; j < n_dims; ++j)
789
                {
790
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
791
792
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
793
                }
Khalique's avatar
Khalique committed
794

Shucai Xiao's avatar
Shucai Xiao committed
795
                for(std::size_t j = 0; j < n_dims; ++j)
796
                {
797
                    idx[tuned_axis] = j;
798
799
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
800

Shucai Xiao's avatar
Shucai Xiao committed
801
                for(std::size_t j = 0; j < n_dims; ++j)
802
                {
803
                    idx[tuned_axis] = j;
804
805
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
806
                }
Shucai Xiao's avatar
Shucai Xiao committed
807
808
809
810
811
812
813
            });
        });

        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
struct cpu_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};
859
MIGRAPHX_REGISTER_OP(cpu_rnn_var_sl_last_output)
Shucai Xiao's avatar
Shucai Xiao committed
860

Paul's avatar
Paul committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
880
        apply_map["batch_norm_inference"] =
881
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
882
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
883
884
885
886
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
887
888
889
890
891
892
893
894
895
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Shucai Xiao's avatar
Shucai Xiao committed
896
897
        apply_map["rnn_var_sl_last_output"] =
            extend_op<cpu_rnn_var_sl_last_output, op::rnn_var_sl_last_output>();
Paul's avatar
Paul committed
898
899
900
901
902
903
904
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
905
            if(it->name() == "pooling")
Paul's avatar
Paul committed
906
907
908
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
909
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
910
            {
Paul's avatar
Paul committed
911
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
912
            }
Paul's avatar
Paul committed
913
            else if(is_context_free(it->get_operator()))
914
915
916
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
917
918
919
        }
    }

920
921
922
923
924
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
925
926
927
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
928
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
929
930
931
932
933
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
934
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
935
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
936
937
938
939
    }

    void apply_pooling(instruction_ref ins)
    {
940
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
941
        if(op.mode == "max")
Paul's avatar
Paul committed
942
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
943
        else if(op.mode == "average")
Paul's avatar
Paul committed
944
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
945
946
947
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
948
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
949
950

} // namespace cpu
Paul's avatar
Paul committed
951
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
952
} // namespace migraphx