lowering.cpp 23.5 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
8
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
9
#include <unordered_map>
Paul's avatar
Paul committed
10
#include <utility>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
namespace migraphx {
Paul's avatar
Paul committed
13
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
14
15
16
17
18
19
20
21
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
22
23
24
25
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
26
27
28
29
{
    return x;
}

30
31
32
33
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
34
35
36
37
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
38
// args[4] -> bias
39
40
41
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
42
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
43
44
45
46
47
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
48
    op::batch_norm_inference op;
49

50
51
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
52
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
53

Paul's avatar
Paul committed
54
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
55
    {
56
57
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
58
59
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
60
61
62
63
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
64

65
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
66
67
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
68
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
69

70
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
71
72
73
74
75
76
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

                    dfor(num_batch, num_channels, image_height, image_width)(
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
77
                            assert((variance(c) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
82
                            result(n, c, h, w) = gamma(c) * (buffer(n, c, h, w) - mean(c)) /
                                                     std::sqrt(variance(c) + epsilon) +
                                                 bias(c);
                        });
                });
83
84
        }

85
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
86
        {
87
88
89
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Scott Thornton's avatar
Scott Thornton committed
90
                    dfor(num_batch, num_channels, image_height, image_width)(
91
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
92
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
93
94
95
96
97
98
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
99
        }
100
101
102
103
104

        return output;
    }
};

Paul's avatar
Paul committed
105
106
struct cpu_convolution
{
107
    op::convolution op;
Paul's avatar
Paul committed
108
109

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
110
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
111
112
113
114
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
115
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
116
117
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
118

Khalique's avatar
Khalique committed
119
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
120
121
122
123
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
124
125
126
127
128
129

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
130
131
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
132
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
133
134
135

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
136
137
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
138
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
139
140
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
141
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
142
143
144
145
146
147
148
149
150
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
151
152
struct cpu_im2col
{
153
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
154

Scott Thornton's avatar
Scott Thornton committed
155
156
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
157

wsttiger's avatar
wsttiger committed
158
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
159
    {
Scott Thornton's avatar
Scott Thornton committed
160
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
161
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
162
163
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
164
165
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
166
167
168
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
169
170
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
171
172
173
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
174
175
            int kdiv2_h;
            int kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
176
177
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
178
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
179
180
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
181
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
182
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
183
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
184
185
186
187
188
189
190
191
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
192
193
194
195
196
197
198
199
200
201
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
202
203
                }
            }
Scott Thornton's avatar
Scott Thornton committed
204
        });
Scott Thornton's avatar
Scott Thornton committed
205
206
207
208
        return result;
    }
};

Paul's avatar
Paul committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
236
    op::pooling op;
Paul's avatar
Paul committed
237
238

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
239
240
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
284
    op::contiguous op;
Paul's avatar
Paul committed
285
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
286
287
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
288
    {
Paul's avatar
Paul committed
289
        assert(output_shape.standard());
Paul's avatar
Paul committed
290
291
292
293
294
295
296
297
298
299
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
        });
        return result;
    }
};

Khalique's avatar
Khalique committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
struct cpu_pad
{
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        assert(output_shape.standard());
        argument result{output_shape};
        result.visit([&](auto output) {
            std::fill(output.begin(), output.end(), op.value);
        });

        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                std::vector<std::size_t> new_idx(idx.size());
                std::transform(idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                    return i + j;
                });
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
            });
        });

        return result;
    }
};

327
328
329
330
331
332
333
struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
334
        return op.compute(output_shape, std::move(args));
335
336
337
    }
};

Paul's avatar
Paul committed
338
339
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
340
341
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Paul's avatar
Paul committed
342
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
343

Paul's avatar
Paul committed
344
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
345
346
    {
        argument result{output_shape};
Paul's avatar
Paul committed
347
        migemm(result, args[0], args[1], op.alpha, op.beta);
Paul's avatar
Paul committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        return result;
    }
};

struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
366
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
367
368
369
370
371
372
373
374
375
376
377
378
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
379
380
381
382
383
384
385
386
387
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
492
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
493
494
495
    }
};

Khalique's avatar
Khalique committed
496
497
498
499
500
501
502
503
504
505
506
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
507
508
509
510
511
512
513
514
515
516
517
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
518
519
520
521
522
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
523
524
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
539
540
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
628
629
630
631
632
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
633
634
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
674
675
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
676
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
677
        apply_map["batch_norm_inference"] =
678
679
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Khalique's avatar
Khalique committed
680
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
Scott Thornton's avatar
Scott Thornton committed
681
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
Khalique's avatar
Khalique committed
682
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
683
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
684
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
685
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
686
687
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
688
689
690
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
691
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
692
693
694
695
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
696
697
698
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
699
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
700
701
702
703
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
704
705
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
706
707
708
709
710
711
712
713
714

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
715
            if(it->name() == "pooling")
Paul's avatar
Paul committed
716
717
718
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
719
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
720
            {
Paul's avatar
Paul committed
721
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
722
723
724
725
726
727
728
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
729
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
730
731
732
733
734
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
735
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
736
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
737
738
739
740
    }

    void apply_pooling(instruction_ref ins)
    {
741
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
742
        if(op.mode == "max")
Paul's avatar
Paul committed
743
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
744
        else if(op.mode == "average")
Paul's avatar
Paul committed
745
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
746
747
748
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
749
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
750
751

} // namespace cpu
Paul's avatar
Paul committed
752
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
753
} // namespace migraphx