Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
7accd407
Commit
7accd407
authored
May 28, 2019
by
Khalique
Browse files
add simple test, continue debugging
parent
67af264a
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
130 additions
and
28 deletions
+130
-28
src/include/migraphx/op/softmax.hpp
src/include/migraphx/op/softmax.hpp
+14
-1
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+101
-27
test/cpu_ops_test.cpp
test/cpu_ops_test.cpp
+15
-0
No files found.
src/include/migraphx/op/softmax.hpp
View file @
7accd407
...
...
@@ -18,10 +18,23 @@ namespace op {
struct
softmax
{
int
axis
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"softmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
4
);
check_shapes
{
inputs
}.
has
(
1
).
standard
();
if
(
axis
<
0
||
axis
>
inputs
[
0
].
lens
().
size
())
{
MIGRAPHX_THROW
(
"SoftMax: input axis value "
+
std
::
to_string
(
axis
)
+
" is out of range"
);
}
return
inputs
.
at
(
0
);
}
};
...
...
src/targets/cpu/lowering.cpp
View file @
7accd407
...
...
@@ -517,40 +517,114 @@ struct cpu_unary
}
};
struct
softmax2d
// struct softmax2d
// {
// std::string name() const { return "cpu::softmax2d"; }
// shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
// argument compute(context&, const shape& output_shape, std::vector<argument> args) const
// {
// argument result{output_shape};
// visit_all(result, args[0])([&](auto output, auto input) {
// using value_type = typename decltype(input)::value_type;
// auto nb = input.get_shape().lens()[0];
// auto nc = input.get_shape().lens()[1];
// auto nh = input.get_shape().lens()[2];
// auto nw = input.get_shape().lens()[3];
// dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
// value_type cmax = std::numeric_limits<value_type>::lowest();
// for(std::size_t c = 0; c < nc; c++)
// {
// cmax = std::max(cmax, input(b, c, i, j));
// }
// for(std::size_t c = 0; c < nc; c++)
// {
// output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
// }
// value_type sum = value_type(0);
// for(std::size_t c = 0; c < nc; c++)
// {
// sum += output(b, c, i, j);
// }
// for(std::size_t c = 0; c < nc; c++)
// {
// output(b, c, i, j) = output(b, c, i, j) / sum;
// }
// });
// });
// return result;
// }
// };
struct
cpu_softmax
{
std
::
string
name
()
const
{
return
"cpu::softmax2d"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
inputs
.
front
();
}
op
::
softmax
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::softmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
template
<
typename
T
>
std
::
size_t
compute_batch_index
(
const
T
&
idx
,
shape
&
batch_shape
,
int
axis
)
const
{
if
(
axis
==
0
)
{
return
0
;
}
else
{
std
::
vector
<
std
::
size_t
>
batch_idx
(
idx
.
begin
(),
idx
.
begin
()
+
axis
);
return
batch_shape
.
index
(
batch_idx
.
begin
(),
batch_idx
.
end
());
}
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
auto
lens
=
output_shape
.
lens
();
std
::
vector
<
std
::
size_t
>
batch_lens
{};
if
(
op
.
axis
==
0
)
{
batch_lens
.
push_back
(
1
);
}
else
{
batch_lens
.
insert
(
batch_lens
.
begin
(),
lens
.
begin
(),
lens
.
begin
()
+
op
.
axis
);
}
shape
batch_shape
{
migraphx
::
shape
::
uint32_type
,
batch_lens
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
using
value_type
=
typename
decltype
(
input
)
::
value_type
;
auto
nb
=
input
.
get_shape
().
lens
()[
0
];
auto
nc
=
input
.
get_shape
().
lens
()[
1
];
auto
nh
=
input
.
get_shape
().
lens
()[
2
];
auto
nw
=
input
.
get_shape
().
lens
()[
3
];
dfor
(
nb
,
nh
,
nw
)([
&
](
std
::
size_t
b
,
std
::
size_t
i
,
std
::
size_t
j
)
{
value_type
cmax
=
std
::
numeric_limits
<
value_type
>::
lowest
();
for
(
std
::
size_t
c
=
0
;
c
<
nc
;
c
++
)
{
cmax
=
std
::
max
(
cmax
,
input
(
b
,
c
,
i
,
j
));
}
for
(
std
::
size_t
c
=
0
;
c
<
nc
;
c
++
)
{
output
(
b
,
c
,
i
,
j
)
=
std
::
exp
(
input
(
b
,
c
,
i
,
j
)
-
cmax
);
}
value_type
sum
=
value_type
(
0
);
for
(
std
::
size_t
c
=
0
;
c
<
nc
;
c
++
)
{
sum
+=
output
(
b
,
c
,
i
,
j
);
}
for
(
std
::
size_t
c
=
0
;
c
<
nc
;
c
++
)
{
output
(
b
,
c
,
i
,
j
)
=
output
(
b
,
c
,
i
,
j
)
/
sum
;
}
std
::
vector
<
value_type
>
batch_max
(
batch_shape
.
elements
(),
std
::
numeric_limits
<
value_type
>::
lowest
());
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
batch_max
[
index
]
=
std
::
max
(
batch_max
[
index
],
input
(
idx
.
begin
(),
idx
.
end
()));
});
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
idx
.
begin
(),
idx
.
end
())
-
batch_max
[
index
];
});
std
::
vector
<
value_type
>
batch_sum
(
batch_shape
.
elements
(),
value_type
(
0
));
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
auto
output_val
=
std
::
exp
(
output
(
idx
.
begin
(),
idx
.
end
()));
output
(
idx
.
begin
(),
idx
.
end
())
=
output_val
;
batch_sum
[
index
]
+=
output
(
idx
.
begin
(),
idx
.
end
());
});
shape_for_each
(
output_shape
,
[
&
](
auto
idx
)
{
auto
index
=
this
->
compute_batch_index
(
idx
,
batch_shape
,
op
.
axis
);
output
(
idx
.
begin
(),
idx
.
end
())
/=
batch_sum
[
index
];
});
});
return
result
;
}
};
...
...
@@ -660,7 +734,7 @@ struct cpu_apply
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"softmax"
]
=
simple_op
<
softmax2d
>
();
apply_map
[
"softmax"
]
=
extend_op
<
cpu_softmax
,
op
::
softmax
>
();
}
void
apply
()
...
...
test/cpu_ops_test.cpp
View file @
7accd407
...
...
@@ -929,6 +929,21 @@ TEST_CASE(maxpool_test)
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
c
));
}
TEST_CASE
(
softmax_simple_test
)
{
migraphx
::
program
p
;
std
::
vector
<
float
>
a
=
{
0.25
,
0.75
};
std
::
vector
<
float
>
s
=
{
0.377541
,
0.622459
};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
float_type
,
{
1
,
2
}};
auto
al
=
p
.
add_literal
(
migraphx
::
literal
{
a_shape
,
a
});
p
.
add_instruction
(
migraphx
::
op
::
softmax
{},
al
);
p
.
compile
(
migraphx
::
cpu
::
target
{});
auto
result
=
p
.
eval
({});
std
::
vector
<
float
>
results_vector
(
2
);
result
.
visit
([
&
](
auto
output
)
{
results_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
EXPECT
(
migraphx
::
verify_range
(
results_vector
,
s
));
}
TEST_CASE
(
softmax_test
)
{
migraphx
::
program
p
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment