lowering.cpp 28.2 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
12
13
#include <fstream>
#include <iomanip>
Paul's avatar
Paul committed
14

Paul's avatar
Paul committed
15
namespace migraphx {
Paul's avatar
Paul committed
16
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
17
18
19
20
21
22
23
24
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
25
26
27
28
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
29
30
31
32
{
    return x;
}

33
34
35
36
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
37
38
39
40
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
41
// args[4] -> bias
42
43
44
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
45
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
46
47
48
49
50
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
51
    op::batch_norm_inference op;
52

53
54
55
56
57
58
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

59
60
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
61
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
62

Paul's avatar
Paul committed
63
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
64
    {
65
66
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
67
68
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
69
70
71
72
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
73

74
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
75
76
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
77
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
78

79
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
80
81
82
83
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
84
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
85
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
86
87
88
89
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
90
91
                        });
                });
92
93
        }

94
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
95
        {
96
97
98
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
99
                    par_dfor(num_batch, num_channels, image_height, image_width)(
100
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
101
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
102
103
104
105
106
107
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
108
        }
109
110
111
112
113

        return output;
    }
};

Khalique's avatar
Khalique committed
114
struct cpu_lrn
Khalique's avatar
Khalique committed
115
{
Khalique's avatar
Khalique committed
116
    op::lrn op;
Khalique's avatar
Khalique committed
117

118
119
120
121
122
123
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
124
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
125
126
127
128
129
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
130
131
132
133
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
134
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
135
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
136

137
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
138
                float scale = 0;
Khalique's avatar
Khalique committed
139
140
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
141
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
142
143
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
144
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
145
146
147
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
148
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
149
150
151
152
153
154
155
156
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
157
158
struct cpu_convolution
{
159
    op::convolution op;
Paul's avatar
Paul committed
160

161
162
163
164
165
166
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
167
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
168
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
169
170
171
172
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
173
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
174
175
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
176

Khalique's avatar
Khalique committed
177
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
178
179
180
181
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
182

Paul's avatar
Paul committed
183
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
184
185
186
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
187
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
188
189
190
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
191
192
193

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
194
195
196
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
197
198
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
199
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
200
201
202
203
204
205
206
207
208
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

209
210
211
212
struct cpu_quant_convolution
{
    op::quant_convolution op;

213
214
215
216
217
218
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

219
220
221
222
223
    std::string name() const { return "cpu::quant_convolution"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
224
        auto output = result.get<int32_t>();
Shucai Xiao's avatar
Shucai Xiao committed
225
226
227
228
229
230
231
232
233
234
235
236
        visit_all(args[0], args[1])([&](auto input, auto weights) {
            auto in   = input.get_shape().lens();
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(output_shape.lens()[0],
Shucai Xiao's avatar
Shucai Xiao committed
237
238
239
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Shucai Xiao's avatar
Shucai Xiao committed
240
241
242
243
244
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);

245
                    int32_t acc = 0;
Shucai Xiao's avatar
Shucai Xiao committed
246
247
248
249
250
251
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Shucai Xiao's avatar
Shucai Xiao committed
252
253
                            acc += static_cast<int32_t>(input(o, in_ch, in_x, in_y)) *
                                   weights(w, k, x, y);
Shucai Xiao's avatar
Shucai Xiao committed
254
                        }
255
                    });
Shucai Xiao's avatar
Shucai Xiao committed
256
257
                    output(o, w, i, j) = acc;
                });
258
        });
Shucai Xiao's avatar
Shucai Xiao committed
259

260
261
262
263
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
264
265
struct cpu_im2col
{
266
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
267

268
269
270
271
272
273
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
274
275
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
276

wsttiger's avatar
wsttiger committed
277
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
278
    {
Scott Thornton's avatar
Scott Thornton committed
279
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
280
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
281
282
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
283
284
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
285
286
287
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
288
289
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
290
291
292
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
293
294
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
295
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
296
297
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
298
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
299
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
300
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
301
302
303
304
305
306
307
308
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
309
310
311
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
312
313
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
314
315
316
317
318
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
319
320
                }
            }
Scott Thornton's avatar
Scott Thornton committed
321
        });
Scott Thornton's avatar
Scott Thornton committed
322
323
324
325
        return result;
    }
};

Paul's avatar
Paul committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
353
    op::pooling op;
Paul's avatar
Paul committed
354

355
356
357
358
359
360
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
361
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
362
363
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
364
365
366
367
368
369
370
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
371
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
372
373
374
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

405
struct cpu_op
Paul's avatar
Paul committed
406
{
407
408
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
409
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
410
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
411
    {
Paul's avatar
Paul committed
412
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
413
    }
Paul's avatar
Paul committed
414
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
415
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
416
    {
417
418
419
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
420
    }
Paul's avatar
Paul committed
421
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
422
423
};

Khalique's avatar
Khalique committed
424
struct cpu_pad
425
{
Khalique's avatar
Khalique committed
426
    op::pad op;
427
428
429
430
431
432
433

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
434
    std::string name() const { return "cpu::contiguous"; }
435
436
437
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
438
        assert(output_shape.standard());
439
        argument result{output_shape};
Khalique's avatar
Khalique committed
440
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
441
442

        visit_all(result, args[0])([&](auto output, auto input) {
443
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
444
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
445
446
447
448
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
449
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
450
            });
Khalique's avatar
Khalique committed
451
452
        });

453
454
455
456
        return result;
    }
};

Paul's avatar
Paul committed
457
458
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
459
    op::dot op;
460
461
462
463
464
465

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
466
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
467
468
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
469
470
471
472
473
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
474
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
475
    }
Paul's avatar
Paul committed
476

Paul's avatar
Paul committed
477
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
478
479
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
480
        // 3 inputs, it is alpha * A * B + beta * C, then
481
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
504
505
506
507
        return result;
    }
};

508
509
510
struct cpu_quant_gemm
{
    op::quant_dot op;
511
512
513
514
515
516
517

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
539
540
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
541
542
543
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
544
545
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
568
        int32_t beta = 0;
569
570
571
572
573
574
        migemm(result, arg_0, arg_1, op.alpha, beta);

        return result;
    }
};

Khalique's avatar
Khalique committed
575
576
577
578
579
580
581
582
583
584
585
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
586
587
588
589
590
591
592
593
594
595
596
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
597
598
599
600
template <typename Op>
struct cpu_unary
{
    Op op;
601
602
603
604
605
606

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
607
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
608
    shape compute_shape(const std::vector<shape>& inputs) const
609
    {
Shucai Xiao's avatar
Shucai Xiao committed
610
611
612
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
613
        {
Shucai Xiao's avatar
Shucai Xiao committed
614
            return s;
615
616
617
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
618
            return {s.type(), s.lens()};
619
620
621
        }
    }

Paul's avatar
Paul committed
622
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
623
624
625
626
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
627
                if(input.get_shape().standard())
628
629
630
631
632
633
634
635
636
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
637
638
            });
        });
639

Paul's avatar
Paul committed
640
641
642
643
644
645
646
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
647
648
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
649
650
651
652
653
654
655
656
657
658
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
Paul's avatar
Paul committed
659
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
660
661
662
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
Paul's avatar
Paul committed
663
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
664
665
666
667
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
Paul's avatar
Paul committed
668
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
669
670
671
                {
                    sum += output(b, c, i, j);
                }
Paul's avatar
Paul committed
672
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
673
674
675
676
677
678
679
680
681
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
682
683
684
struct cpu_logsoftmax
{
    op::logsoftmax op;
685
686
687
688
689
690
691

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
692
693
694
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
695
    template <typename T>
696
    std::size_t compute_batch_index(T idx, const shape& batch_shape, int axis) const
Shucai Xiao's avatar
Shucai Xiao committed
697
    {
698
699
        idx[axis] = 0;
        return batch_shape.index(idx);
Shucai Xiao's avatar
Shucai Xiao committed
700
701
702
703
704
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
705
        auto batch_lens     = output_shape.lens();
706
707
708
        batch_lens[op.axis] = 1;
        shape batch_shape{shape::int32_type, batch_lens};

Shucai Xiao's avatar
Shucai Xiao committed
709
710
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
711
712
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
713
            shape_for_each(output_shape, [&](auto idx) {
714
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
715
716
717
718
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
719
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
720
721
722
723
724
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
725
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
726
727
728
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
729
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
730
731
732
733
734
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
735
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
736
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
737
738
739
740
741
742
743
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
763
        apply_map["batch_norm_inference"] =
764
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Shucai Xiao's avatar
Shucai Xiao committed
765
766
        apply_map["convolution"]       = extend_op<cpu_convolution, op::convolution>();
        apply_map["dot"]               = extend_op<cpu_gemm, op::dot>();
767
768
        apply_map["quant_dot"]         = extend_op<cpu_quant_gemm, op::quant_dot>();
        apply_map["quant_convolution"] = extend_op<cpu_quant_convolution, op::quant_convolution>();
Shucai Xiao's avatar
Shucai Xiao committed
769
770
771
772
773
774
775
        apply_map["elu"]               = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]            = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"]        = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"]        = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["lrn"]               = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]               = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]           = simple_op<softmax2d>();
Paul's avatar
Paul committed
776
777
778
779
780
781
782
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
783
            if(it->name() == "pooling")
Paul's avatar
Paul committed
784
785
786
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
787
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
788
            {
Paul's avatar
Paul committed
789
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
790
            }
Paul's avatar
Paul committed
791
            else if(is_context_free(it->get_operator()))
792
793
794
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
795
796
797
        }
    }

798
799
800
801
802
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
803
804
805
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
806
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
807
808
809
810
811
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
812
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
813
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
814
815
816
817
    }

    void apply_pooling(instruction_ref ins)
    {
818
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
819
        if(op.mode == "max")
Paul's avatar
Paul committed
820
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
821
        else if(op.mode == "average")
Paul's avatar
Paul committed
822
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
823
824
825
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
826
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
827
828

} // namespace cpu
Paul's avatar
Paul committed
829
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
830
} // namespace migraphx