lowering.cpp 24.9 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
7
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
10
11
12
13
14
15
16
17
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
18
19
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Paul's avatar
Paul committed
20
21
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
22
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
23
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
24
#include <unordered_map>
Paul's avatar
Paul committed
25
#include <utility>
Paul's avatar
Paul committed
26

Paul's avatar
Paul committed
27
namespace migraphx {
Paul's avatar
Paul committed
28
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
29
30
31
32
33
34
35
36
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
37
38
39
40
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
41
42
43
44
{
    return x;
}

45
46
47
48
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
49
50
51
52
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
53
// args[4] -> bias
54
55
56
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
57
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
58
59
60
61
62
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
63
    op::batch_norm_inference op;
64

65
66
67
68
69
70
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

71
72
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
73
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
74

Paul's avatar
Paul committed
75
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
76
    {
77
78
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
79
80
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
81
82
83
84
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
85

86
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
87
88
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
89
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
90

91
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
92
93
94
95
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
96
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
97
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
98
99
100
101
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
102
103
                        });
                });
104
105
        }

106
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
107
        {
108
109
110
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
111
                    par_dfor(num_batch, num_channels, image_height, image_width)(
112
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
113
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
114
115
116
117
118
119
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
120
        }
121
122
123
124
125

        return output;
    }
};

Khalique's avatar
Khalique committed
126
struct cpu_lrn
Khalique's avatar
Khalique committed
127
{
Khalique's avatar
Khalique committed
128
    op::lrn op;
Khalique's avatar
Khalique committed
129

130
131
132
133
134
135
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
136
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
137
138
139
140
141
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
142
143
144
145
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
146
            float alphaoverarea = op.alpha / float(op.size);
147
148
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
149

150
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
151
                float scale = 0;
Khalique's avatar
Khalique committed
152
                dfor(channels)([&](int c) {
153
154
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
155
156
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
157
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
158
159
160
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
161
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
162
163
164
165
166
167
168
169
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

170
template <class Op>
Paul's avatar
Paul committed
171
172
struct cpu_convolution
{
173
    Op op;
174

175
176
177
178
179
180
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

181
    std::string name() const { return "cpu::" + op.name(); }
182
183
184
185
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
217
                    });
218
            });
219
220
221
222
223
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
224
225
struct cpu_im2col
{
226
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
227

228
229
230
231
232
233
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
234
235
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
236

wsttiger's avatar
wsttiger committed
237
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
238
    {
Scott Thornton's avatar
Scott Thornton committed
239
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
240
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
241
242
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
243
244
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
245
246
247
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
248
249
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
250
251
252
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
253
254
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
255
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
256
257
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
258
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
259
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
260
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
261
262
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
263
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
264
265
266
267
268
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
269
270
271
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
272
273
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
274
275
276
277
278
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
279
280
                }
            }
Scott Thornton's avatar
Scott Thornton committed
281
        });
Scott Thornton's avatar
Scott Thornton committed
282
283
284
285
        return result;
    }
};

Paul's avatar
Paul committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
313
    op::pooling op;
Paul's avatar
Paul committed
314

315
316
317
318
319
320
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
321
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
322
323
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
324
325
326
327
328
329
330
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
331
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
332
333
334
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

365
struct cpu_op
Paul's avatar
Paul committed
366
{
367
368
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
369
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
370
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
371
    {
Paul's avatar
Paul committed
372
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
373
    }
Paul's avatar
Paul committed
374
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
375
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
376
    {
377
378
379
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
380
    }
Paul's avatar
Paul committed
381
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
382
383
};

Khalique's avatar
Khalique committed
384
struct cpu_pad
385
{
Khalique's avatar
Khalique committed
386
    op::pad op;
387
388
389
390
391
392
393

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
394
    std::string name() const { return "cpu::contiguous"; }
395
396
397
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
398
        assert(output_shape.standard());
399
        argument result{output_shape};
Khalique's avatar
Khalique committed
400
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
401
402

        visit_all(result, args[0])([&](auto output, auto input) {
403
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
404
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
405
406
407
408
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
409
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
410
            });
Khalique's avatar
Khalique committed
411
412
        });

413
414
415
416
        return result;
    }
};

Paul's avatar
Paul committed
417
418
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
419
    op::dot op;
420
421
422
423
424
425

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
426
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
427
428
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
429
430
431
432
433
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
434
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
435
    }
Paul's avatar
Paul committed
436

Paul's avatar
Paul committed
437
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
438
439
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
440
        // 3 inputs, it is alpha * A * B + beta * C, then
441
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
464
465
466
467
        return result;
    }
};

468
469
470
struct cpu_quant_gemm
{
    op::quant_dot op;
471
472
473
474
475
476
477

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
499
500
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
501
502
503
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
504
505
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
528
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
529
530
531
532
533

        return result;
    }
};

Khalique's avatar
Khalique committed
534
535
536
537
538
539
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
540
        auto a = op.alpha;
Khalique's avatar
Khalique committed
541
542
543
544
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
545
546
547
548
549
550
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
551
        auto a = op.alpha;
Khalique's avatar
Khalique committed
552
553
554
555
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
556
557
558
559
template <typename Op>
struct cpu_unary
{
    Op op;
560
561
562
563
564
565

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
566
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
567
    shape compute_shape(const std::vector<shape>& inputs) const
568
    {
Shucai Xiao's avatar
Shucai Xiao committed
569
570
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
571
        return {s.type(), s.lens()};
572
573
    }

Paul's avatar
Paul committed
574
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
575
576
    {
        argument result{output_shape};
577
578
579
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
580
        });
581

Paul's avatar
Paul committed
582
583
584
585
        return result;
    }
};

586
template <class Op>
Khalique's avatar
Khalique committed
587
struct cpu_softmax
Paul's avatar
Paul committed
588
{
589
    Op op;
Khalique's avatar
Khalique committed
590
591
592
593
594
595
596

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

597
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
598
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
599
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
600
601
    {
        argument result{output_shape};
602
603
604
605
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
606
607
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
608
609
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
610
611
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
612
613
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
614
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
615
                for(std::size_t j = 0; j < n_dims; ++j)
616
                {
617
618
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
619
                }
Khalique's avatar
Khalique committed
620

Shucai Xiao's avatar
Shucai Xiao committed
621
                for(std::size_t j = 0; j < n_dims; ++j)
622
                {
623
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
624
625
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
626
                }
Khalique's avatar
Khalique committed
627

Shucai Xiao's avatar
Shucai Xiao committed
628
                for(std::size_t j = 0; j < n_dims; ++j)
629
                {
630
                    idx[tuned_axis] = j;
631
632
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
633

Shucai Xiao's avatar
Shucai Xiao committed
634
                for(std::size_t j = 0; j < n_dims; ++j)
635
                {
636
                    idx[tuned_axis] = j;
637
638
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
639
                }
Shucai Xiao's avatar
Shucai Xiao committed
640
641
642
643
644
645
646
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
666
        apply_map["batch_norm_inference"] =
667
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
668
669
670
671
672
673
674
675
676
677
678
679
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"]   = extend_op<cpu_quant_gemm, op::quant_dot>();
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Paul's avatar
Paul committed
680
681
682
683
684
685
686
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
687
            if(it->name() == "pooling")
Paul's avatar
Paul committed
688
689
690
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
691
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
692
            {
Paul's avatar
Paul committed
693
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
694
            }
Paul's avatar
Paul committed
695
            else if(is_context_free(it->get_operator()))
696
697
698
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
699
700
701
        }
    }

702
703
704
705
706
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
707
708
709
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
710
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
711
712
713
714
715
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
716
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
717
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
718
719
720
721
    }

    void apply_pooling(instruction_ref ins)
    {
722
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
723
        if(op.mode == "max")
Paul's avatar
Paul committed
724
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
725
        else if(op.mode == "average")
Paul's avatar
Paul committed
726
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
727
728
729
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
730
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
731
732

} // namespace cpu
Paul's avatar
Paul committed
733
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
734
} // namespace migraphx