lowering.cpp 28.8 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
7
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
10
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
19
20
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
21
#include <migraphx/op/rnn_var_sl_last_output.hpp>
Paul's avatar
Paul committed
22
23
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
24
#include <migraphx/par_dfor.hpp>
25
#include <migraphx/clamp.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
27
#include <unordered_map>
Paul's avatar
Paul committed
28
#include <utility>
Paul's avatar
Paul committed
29

Paul's avatar
Paul committed
30
namespace migraphx {
Paul's avatar
Paul committed
31
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
32
33
34
35
36
37
38
39
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
40
41
42
43
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
44
45
46
47
{
    return x;
}

48
49
50
51
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
52
53
54
55
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
56
// args[4] -> bias
57
58
59
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
60
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
61
62
63
64
65
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
66
    op::batch_norm_inference op;
67

68
69
70
71
72
73
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

74
75
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
76
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
77

Paul's avatar
Paul committed
78
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
79
    {
80
81
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
82
83
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
84
85
86
87
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
88

89
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
90
91
92
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
93
94
95
96
97
98
99
100
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx = output_shape.multi(i);
                        auto c   = idx[1];
                        assert((variance[c] + epsilon) > 0);
                        result[i] =
                            gamma[c] * (buffer[i] - mean[c]) / std::sqrt(variance[c] + epsilon) +
                            bias[c];
                    });
Scott Thornton's avatar
Scott Thornton committed
101
                });
102
103
        }

104
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
105
        {
Shucai Xiao's avatar
Shucai Xiao committed
106
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
107
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
108
109
110
111
112
113
114
115
116
117
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx   = output_shape.multi(i);
                        idx[0]     = 0;
                        auto index = output_shape.index(idx);

                        assert((variance[index] + epsilon) > 0);
                        result[i] = gamma[index] * (buffer[i] - mean[index]) /
                                        std::sqrt(variance[index] + epsilon) +
                                    bias[index];
                    });
Scott Thornton's avatar
Scott Thornton committed
118
                });
119
        }
120
121
122
123
124

        return output;
    }
};

Khalique's avatar
Khalique committed
125
struct cpu_lrn
Khalique's avatar
Khalique committed
126
{
Khalique's avatar
Khalique committed
127
    op::lrn op;
Khalique's avatar
Khalique committed
128

129
130
131
132
133
134
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
135
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
136
137
138
139
140
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
141
142
143
144
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
145
            float alphaoverarea = op.alpha / float(op.size);
146
147
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
148

149
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
150
                float scale = 0;
Khalique's avatar
Khalique committed
151
                dfor(channels)([&](int c) {
152
153
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
154
155
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
156
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
157
158
159
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
160
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

169
template <class Op>
Paul's avatar
Paul committed
170
171
struct cpu_convolution
{
172
    Op op;
173

174
175
176
177
178
179
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

180
    std::string name() const { return "cpu::" + op.name(); }
181
182
183
184
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
216
                    });
217
            });
218
219
220
221
222
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
template <class Op>
struct cpu_deconvolution
{
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

            auto out_lens = output_shape.lens();
            auto out_h    = out_lens[2];
            auto out_w    = out_lens[3];

            auto in   = input.get_shape().lens();
            auto in_n = in[0];
            auto in_c = in[1];
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(in_n, wei_c)([&](std::size_t o, std::size_t k) {

                dfor(in_c, in_h, in_w, wei_h, wei_w)(
                    [&](std::size_t w, std::size_t i, std::size_t j, std::size_t x, std::size_t y) {
                        const int start_x = i * op.stride[0] - op.padding[0];
                        const int start_y = j * op.stride[1] - op.padding[1];
                        const int out_x   = start_x + x * op.dilation[0];
                        const int out_y   = start_y + y * op.dilation[1];

                        const auto group_id = w / (wei_n / op.group);
                        const auto in_ch    = group_id * wei_c + k;

                        if(out_x >= 0 && out_x < out_h && out_y >= 0 && out_y < out_w)
                        {
                            output(o, in_ch, out_x, out_y) +=
                                input(o, w, i, j) * weights(w, k, x, y);
                        }
                    });
            });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
284
285
struct cpu_im2col
{
286
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
287

288
289
290
291
292
293
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
294
295
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
296

wsttiger's avatar
wsttiger committed
297
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
298
    {
Scott Thornton's avatar
Scott Thornton committed
299
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
300
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
301
302
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
303
304
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
305
306
307
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
308
309
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
310
311
312
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
313
314
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
315
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
316
317
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
318
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
319
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
320
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
321
322
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
323
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
324
325
326
327
328
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
329
330
331
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
332
333
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
334
335
336
337
338
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
339
340
                }
            }
Scott Thornton's avatar
Scott Thornton committed
341
        });
Scott Thornton's avatar
Scott Thornton committed
342
343
344
345
        return result;
    }
};

Paul's avatar
Paul committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
373
    op::pooling op;
Paul's avatar
Paul committed
374

375
376
377
378
379
380
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
381
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
382
383
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
384
385
386
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            using type   = typename decltype(output)::value_type;
            auto in_s    = input.get_shape();
            auto in_lens = in_s.lens();
            std::vector<std::size_t> vec_len(in_lens.begin() + 2, in_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto n_dim = idx_o.size();
                std::vector<std::size_t> win_start;
                std::vector<std::size_t> win_size;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2  = dim - 2;
                    int start = static_cast<int>(idx_o[dim] * op.stride[d_2]) -
                                static_cast<int>(op.padding[d_2]);
                    int end = std::min(start + op.lengths[d_2], in_lens[dim]);
                    start   = std::max(start, 0);
                    win_start.push_back(start);
                    win_size.push_back(end - start);
                }

                shape win_shape{output_shape.type(), win_size};
                auto pool_size = win_shape.elements();
                double acc     = Op::start();
                shape_for_each(win_shape, [&](auto idx_w) {
                    auto idx = idx_o;
                    std::transform(idx_w.begin(),
                                   idx_w.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](auto ii, auto jj) { return ii + jj; });
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       idx < in_lens)
                    {
                        acc = Op::apply(acc, input[in_s.index(idx)]);
                    }
Paul's avatar
Paul committed
423
                });
424
425
426

                output[i] = type(Op::final(acc, pool_size));
            });
Paul's avatar
Paul committed
427
        });
428

Paul's avatar
Paul committed
429
430
431
432
        return result;
    }
};

433
struct cpu_op
Paul's avatar
Paul committed
434
{
435
436
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
437
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
438
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
439
    {
Paul's avatar
Paul committed
440
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
441
    }
Paul's avatar
Paul committed
442
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
443
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
444
    {
445
446
447
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
448
    }
Paul's avatar
Paul committed
449
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
450
451
};

Khalique's avatar
Khalique committed
452
struct cpu_pad
453
{
Khalique's avatar
Khalique committed
454
    op::pad op;
455
456
457
458
459
460
461

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
462
    std::string name() const { return "cpu::contiguous"; }
463
464
465
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
466
        assert(output_shape.standard());
467
        argument result{output_shape};
468
469
470
471
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
472
473

        visit_all(result, args[0])([&](auto output, auto input) {
474
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
475
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
476
477
478
479
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
480
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
481
            });
Khalique's avatar
Khalique committed
482
483
        });

484
485
486
487
        return result;
    }
};

Paul's avatar
Paul committed
488
489
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
490
    op::dot op;
491
492
493
494
495
496

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
497
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
498
499
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
500
501
502
503
504
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
505
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
506
    }
Paul's avatar
Paul committed
507

Paul's avatar
Paul committed
508
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
509
510
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
511
        // 3 inputs, it is alpha * A * B + beta * C, then
512
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
535
536
537
538
        return result;
    }
};

539
540
541
struct cpu_quant_gemm
{
    op::quant_dot op;
542
543
544
545
546
547
548

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
570
571
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
572
573
574
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
575
576
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
599
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
600
601
602
603
604

        return result;
    }
};

Khalique's avatar
Khalique committed
605
606
607
608
609
610
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
611
        auto a = op.alpha;
Khalique's avatar
Khalique committed
612
613
614
615
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
616
617
618
619
620
621
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
622
        auto a = op.alpha;
Khalique's avatar
Khalique committed
623
624
625
626
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
627
628
629
630
template <typename Op>
struct cpu_unary
{
    Op op;
631
632
633
634
635
636

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
637
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
638
    shape compute_shape(const std::vector<shape>& inputs) const
639
    {
Shucai Xiao's avatar
Shucai Xiao committed
640
641
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
642
        return {s.type(), s.lens()};
643
644
    }

Paul's avatar
Paul committed
645
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
646
647
    {
        argument result{output_shape};
648
649
650
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
651
        });
652

Paul's avatar
Paul committed
653
654
655
656
        return result;
    }
};

657
template <class Op>
Khalique's avatar
Khalique committed
658
struct cpu_softmax
Paul's avatar
Paul committed
659
{
660
    Op op;
Khalique's avatar
Khalique committed
661
662
663
664
665
666
667

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

668
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
669
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
670
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
671
672
    {
        argument result{output_shape};
673
674
675
676
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
677
678
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
679
680
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
681
682
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
683
684
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
685
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
686
                for(std::size_t j = 0; j < n_dims; ++j)
687
                {
688
689
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
690
                }
Khalique's avatar
Khalique committed
691

Shucai Xiao's avatar
Shucai Xiao committed
692
                for(std::size_t j = 0; j < n_dims; ++j)
693
                {
694
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
695
696
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
697
                }
Khalique's avatar
Khalique committed
698

Shucai Xiao's avatar
Shucai Xiao committed
699
                for(std::size_t j = 0; j < n_dims; ++j)
700
                {
701
                    idx[tuned_axis] = j;
702
703
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
704

Shucai Xiao's avatar
Shucai Xiao committed
705
                for(std::size_t j = 0; j < n_dims; ++j)
706
                {
707
                    idx[tuned_axis] = j;
708
709
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
710
                }
Shucai Xiao's avatar
Shucai Xiao committed
711
712
713
714
715
716
717
            });
        });

        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
struct cpu_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
783
        apply_map["batch_norm_inference"] =
784
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
785
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
786
787
788
789
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
790
791
792
793
794
795
796
797
798
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Shucai Xiao's avatar
Shucai Xiao committed
799
800
        apply_map["rnn_var_sl_last_output"] =
            extend_op<cpu_rnn_var_sl_last_output, op::rnn_var_sl_last_output>();
Paul's avatar
Paul committed
801
802
803
804
805
806
807
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
808
            if(it->name() == "pooling")
Paul's avatar
Paul committed
809
810
811
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
812
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
813
            {
Paul's avatar
Paul committed
814
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
815
            }
Paul's avatar
Paul committed
816
            else if(is_context_free(it->get_operator()))
817
818
819
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
820
821
822
        }
    }

823
824
825
826
827
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
828
829
830
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
831
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
832
833
834
835
836
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
837
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
838
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
839
840
841
842
    }

    void apply_pooling(instruction_ref ins)
    {
843
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
844
        if(op.mode == "max")
Paul's avatar
Paul committed
845
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
846
        else if(op.mode == "average")
Paul's avatar
Paul committed
847
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
848
849
850
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
851
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
852
853

} // namespace cpu
Paul's avatar
Paul committed
854
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
855
} // namespace migraphx