lowering.cpp 24.7 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
7
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
10
11
12
13
14
15
16
17
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
18
19
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Paul's avatar
Paul committed
20
21
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
22
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
23
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
24
#include <unordered_map>
Paul's avatar
Paul committed
25
#include <utility>
Paul's avatar
Paul committed
26

Paul's avatar
Paul committed
27
namespace migraphx {
Paul's avatar
Paul committed
28
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
29
30
31
32
33
34
35
36
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
37
38
39
40
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
41
42
43
44
{
    return x;
}

45
46
47
48
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
49
50
51
52
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
53
// args[4] -> bias
54
55
56
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
57
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
58
59
60
61
62
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
63
    op::batch_norm_inference op;
64

65
66
67
68
69
70
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

71
72
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
73
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
74

Paul's avatar
Paul committed
75
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
76
    {
77
78
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
79
80
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
81
82
83
84
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
85

86
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
87
88
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
89
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
90

91
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
92
93
94
95
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
96
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
97
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
98
99
100
101
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
102
103
                        });
                });
104
105
        }

106
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
107
        {
108
109
110
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
111
                    par_dfor(num_batch, num_channels, image_height, image_width)(
112
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
113
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
114
115
116
117
118
119
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
120
        }
121
122
123
124
125

        return output;
    }
};

Khalique's avatar
Khalique committed
126
struct cpu_lrn
Khalique's avatar
Khalique committed
127
{
Khalique's avatar
Khalique committed
128
    op::lrn op;
Khalique's avatar
Khalique committed
129

130
131
132
133
134
135
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
136
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
137
138
139
140
141
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
142
143
144
145
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
146
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
147
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
148

149
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
150
                float scale = 0;
Khalique's avatar
Khalique committed
151
152
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
153
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
154
155
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
156
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
157
158
159
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
160
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

169
template <class Op>
Paul's avatar
Paul committed
170
171
struct cpu_convolution
{
172
    Op op;
173

174
175
176
177
178
179
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

180
    std::string name() const { return "cpu::" + op.name(); }
181
182
183
184
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            visit_all(args[0], args[1])([&](auto input, auto weights) {
                auto in   = input.get_shape().lens();
                auto in_h = in[2];
                auto in_w = in[3];

                auto wei   = weights.get_shape().lens();
                auto wei_n = wei[0];
                auto wei_c = wei[1];
                auto wei_h = wei[2];
                auto wei_w = wei[3];

                par_dfor(output_shape.lens()[0],
                         output_shape.lens()[1],
                         output_shape.lens()[2],
                         output_shape.lens()[3])(
                    [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                        const auto start_x  = i * op.stride[0] - op.padding[0];
                        const auto start_y  = j * op.stride[1] - op.padding[1];
                        const auto group_id = w / (wei_n / op.group);

                        type acc = type{0};
                        dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                            const auto in_x  = start_x + x;
                            const auto in_y  = start_y + y;
                            const auto in_ch = group_id * wei_c + k;
                            if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                                acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        });
                        output(o, w, i, j) = acc;
216
                    });
217
            });
218
219
220
221
222
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
223
224
struct cpu_im2col
{
225
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
226

227
228
229
230
231
232
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
233
234
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
235

wsttiger's avatar
wsttiger committed
236
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
237
    {
Scott Thornton's avatar
Scott Thornton committed
238
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
239
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
240
241
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
242
243
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
244
245
246
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
247
248
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
249
250
251
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
252
253
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
254
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
255
256
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
257
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
258
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
259
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
260
261
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
262
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
263
264
265
266
267
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
268
269
270
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
271
272
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
273
274
275
276
277
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
278
279
                }
            }
Scott Thornton's avatar
Scott Thornton committed
280
        });
Scott Thornton's avatar
Scott Thornton committed
281
282
283
284
        return result;
    }
};

Paul's avatar
Paul committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
312
    op::pooling op;
Paul's avatar
Paul committed
313

314
315
316
317
318
319
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
320
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
321
322
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
323
324
325
326
327
328
329
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
330
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
331
332
333
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

364
struct cpu_op
Paul's avatar
Paul committed
365
{
366
367
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
368
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
369
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
370
    {
Paul's avatar
Paul committed
371
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
372
    }
Paul's avatar
Paul committed
373
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
374
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
375
    {
376
377
378
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
379
    }
Paul's avatar
Paul committed
380
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
381
382
};

Khalique's avatar
Khalique committed
383
struct cpu_pad
384
{
Khalique's avatar
Khalique committed
385
    op::pad op;
386
387
388
389
390
391
392

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
393
    std::string name() const { return "cpu::contiguous"; }
394
395
396
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
397
        assert(output_shape.standard());
398
        argument result{output_shape};
Khalique's avatar
Khalique committed
399
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
400
401

        visit_all(result, args[0])([&](auto output, auto input) {
402
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
403
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
404
405
406
407
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
408
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
409
            });
Khalique's avatar
Khalique committed
410
411
        });

412
413
414
415
        return result;
    }
};

Paul's avatar
Paul committed
416
417
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
418
    op::dot op;
419
420
421
422
423
424

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
425
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
426
427
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
428
429
430
431
432
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
433
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
434
    }
Paul's avatar
Paul committed
435

Paul's avatar
Paul committed
436
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
437
438
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
439
        // 3 inputs, it is alpha * A * B + beta * C, then
440
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
463
464
465
466
        return result;
    }
};

467
468
469
struct cpu_quant_gemm
{
    op::quant_dot op;
470
471
472
473
474
475
476

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
498
499
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
500
501
502
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
503
504
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
527
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
528
529
530
531
532

        return result;
    }
};

Khalique's avatar
Khalique committed
533
534
535
536
537
538
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
539
        auto a = op.alpha;
Khalique's avatar
Khalique committed
540
541
542
543
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
544
545
546
547
548
549
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
550
        auto a = op.alpha;
Khalique's avatar
Khalique committed
551
552
553
554
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
555
556
557
558
template <typename Op>
struct cpu_unary
{
    Op op;
559
560
561
562
563
564

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
565
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
566
    shape compute_shape(const std::vector<shape>& inputs) const
567
    {
Shucai Xiao's avatar
Shucai Xiao committed
568
569
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
570
        return {s.type(), s.lens()};
571
572
    }

Paul's avatar
Paul committed
573
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
574
575
    {
        argument result{output_shape};
576
577
578
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
579
        });
580

Paul's avatar
Paul committed
581
582
583
584
        return result;
    }
};

585
template <class Op>
Khalique's avatar
Khalique committed
586
struct cpu_softmax
Paul's avatar
Paul committed
587
{
588
    Op op;
Khalique's avatar
Khalique committed
589
590
591
592
593
594
595

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

596
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
597
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
598
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
599
600
    {
        argument result{output_shape};
Khalique's avatar
Khalique committed
601
        auto batch_lens     = output_shape.lens();
Shucai Xiao's avatar
Shucai Xiao committed
602
        std::size_t n_dims  = batch_lens[op.axis];
Khalique's avatar
Khalique committed
603
        batch_lens[op.axis] = 1;
604
605
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
606
607
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
608
609
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
610
611
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
612
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
613
                for(std::size_t j = 0; j < n_dims; ++j)
614
615
616
617
                {
                    idx[op.axis] = j;
                    batch_max[i] = std::max(batch_max[i], input(idx.begin(), idx.end()));
                }
Khalique's avatar
Khalique committed
618

Shucai Xiao's avatar
Shucai Xiao committed
619
                for(std::size_t j = 0; j < n_dims; ++j)
620
                {
Shucai Xiao's avatar
Shucai Xiao committed
621
622
623
                    idx[op.axis]      = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
624
                }
Khalique's avatar
Khalique committed
625

Shucai Xiao's avatar
Shucai Xiao committed
626
                for(std::size_t j = 0; j < n_dims; ++j)
627
628
629
630
                {
                    idx[op.axis] = j;
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
631

Shucai Xiao's avatar
Shucai Xiao committed
632
                for(std::size_t j = 0; j < n_dims; ++j)
633
634
                {
                    idx[op.axis] = j;
635
636
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
637
                }
Shucai Xiao's avatar
Shucai Xiao committed
638
639
640
641
642
643
644
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
664
        apply_map["batch_norm_inference"] =
665
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
666
667
668
669
670
671
672
673
674
675
676
677
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"]   = extend_op<cpu_quant_gemm, op::quant_dot>();
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Paul's avatar
Paul committed
678
679
680
681
682
683
684
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
685
            if(it->name() == "pooling")
Paul's avatar
Paul committed
686
687
688
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
689
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
690
            {
Paul's avatar
Paul committed
691
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
692
            }
Paul's avatar
Paul committed
693
            else if(is_context_free(it->get_operator()))
694
695
696
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
697
698
699
        }
    }

700
701
702
703
704
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
705
706
707
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
708
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
709
710
711
712
713
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
714
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
715
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
716
717
718
719
    }

    void apply_pooling(instruction_ref ins)
    {
720
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
721
        if(op.mode == "max")
Paul's avatar
Paul committed
722
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
723
        else if(op.mode == "average")
Paul's avatar
Paul committed
724
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
725
726
727
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
728
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
729
730

} // namespace cpu
Paul's avatar
Paul committed
731
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
732
} // namespace migraphx