lowering.cpp 33.9 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
53
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
54

Paul's avatar
Paul committed
55
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
56
    {
57
58
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
59
60
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
61
62
63
64
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
65

66
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
67
68
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
69
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
70

71
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
72
73
74
75
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
76
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
77
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
78
79
80
81
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
82
83
                        });
                });
84
85
        }

86
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
87
        {
88
89
90
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
91
                    par_dfor(num_batch, num_channels, image_height, image_width)(
92
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
93
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
100
        }
101
102
103
104
105

        return output;
    }
};

Khalique's avatar
Khalique committed
106
struct cpu_lrn
Khalique's avatar
Khalique committed
107
{
Khalique's avatar
Khalique committed
108
    op::lrn op;
Khalique's avatar
Khalique committed
109

Khalique's avatar
Khalique committed
110
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
111
112
113
114
115
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
116
117
118
119
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
120
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
121
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
122

123
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
124
                float scale = 0;
Khalique's avatar
Khalique committed
125
126
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
127
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
128
129
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
130
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
131
132
133
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
134
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Khalique's avatar
Khalique committed
143
144
145
146
147
148
struct clip_op
{
    op::clip op;
    std::string name() const { return "cpu::clip"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
149
150
        auto max = op.max_val;
        auto min = op.min_val;
Khalique's avatar
Khalique committed
151
        return [max, min](auto x) {
Khalique's avatar
Khalique committed
152
            using type = decltype(x);
Khalique's avatar
Khalique committed
153
154
            return std::min(std::max(type(min), x), type(max));
        };
Khalique's avatar
Khalique committed
155
156
157
    }
};

Paul's avatar
Paul committed
158
159
struct cpu_convolution
{
160
    op::convolution op;
Paul's avatar
Paul committed
161
162

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
163
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
164
165
166
167
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
168
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
169
170
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
171

Khalique's avatar
Khalique committed
172
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
173
174
175
176
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
177

Paul's avatar
Paul committed
178
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
179
180
181
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
182
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
183
184
185
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
186
187
188

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
189
190
191
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
192
193
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
194
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
195
196
197
198
199
200
201
202
203
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
struct cpu_quant_convolution
{
    op::quant_convolution op;

    std::string name() const { return "cpu::quant_convolution"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in   = input.get_shape().lens();
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(output_shape.lens()[0],
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
                    const int group_id = w / (wei_n / op.group);

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
                        const int in_ch = group_id * wei_c + k;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
250
251
struct cpu_im2col
{
252
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
253

Scott Thornton's avatar
Scott Thornton committed
254
255
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
256

wsttiger's avatar
wsttiger committed
257
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
258
    {
Scott Thornton's avatar
Scott Thornton committed
259
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
260
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
261
262
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
263
264
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
265
266
267
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
268
269
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
270
271
272
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
273
274
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
275
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
276
277
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
278
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
279
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
280
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
281
282
283
284
285
286
287
288
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
289
290
291
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
292
293
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
294
295
296
297
298
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
299
300
                }
            }
Scott Thornton's avatar
Scott Thornton committed
301
        });
Scott Thornton's avatar
Scott Thornton committed
302
303
304
305
        return result;
    }
};

Paul's avatar
Paul committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
333
    op::pooling op;
Paul's avatar
Paul committed
334
335

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
336
337
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
338
339
340
341
342
343
344
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
345
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
346
347
348
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
381
    op::contiguous op;
Paul's avatar
Paul committed
382
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
383
384
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
385
    {
Paul's avatar
Paul committed
386
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
387
388
389
    }
};

Khalique's avatar
Khalique committed
390
struct cpu_pad
391
{
Khalique's avatar
Khalique committed
392
393
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
394
395
396
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
397
        assert(output_shape.standard());
398
        argument result{output_shape};
Khalique's avatar
Khalique committed
399
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
400
401

        visit_all(result, args[0])([&](auto output, auto input) {
402
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
403
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
404
405
406
407
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
408
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
409
            });
Khalique's avatar
Khalique committed
410
411
        });

412
413
414
415
416
417
418
419
420
421
422
        return result;
    }
};

struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
423
        return op.compute(output_shape, std::move(args));
424
425
426
    }
};

Paul's avatar
Paul committed
427
428
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
429
430
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
431
432
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
433
434
435
436
437
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
438
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
439
    }
Paul's avatar
Paul committed
440

Paul's avatar
Paul committed
441
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
442
443
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
444
        // 3 inputs, it is alpha * A * B + beta * C, then
445
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
468
469
470
471
        return result;
    }
};

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
struct cpu_quant_gemm
{
    op::quant_dot op;
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
496
497
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
498
499
500
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
501
502
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        int8_t beta = 0;
        migemm(result, arg_0, arg_1, op.alpha, beta);

        return result;
    }
};

532
533
534
535
536
537
538
539
struct cpu_gather
{
    op::gather op;
    std::string name() const { return "cpu::gather"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
540
        return op.compute(output_shape, std::move(args));
541
542
543
    }
};

Paul's avatar
Paul committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
558
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
559
560
561
562
563
564
565
566
567
568
569
570
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
571
572
573
574
575
576
577
578
579
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
684
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
685
686
687
    }
};

Khalique's avatar
Khalique committed
688
689
690
691
692
693
694
695
696
697
698
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
699
700
701
702
703
704
705
706
707
708
709
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
710
711
712
713
714
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
715
    shape compute_shape(const std::vector<shape>& inputs) const
716
    {
Shucai Xiao's avatar
Shucai Xiao committed
717
718
719
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
720
        {
Shucai Xiao's avatar
Shucai Xiao committed
721
            return s;
722
723
724
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
725
            return {s.type(), s.lens()};
726
727
728
        }
    }

Paul's avatar
Paul committed
729
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
730
731
732
733
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
734
                if(input.get_shape().standard())
735
736
737
738
739
740
741
742
743
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
744
745
            });
        });
746

Paul's avatar
Paul committed
747
748
749
750
751
752
753
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
754
755
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
756
757
758
759
760
761
762
763
764
765
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
Paul's avatar
Paul committed
766
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
767
768
769
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
Paul's avatar
Paul committed
770
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
771
772
773
774
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
Paul's avatar
Paul committed
775
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
776
777
778
                {
                    sum += output(b, c, i, j);
                }
Paul's avatar
Paul committed
779
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
780
781
782
783
784
785
786
787
788
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
789
790
791
792
793
794
struct cpu_logsoftmax
{
    op::logsoftmax op;
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
795
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
796
797
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
798
        if(axis == 0)
799
800
801
802
803
804
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
805
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
806
        }
Shucai Xiao's avatar
Shucai Xiao committed
807
808
809
810
811
812
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
813
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
814
        if(op.axis == 0)
815
816
817
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
818
        else
819
820
821
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
822
823
824
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
825
826
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
827
            shape_for_each(output_shape, [&](auto idx) {
828
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
829
830
831
832
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
833
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
834
835
836
837
838
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
839
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
840
841
842
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
843
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
844
845
846
847
848
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
849
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
850
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
851
852
853
854
855
856
857
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
912
913
914
915
template <typename Op>
struct cpu_binary
{
    Op op;
Shucai Xiao's avatar
Shucai Xiao committed
916
    std::string name() const { return "cpu::" + op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
917
    shape compute_shape(const std::vector<shape>& inputs) const
918
    {
Shucai Xiao's avatar
Shucai Xiao committed
919
920
921
922
        check_shapes{inputs}.has(2).same_type().same_dims();
        auto s0 = inputs.at(0);
        auto s1 = inputs.at(1);
        if(s0 == s1 and s0.packed())
923
        {
Shucai Xiao's avatar
Shucai Xiao committed
924
            return s0;
925
926
927
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
928
            return {s0.type(), s0.lens()};
929
930
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
931

Paul's avatar
Paul committed
932
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
933
934
935
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
936
937
            auto s1 = input1.get_shape();
            auto s2 = input2.get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
938
            if(s1 == s2 and s1.standard())
Paul's avatar
Paul committed
939
940
941
942
943
944
945
946
947
948
949
950
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
951

Paul's avatar
Paul committed
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
975
976
        apply_map["im2col"]            = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"]       = extend_op<cpu_convolution, op::convolution>();
977
        apply_map["quant_convolution"] = extend_op<cpu_quant_convolution, op::quant_convolution>();
Shucai Xiao's avatar
Shucai Xiao committed
978
979
        apply_map["dot"]               = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"]         = extend_op<cpu_quant_gemm, op::quant_dot>();
Aditya Atluri's avatar
Aditya Atluri committed
980
        apply_map["batch_norm_inference"] =
981
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
982
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
Khalique's avatar
Khalique committed
983
        apply_map["clip"]       = extend_op<cpu_unary<clip_op>, op::clip>();
984
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Khalique's avatar
Khalique committed
985
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
Scott Thornton's avatar
Scott Thornton committed
986
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
987
        apply_map["gather"]     = extend_op<cpu_gather, op::gather>();
Shucai Xiao's avatar
Shucai Xiao committed
988
        apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
Khalique's avatar
Khalique committed
989
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
990
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
991
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
992
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
993
994
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
995
996
997
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
998
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
999
1000
1001
1002
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
1003
1004
1005
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
1006
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
1007
1008
1009
1010
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
1011
1012
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
1013
1014
1015
1016
1017
1018
1019
1020
1021

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
1022
            if(it->name() == "pooling")
Paul's avatar
Paul committed
1023
1024
1025
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
1026
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
1027
            {
Paul's avatar
Paul committed
1028
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
1029
1030
1031
1032
1033
1034
1035
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
1036
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
1037
1038
1039
1040
1041
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
1042
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
1043
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
1044
1045
1046
1047
    }

    void apply_pooling(instruction_ref ins)
    {
1048
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
1049
        if(op.mode == "max")
Paul's avatar
Paul committed
1050
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
1051
        else if(op.mode == "average")
Paul's avatar
Paul committed
1052
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
1053
1054
1055
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
1056
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
1057
1058

} // namespace cpu
Paul's avatar
Paul committed
1059
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1060
} // namespace migraphx