lowering.cpp 28 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
11
12
13
14
15
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Paul's avatar
Paul committed
16
17
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
18
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
19
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
20
#include <unordered_map>
Paul's avatar
Paul committed
21
#include <utility>
Paul's avatar
Paul committed
22

Paul's avatar
Paul committed
23
namespace migraphx {
Paul's avatar
Paul committed
24
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
25
26
27
28
29
30
31
32
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
33
34
35
36
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
37
38
39
40
{
    return x;
}

41
42
43
44
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
45
46
47
48
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
49
// args[4] -> bias
50
51
52
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
53
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
54
55
56
57
58
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
59
    op::batch_norm_inference op;
60

61
62
63
64
65
66
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

67
68
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
69
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
70

Paul's avatar
Paul committed
71
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
72
    {
73
74
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
75
76
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
77
78
79
80
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
81

82
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
83
84
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
85
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
86

87
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
88
89
90
91
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
92
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
93
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
94
95
96
97
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
98
99
                        });
                });
100
101
        }

102
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
103
        {
104
105
106
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
107
                    par_dfor(num_batch, num_channels, image_height, image_width)(
108
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
109
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
110
111
112
113
114
115
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
116
        }
117
118
119
120
121

        return output;
    }
};

Khalique's avatar
Khalique committed
122
struct cpu_lrn
Khalique's avatar
Khalique committed
123
{
Khalique's avatar
Khalique committed
124
    op::lrn op;
Khalique's avatar
Khalique committed
125

126
127
128
129
130
131
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
132
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
133
134
135
136
137
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
138
139
140
141
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
142
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
143
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
144

145
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
146
                float scale = 0;
Khalique's avatar
Khalique committed
147
148
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
149
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
150
151
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
152
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
153
154
155
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
156
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
164
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
165
166
struct cpu_convolution
{
167
    op::convolution op;
Paul's avatar
Paul committed
168

169
170
171
172
173
174
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
175
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
176
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
177
178
179
180
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
181
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
182
183
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
184

Khalique's avatar
Khalique committed
185
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
186
187
188
189
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
190

Paul's avatar
Paul committed
191
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
192
193
194
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
195
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
196
197
198
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
199
200
201

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
202
203
204
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
205
206
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
207
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
208
209
210
211
212
213
214
215
216
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
217
218
struct cpu_im2col
{
219
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
220

221
222
223
224
225
226
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
227
228
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
229

wsttiger's avatar
wsttiger committed
230
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
231
    {
Scott Thornton's avatar
Scott Thornton committed
232
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
233
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
234
235
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
236
237
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
238
239
240
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
241
242
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
243
244
245
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
246
247
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
248
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
249
250
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
251
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
252
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
253
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
254
255
256
257
258
259
260
261
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
262
263
264
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
265
266
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
267
268
269
270
271
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
272
273
                }
            }
Scott Thornton's avatar
Scott Thornton committed
274
        });
Scott Thornton's avatar
Scott Thornton committed
275
276
277
278
        return result;
    }
};

Paul's avatar
Paul committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
306
    op::pooling op;
Paul's avatar
Paul committed
307

308
309
310
311
312
313
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
314
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
315
316
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
317
318
319
320
321
322
323
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
324
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
325
326
327
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

358
struct cpu_op
Paul's avatar
Paul committed
359
{
360
361
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
362
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
363
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
364
    {
Paul's avatar
Paul committed
365
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
366
    }
Paul's avatar
Paul committed
367
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
368
369
370
371
372
373
    friend bool operator==(const cpu_op& x, const operation& y)
    {
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
    }
Paul's avatar
Paul committed
374
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
375
376
};

Khalique's avatar
Khalique committed
377
struct cpu_pad
378
{
Khalique's avatar
Khalique committed
379
    op::pad op;
380
381
382
383
384
385
386

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
387
    std::string name() const { return "cpu::contiguous"; }
388
389
390
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
391
        assert(output_shape.standard());
392
        argument result{output_shape};
Khalique's avatar
Khalique committed
393
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
394
395

        visit_all(result, args[0])([&](auto output, auto input) {
396
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
397
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
398
399
400
401
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
402
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
403
            });
Khalique's avatar
Khalique committed
404
405
        });

406
407
408
409
        return result;
    }
};

Paul's avatar
Paul committed
410
411
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
412
    op::dot op;
413
414
415
416
417
418

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
419
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
420
421
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
422
423
424
425
426
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
427
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
428
    }
Paul's avatar
Paul committed
429

Paul's avatar
Paul committed
430
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
431
432
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
457
458
459
460
        return result;
    }
};

Khalique's avatar
Khalique committed
461
462
463
464
465
466
467
468
469
470
471
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
472
473
474
475
476
477
478
479
480
481
482
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
483
484
485
486
template <typename Op>
struct cpu_unary
{
    Op op;
487
488
489
490
491
492

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
493
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
494
    shape compute_shape(const std::vector<shape>& inputs) const
495
    {
Shucai Xiao's avatar
Shucai Xiao committed
496
497
498
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
499
        {
Shucai Xiao's avatar
Shucai Xiao committed
500
            return s;
501
502
503
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
504
            return {s.type(), s.lens()};
505
506
507
        }
    }

Paul's avatar
Paul committed
508
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
509
510
511
512
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
513
                if(input.get_shape().standard())
514
515
516
517
518
519
520
521
522
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
523
524
            });
        });
525

Paul's avatar
Paul committed
526
527
528
529
        return result;
    }
};

Khalique's avatar
Khalique committed
530
struct cpu_softmax
Paul's avatar
Paul committed
531
{
Khalique's avatar
Khalique committed
532
533
534
535
536
537
538
539
540
541
    op::softmax op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::softmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
542
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
543
544
    {
        argument result{output_shape};
Khalique's avatar
Khalique committed
545
        auto batch_lens     = output_shape.lens();
Shucai Xiao's avatar
Shucai Xiao committed
546
        std::size_t n_dims  = batch_lens[op.axis];
Khalique's avatar
Khalique committed
547
        batch_lens[op.axis] = 1;
548
549
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
550
551
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
552
553
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
554
555
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
556
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
557
                for(std::size_t j = 0; j < n_dims; ++j)
558
559
560
561
                {
                    idx[op.axis] = j;
                    batch_max[i] = std::max(batch_max[i], input(idx.begin(), idx.end()));
                }
Khalique's avatar
Khalique committed
562

Shucai Xiao's avatar
Shucai Xiao committed
563
                for(std::size_t j = 0; j < n_dims; ++j)
564
                {
Shucai Xiao's avatar
Shucai Xiao committed
565
566
567
                    idx[op.axis]      = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
568
                }
Khalique's avatar
Khalique committed
569

Shucai Xiao's avatar
Shucai Xiao committed
570
                for(std::size_t j = 0; j < n_dims; ++j)
571
572
573
574
                {
                    idx[op.axis] = j;
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
575

Shucai Xiao's avatar
Shucai Xiao committed
576
                for(std::size_t j = 0; j < n_dims; ++j)
577
578
579
580
                {
                    idx[op.axis] = j;
                    output(idx.begin(), idx.end()) /= batch_sum[i];
                }
Paul's avatar
Paul committed
581
582
            });
        });
Khalique's avatar
Khalique committed
583

Paul's avatar
Paul committed
584
585
586
587
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
588
589
590
struct cpu_logsoftmax
{
    op::logsoftmax op;
591
592
593
594
595
596
597

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
598
599
600
601
602
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
603
        auto batch_lens     = output_shape.lens();
Shucai Xiao's avatar
Shucai Xiao committed
604
        std::size_t n_dims  = batch_lens[op.axis];
605
606
607
        batch_lens[op.axis] = 1;
        shape batch_shape{shape::int32_type, batch_lens};

608
609
        // use a parallel implementation to acheive better performance
        // one thread for one batch
Shucai Xiao's avatar
Shucai Xiao committed
610
611
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
612
613
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
614
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
Shucai Xiao's avatar
Shucai Xiao committed
615

616
            par_for(batch_shape.elements(), [&](auto i) {
617
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
618
                for(std::size_t j = 0; j < n_dims; ++j)
619
620
621
622
                {
                    idx[op.axis] = j;
                    batch_max[i] = std::max(batch_max[i], input(idx.begin(), idx.end()));
                }
Shucai Xiao's avatar
Shucai Xiao committed
623

Shucai Xiao's avatar
Shucai Xiao committed
624
                for(std::size_t j = 0; j < n_dims; ++j)
625
                {
Shucai Xiao's avatar
Shucai Xiao committed
626
627
628
                    idx[op.axis]      = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = input[index] - batch_max[i];
629
630
                }

Shucai Xiao's avatar
Shucai Xiao committed
631
                for(std::size_t j = 0; j < n_dims; ++j)
632
633
634
635
                {
                    idx[op.axis] = j;
                    batch_sum[i] += std::exp(output(idx.begin(), idx.end()));
                }
Shucai Xiao's avatar
Shucai Xiao committed
636
637
638

                batch_sum[i] = std::log(batch_sum[i]);

Shucai Xiao's avatar
Shucai Xiao committed
639
                for(std::size_t j = 0; j < n_dims; ++j)
640
641
642
643
                {
                    idx[op.axis] = j;
                    output(idx.begin(), idx.end()) -= batch_sum[i];
                }
Shucai Xiao's avatar
Shucai Xiao committed
644
645
646
647
648
649
650
            });
        });

        return result;
    }
};

651
652
653
654
655
656
657
658
659
660
661
662
663
struct cpu_argmax
{
    op::argmax op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::argmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
664
665
666
    template <class T>
    int64_t
    calc_argmax(T& input, std::vector<std::size_t>& indices, size_t item_num, int axis) const
Shucai Xiao's avatar
Shucai Xiao committed
667
    {
Shucai Xiao's avatar
Shucai Xiao committed
668
        auto max_val      = input(indices.begin(), indices.end());
Shucai Xiao's avatar
Shucai Xiao committed
669
        int64_t max_index = 0;
Shucai Xiao's avatar
Shucai Xiao committed
670
        for(std::size_t i = 1; i < item_num; ++i)
Shucai Xiao's avatar
Shucai Xiao committed
671
672
673
674
675
676
677
678
679
680
681
682
        {
            indices[axis] = i;
            if(max_val < input(indices.begin(), indices.end()))
            {
                max_val   = input(indices.begin(), indices.end());
                max_index = i;
            }
        }

        return max_index;
    }

683
684
685
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
686
        auto batch_lens            = args.front().get_shape().lens();
Shucai Xiao's avatar
Shucai Xiao committed
687
        std::size_t batch_item_num = batch_lens[op.axis];
Shucai Xiao's avatar
Shucai Xiao committed
688
        batch_lens[op.axis]        = 1;
Shucai Xiao's avatar
Shucai Xiao committed
689
690
        shape batch_shape{shape::int32_type, batch_lens};

691
692
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
693
                par_for(batch_shape.elements(), [&](auto i) {
Shucai Xiao's avatar
Shucai Xiao committed
694
695
                    auto data_idx = batch_shape.multi(i);
                    output[i]     = this->calc_argmax(input, data_idx, batch_item_num, op.axis);
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
                });
            });
        });

        return result;
    }
};

struct cpu_argmin
{
    op::argmin op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::argmin"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
717
718
719
    template <class T>
    int64_t
    calc_argmin(T& input, std::vector<std::size_t>& indices, size_t item_num, int axis) const
Shucai Xiao's avatar
Shucai Xiao committed
720
    {
Shucai Xiao's avatar
Shucai Xiao committed
721
        auto min_val      = input(indices.begin(), indices.end());
Shucai Xiao's avatar
Shucai Xiao committed
722
        int64_t min_index = 0;
Shucai Xiao's avatar
Shucai Xiao committed
723
        for(std::size_t i = 1; i < item_num; ++i)
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
728
729
730
731
732
733
734
735
        {
            indices[axis] = i;
            if(min_val > input(indices.begin(), indices.end()))
            {
                min_val   = input(indices.begin(), indices.end());
                min_index = i;
            }
        }

        return min_index;
    }

736
737
738
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
739
        auto batch_lens            = args.front().get_shape().lens();
Shucai Xiao's avatar
Shucai Xiao committed
740
        std::size_t batch_item_num = batch_lens[op.axis];
Shucai Xiao's avatar
Shucai Xiao committed
741
        batch_lens[op.axis]        = 1;
Shucai Xiao's avatar
Shucai Xiao committed
742
743
        shape batch_shape{shape::int32_type, batch_lens};

744
745
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
746
                par_for(batch_shape.elements(), [&](auto i) {
Shucai Xiao's avatar
Shucai Xiao committed
747
748
                    auto data_idx = batch_shape.multi(i);
                    output[i]     = this->calc_argmin(input, data_idx, batch_item_num, op.axis);
749
750
751
752
753
754
755
756
                });
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
776
777
        apply_map["argmax"] = extend_op<cpu_argmax, op::argmax>();
        apply_map["argmin"] = extend_op<cpu_argmin, op::argmin>();
Paul's avatar
Paul committed
778
779
        apply_map["batch_norm_inference"] =
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
780
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
781
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Paul's avatar
Paul committed
782
        apply_map["elu"]         = extend_op<cpu_unary<elu_op>, op::elu>();
Paul's avatar
Paul committed
783
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
Paul's avatar
Paul committed
784
785
786
787
        apply_map["leaky_relu"]  = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"]  = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["lrn"]         = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]         = extend_op<cpu_pad, op::pad>();
Khalique's avatar
Khalique committed
788
        apply_map["softmax"]     = extend_op<cpu_softmax, op::softmax>();
Paul's avatar
Paul committed
789
790
791
792
793
794
795
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
796
            if(it->name() == "pooling")
Paul's avatar
Paul committed
797
798
799
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
800
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
801
            {
Paul's avatar
Paul committed
802
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
803
            }
Paul's avatar
Paul committed
804
            else if(is_context_free(it->get_operator()))
805
806
807
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
808
809
810
        }
    }

811
812
813
814
815
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
816
817
818
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
819
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
820
821
822
823
824
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
825
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
826
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
827
828
829
830
    }

    void apply_pooling(instruction_ref ins)
    {
831
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
832
        if(op.mode == "max")
Paul's avatar
Paul committed
833
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
834
        else if(op.mode == "average")
Paul's avatar
Paul committed
835
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
836
837
838
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
839
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
840
841

} // namespace cpu
Paul's avatar
Paul committed
842
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
843
} // namespace migraphx