gen_onnx.py 187 KB
Newer Older
1
2
3
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
# command: python -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
6
import numpy as np
import onnx
from onnx import helper
7
from onnx import TensorProto
Khalique's avatar
Khalique committed
8

Khalique's avatar
Khalique committed
9

Khalique's avatar
Khalique committed
10
11
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
12
13
        op_info = op_test()
        if len(op_info) > 3:
turneram's avatar
turneram committed
14
15
16
17
18
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
19
        else:
Khalique's avatar
Khalique committed
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
turneram's avatar
turneram committed
22
23
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
24
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
25

Khalique's avatar
Khalique committed
26
27
    return run_test

Khalique's avatar
Khalique committed
28

Khalique's avatar
Khalique committed
29
@onnx_test
Khalique's avatar
Khalique committed
30
31
32
33
34
35
36
37
38
39
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
40
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
41

Khalique's avatar
Khalique committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
57
@onnx_test
Khalique's avatar
Khalique committed
58
59
60
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
61
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
62

turneram's avatar
turneram committed
63
64
65
66
67
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
68
69

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
70
71


Khalique's avatar
Khalique committed
72
@onnx_test
Khalique's avatar
Khalique committed
73
74
75
76
77
78
79
80
81
82
83
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
84
    return (
Khalique's avatar
Khalique committed
85
        [node],
Khalique's avatar
Khalique committed
86
        [x, y],
Khalique's avatar
Khalique committed
87
88
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
89
90
91
92
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
93
94


Khalique's avatar
Khalique committed
95
@onnx_test
Khalique's avatar
Khalique committed
96
def add_scalar_test():
97
98
99
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
100

Khalique's avatar
Khalique committed
101
102
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

103
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
104
105


Khalique's avatar
Khalique committed
106
@onnx_test
Khalique's avatar
Khalique committed
107
108
109
110
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

turneram's avatar
turneram committed
111
112
113
114
115
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
116

Khalique's avatar
Khalique committed
117
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119

Khalique's avatar
Khalique committed
120
@onnx_test
Khalique's avatar
Khalique committed
121
122
123
124
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

turneram's avatar
turneram committed
125
126
127
128
129
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
130

Khalique's avatar
Khalique committed
131
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133

Khalique's avatar
Khalique committed
134
@onnx_test
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
143
144
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
145
146
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
162
@onnx_test
Khalique's avatar
Khalique committed
163
164
165
166
167
168
169
170
171
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
172

Khalique's avatar
Khalique committed
173
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
174

Khalique's avatar
Khalique committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


190
191
192
193
194
@onnx_test
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

turneram's avatar
turneram committed
195
196
197
198
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])
199
200
201
202
203
204
205
206
207
208

    return ([node], [x], [out])


@onnx_test
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

turneram's avatar
turneram committed
209
210
211
212
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])
213
214
215
216

    return ([node], [x], [out])


217
218
219
220
221
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
222
223
224
225
226
227
228
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')
229
230
231
232

    return ([node], [x], [y])


233
234
235
236
237
@onnx_test
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
238
239
240
241
242
243
244
245
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)
246
247
248
249

    return ([node], [x], [y])


250
251
252
253
254
@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
255
256
257
258
259
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')
260
261
262
263

    return ([node], [x], [y])


264
265
266
267
268
@onnx_test
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
269
270
271
272
273
274
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)
275
276
277
278

    return ([node], [x], [y])


279
280
281
282
283
@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
284
285
286
287
288
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')
289
290
291
292

    return ([node], [x], [y])


293
294
295
296
297
298
299
300
301
@onnx_test
def batchnorm_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 3, 5])

turneram's avatar
turneram committed
302
303
304
305
306
    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    return ([node], [x, scale, bias, mean, var], [out])


@onnx_test
def batchnorm_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT,
                                        [1, 3, 5, 5, 5])

turneram's avatar
turneram committed
321
322
323
324
325
    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)
326
327
328
329

    return ([node], [x, scale, bias, mean, var], [out])


Khalique's avatar
Khalique committed
330
@onnx_test
Khalique's avatar
Khalique committed
331
332
333
334
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
335
336
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
337
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
338

kahmed10's avatar
kahmed10 committed
339

Shucai Xiao's avatar
Shucai Xiao committed
340
341
342
343
344
345
346
347
348
349
350
351
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
352

kahmed10's avatar
kahmed10 committed
353

354
355
356
357
358
@onnx_test
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
359
360
361
362
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

    return ([node], [x], [y])


@onnx_test
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
382
383
384
385
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    return ([node], [x], [y])


@onnx_test
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
405
406
407
408
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)
409
410
411
412

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
413
@onnx_test
Khalique's avatar
Khalique committed
414
415
416
417
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
418
419
420
421
422
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
423

Khalique's avatar
Khalique committed
424
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
425

Khalique's avatar
Khalique committed
426

kahmed10's avatar
kahmed10 committed
427
428
429
430
431
432
433
434
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

turneram's avatar
turneram committed
435
436
437
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
438
439
440
441

    return ([node], [x], [y], [min_val, max_val])


Shucai Xiao's avatar
Shucai Xiao committed
442
443
444
445
446
447
448
@onnx_test
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

turneram's avatar
turneram committed
449
450
451
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])
Shucai Xiao's avatar
Shucai Xiao committed
452
453
454
455

    return ([node], [x], [y], [max_val])


kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
478
479
480
481
482
483
484
485
486
487
@onnx_test
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


488
489
490
491
492
493
494
495
496
@onnx_test
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

turneram's avatar
turneram committed
497
498
499
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])
500
501
502
503

    return ([node], [x], [y], [min_val, max_val])


Khalique's avatar
Khalique committed
504
@onnx_test
Khalique's avatar
Khalique committed
505
506
507
508
509
510
511
512
513
514
515
516
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
517
518
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
519

Khalique's avatar
Khalique committed
520
@onnx_test
Khalique's avatar
Khalique committed
521
522
523
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
524

Khalique's avatar
Khalique committed
525
526
527
528
529
530
531
532
533
534
535
536
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
537
    return ([node], [], [y])
Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539

Khalique's avatar
Khalique committed
540
@onnx_test
Khalique's avatar
Khalique committed
541
def constant_fill_test():
Khalique's avatar
Khalique committed
542
543
544
545
546
547
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
548
549
550
551
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
552
553
    )

Khalique's avatar
Khalique committed
554
    return ([node], [], [value])
Khalique's avatar
Khalique committed
555

Khalique's avatar
Khalique committed
556

Khalique's avatar
Khalique committed
557
@onnx_test
Khalique's avatar
Khalique committed
558
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
559
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
560
561
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
562
563
564
565
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
566
567
568
569
570
571
572
573
574
575
576
577

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
578
579
580
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
581
582
    )

Khalique's avatar
Khalique committed
583
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
584

Khalique's avatar
Khalique committed
585

Khalique's avatar
Khalique committed
586
@onnx_test
Khalique's avatar
Khalique committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
603
    return ([node], [], [y])
Khalique's avatar
Khalique committed
604

Khalique's avatar
Khalique committed
605

Khalique's avatar
Khalique committed
606
@onnx_test
Khalique's avatar
Khalique committed
607
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
608
609
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
610
    empty_val = np.array([]).astype(np.int64)
turneram's avatar
turneram committed
611
612
613
614
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
615
616
617
618
619
620
621
622
623
624
625
626
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
627
        value=tensor_val,
Khalique's avatar
Khalique committed
628
629
    )

Khalique's avatar
Khalique committed
630
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
631

Khalique's avatar
Khalique committed
632

Khalique's avatar
Khalique committed
633
@onnx_test
Khalique's avatar
Khalique committed
634
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
635
636
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
637
638

    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
639
640
641
642
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
643
644
645
646
647
648
649
650
651

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

turneram's avatar
turneram committed
652
653
654
655
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
656

Khalique's avatar
Khalique committed
657
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
658

Khalique's avatar
Khalique committed
659

Khalique's avatar
Khalique committed
660
@onnx_test
Khalique's avatar
Khalique committed
661
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
662
663
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
664
    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
665
666
667
668
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
669
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
670
671
672
673
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
674
675
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
676

turneram's avatar
turneram committed
677
678
679
680
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
681

Khalique's avatar
Khalique committed
682
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
683

Khalique's avatar
Khalique committed
684

Khalique's avatar
Khalique committed
685
@onnx_test
Khalique's avatar
Khalique committed
686
687
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
688
689
690
691
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
692
693
694
695
696
697
698
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
699

Khalique's avatar
Khalique committed
700
701
702
703
704
705
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
706
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
707

Khalique's avatar
Khalique committed
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
@onnx_test
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

turneram's avatar
turneram committed
738
739
740
741
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])
742
743
744
745

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
746
@onnx_test
Khalique's avatar
Khalique committed
747
748
749
750
751
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

turneram's avatar
turneram committed
752
753
754
755
756
757
758
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])
Khalique's avatar
Khalique committed
759
760

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
761
762


763
764
765
766
767
768
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

turneram's avatar
turneram committed
769
770
771
772
773
774
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')
775
776
777
778

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
779
@onnx_test
Khalique's avatar
Khalique committed
780
781
782
783
784
785
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

turneram's avatar
turneram committed
786
787
788
789
790
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])
Khalique's avatar
Khalique committed
791
792

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
793
794


Khalique's avatar
Khalique committed
795
@onnx_test
Khalique's avatar
Khalique committed
796
797
798
799
800
801
802
803
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
804
805
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
806

turneram's avatar
turneram committed
807
808
809
810
811
812
813
814
815
816
817
818
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])

    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
819

Khalique's avatar
Khalique committed
820
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
turneram's avatar
turneram committed
821
822
823
824
825
826
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
827
828

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
829
830


Khalique's avatar
Khalique committed
831
@onnx_test
Khalique's avatar
Khalique committed
832
833
834
835
836
837
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

turneram's avatar
turneram committed
838
839
840
841
842
843
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
844

Khalique's avatar
Khalique committed
845
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
846

turneram's avatar
turneram committed
847
848
849
850
851
852
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
853
854

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
855
856


Khalique's avatar
Khalique committed
857
@onnx_test
Khalique's avatar
Khalique committed
858
859
860
861
862
863
864
865
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
866
867
868
869
870
871
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
872

Khalique's avatar
Khalique committed
873
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
874

turneram's avatar
turneram committed
875
876
877
878
879
880
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
881

turneram's avatar
turneram committed
882
883
884
885
886
887
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
888

Khalique's avatar
Khalique committed
889
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
890

turneram's avatar
turneram committed
891
892
893
894
895
896
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
897
898

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
899
900


901
902
903
904
905
906
907
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

turneram's avatar
turneram committed
908
909
910
911
912
    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])
913
914
915
916

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
917
@onnx_test
Khalique's avatar
Khalique committed
918
919
920
921
922
923
924
925
926
927
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
928
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
929

Khalique's avatar
Khalique committed
930

Khalique's avatar
Khalique committed
931
@onnx_test
Khalique's avatar
Khalique committed
932
933
934
935
936
937
938
939
940
941
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
942
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
943

Khalique's avatar
Khalique committed
944

kahmed10's avatar
kahmed10 committed
945
946
947
948
949
950
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
951
952
953
954
    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])
kahmed10's avatar
kahmed10 committed
955
956
957
958
959
960
961
962
963
964
965

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
966
967
968
969
    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])
kahmed10's avatar
kahmed10 committed
970
971
972
973
974
975
976
977
978
979

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

turneram's avatar
turneram committed
980
981
982
983
984
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])
kahmed10's avatar
kahmed10 committed
985
986
987
988
989
990
991
992
993
994

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

turneram's avatar
turneram committed
995
996
997
998
999
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])
kahmed10's avatar
kahmed10 committed
1000
1001
1002
1003
1004

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
1005
1006
1007
1008
1009
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

turneram's avatar
turneram committed
1010
1011
1012
1013
1014
1015
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])
kahmed10's avatar
kahmed10 committed
1016
1017
1018
1019
1020
1021

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
1022
1023
1024
1025
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

turneram's avatar
turneram committed
1026
1027
1028
1029
1030
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1031
1032
1033
1034
1035

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
1036
1037
1038
1039
1040
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

turneram's avatar
turneram committed
1041
1042
1043
1044
1045
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])
kahmed10's avatar
kahmed10 committed
1046
1047
1048
1049
1050
1051

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
1052
1053
1054
1055
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

turneram's avatar
turneram committed
1056
1057
1058
1059
1060
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])
kahmed10's avatar
kahmed10 committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

turneram's avatar
turneram committed
1071
1072
1073
1074
1075
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

turneram's avatar
turneram committed
1086
1087
1088
1089
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])
kahmed10's avatar
kahmed10 committed
1090
1091
1092
1093

    return ([node], [x, w], [y])


1094
1095
1096
1097
1098
1099
@onnx_test
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

turneram's avatar
turneram committed
1100
1101
1102
1103
1104
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

    return ([node], [x], [y])


@onnx_test
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

turneram's avatar
turneram committed
1115
1116
1117
1118
1119
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

    return ([node], [x], [y])


@onnx_test
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

turneram's avatar
turneram committed
1130
1131
1132
1133
1134
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')
1135
1136
1137
1138

    return ([node], [x], [y])


Umang Yadav's avatar
Umang Yadav committed
1139
1140
1141
1142
1143
1144
@onnx_test
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

turneram's avatar
turneram committed
1145
1146
1147
1148
    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

    return ([node], [x], [y])


@onnx_test
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

turneram's avatar
turneram committed
1159
1160
1161
1162
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

    return ([node], [x], [y])


@onnx_test
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

turneram's avatar
turneram committed
1173
1174
1175
1176
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)
Umang Yadav's avatar
Umang Yadav committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

    return ([node], [x], [y])


@onnx_test
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

turneram's avatar
turneram committed
1187
1188
1189
1190
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1191
1192
1193
1194

    return ([node], [x], [y])


1195
1196
@onnx_test
def dequantizelinear_test():
turneram's avatar
turneram committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def dequantizelinear_zero_point_test():
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

turneram's avatar
turneram committed
1233
1234
1235
1236
    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


@onnx_test
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


Khalique's avatar
Khalique committed
1251
@onnx_test
Khalique's avatar
Khalique committed
1252
def dropout_test():
Khalique's avatar
Khalique committed
1253
1254
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1255

Khalique's avatar
Khalique committed
1256
1257
1258
1259
1260
1261
1262
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1263
1264


Khalique's avatar
Khalique committed
1265
@onnx_test
Khalique's avatar
Khalique committed
1266
1267
1268
1269
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
1270
1271
1272
1273
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1274

Khalique's avatar
Khalique committed
1275
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1276

Khalique's avatar
Khalique committed
1277

1278
1279
1280
1281
1282
1283
@onnx_test
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

turneram's avatar
turneram committed
1284
1285
1286
1287
    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))
1288

turneram's avatar
turneram committed
1289
1290
1291
1292
    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)
1293

turneram's avatar
turneram committed
1294
1295
1296
1297
    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))
1298

turneram's avatar
turneram committed
1299
1300
1301
1302
    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)
1303
1304
1305
1306
1307
1308
1309

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

turneram's avatar
turneram committed
1310
1311
1312
1313
1314
    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')
1315

turneram's avatar
turneram committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


@onnx_test
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

turneram's avatar
turneram committed
1337
1338
1339
1340
    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))
1341

turneram's avatar
turneram committed
1342
1343
1344
1345
    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)
1346

turneram's avatar
turneram committed
1347
1348
1349
1350
    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))
1351

turneram's avatar
turneram committed
1352
1353
1354
1355
    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)
1356
1357
1358
1359
1360

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
1361
1362
1363
1364
1365
    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')
1366
1367
1368
1369

    return ([index, offset, node], [weight], [y])


1370
1371
1372
@onnx_test
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
1373
1374
1375
1376
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Khalique's avatar
Khalique committed
1408
@onnx_test
Khalique's avatar
Khalique committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1419
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1420

Khalique's avatar
Khalique committed
1421

Khalique's avatar
Khalique committed
1422
@onnx_test
Khalique's avatar
Khalique committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1433
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1434

Khalique's avatar
Khalique committed
1435

Khalique's avatar
Khalique committed
1436
@onnx_test
Khalique's avatar
Khalique committed
1437
1438
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
turneram's avatar
turneram committed
1439
1440
1441
1442
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

turneram's avatar
turneram committed
1452
1453
1454
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])
Khalique's avatar
Khalique committed
1455
1456
1457

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1458

Charlie Lin's avatar
Charlie Lin committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
@onnx_test
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
turneram's avatar
turneram committed
1510
1511
1512
1513
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
Charlie Lin's avatar
Charlie Lin committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
turneram's avatar
turneram committed
1549
1550
1551
1552
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
Charlie Lin's avatar
Charlie Lin committed
1553
1554
1555
1556
1557
1558
1559
    return ([node], [T1], [T2])


@onnx_test
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
turneram's avatar
turneram committed
1560
1561
1562
1563
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
Charlie Lin's avatar
Charlie Lin committed
1564
1565
1566
    return ([node], [T1], [T2])


Khalique's avatar
Khalique committed
1567
@onnx_test
Khalique's avatar
Khalique committed
1568
1569
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1570
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1571
1572
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

turneram's avatar
turneram committed
1573
1574
1575
1576
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1577

Khalique's avatar
Khalique committed
1578
1579
1580
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1581

kahmed10's avatar
kahmed10 committed
1582

Khalique's avatar
Khalique committed
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
@onnx_test
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

turneram's avatar
turneram committed
1596
1597
1598
1599
    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1600
1601
1602
1603
1604
1605

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


Shucai Xiao's avatar
Shucai Xiao committed
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1618

kahmed10's avatar
kahmed10 committed
1619

Khalique's avatar
Khalique committed
1620
@onnx_test
Khalique's avatar
Khalique committed
1621
1622
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
1623
1624
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1625
1626
1627
1628
1629
1630
1631
1632
1633
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1634
1635
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
1636

Shucai Xiao's avatar
Shucai Xiao committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
@onnx_test
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


@onnx_test
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


Khalique's avatar
Khalique committed
1669
@onnx_test
Khalique's avatar
Khalique committed
1670
1671
1672
1673
1674
1675
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

turneram's avatar
turneram committed
1676
1677
1678
1679
1680
1681
1682
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)
Khalique's avatar
Khalique committed
1683
1684

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
1685
1686


Khalique's avatar
Khalique committed
1687
@onnx_test
Khalique's avatar
Khalique committed
1688
def gemm_ex_test():
Shucai Xiao's avatar
Shucai Xiao committed
1689
1690
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 8, 7])
Khalique's avatar
Khalique committed
1691
1692
1693
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

turneram's avatar
turneram committed
1694
1695
1696
1697
1698
1699
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Khalique's avatar
Khalique committed
1700
1701

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1702
1703


Khalique's avatar
Khalique committed
1704
@onnx_test
Khalique's avatar
Khalique committed
1705
1706
1707
1708
1709
1710
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

turneram's avatar
turneram committed
1711
1712
1713
1714
1715
1716
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Khalique's avatar
Khalique committed
1717
1718

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1719
1720


Shucai Xiao's avatar
Shucai Xiao committed
1721
1722
1723
1724
1725
1726
1727
@onnx_test
def gemm_half_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 1, 8, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 1, 6, 7])

turneram's avatar
turneram committed
1728
1729
1730
1731
1732
1733
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Shucai Xiao's avatar
Shucai Xiao committed
1734
1735
1736
1737

    return ([node], [m1, m2, m3], [y])


Khalique's avatar
Khalique committed
1738
@onnx_test
Khalique's avatar
Khalique committed
1739
def globalavgpool_test():
Khalique's avatar
Khalique committed
1740
1741
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1742
1743
1744
1745
1746
1747
1748

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1749
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1750

Khalique's avatar
Khalique committed
1751

Khalique's avatar
Khalique committed
1752
@onnx_test
Khalique's avatar
Khalique committed
1753
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1754
1755
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1756
1757
1758
1759
1760
1761
1762

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1763
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1764

Khalique's avatar
Khalique committed
1765

Khalique's avatar
Khalique committed
1766
1767
1768
@onnx_test
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
1769
1770
1771
1772
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


turneram's avatar
turneram committed
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
@onnx_test
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
1820
@onnx_test
Khalique's avatar
Khalique committed
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1833
1834
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1835

turneram's avatar
turneram committed
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
@onnx_test
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

turneram's avatar
turneram committed
1851
1852
1853
1854
1855
    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)
turneram's avatar
turneram committed
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
@onnx_test
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1890
1891
1892
1893
1894
@onnx_test
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
1895
1896
1897
1898
1899
1900
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
1901
1902

    xt = np.ones((2, 3)).astype(np.float)
turneram's avatar
turneram committed
1903
1904
1905
1906
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1907
1908

    yt = np.random.randn(2, 3).astype(np.float)
turneram's avatar
turneram committed
1909
1910
1911
1912
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1913

turneram's avatar
turneram committed
1914
1915
1916
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1917

turneram's avatar
turneram committed
1918
1919
1920
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1921
1922
1923
1924
1925
1926
1927
1928

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
turneram's avatar
turneram committed
1929
1930
1931
1932
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
1933
1934
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
1935
1936
1937
1938
1939
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
1940
1941
1942
1943

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1944
1945
1946
1947
1948
1949
1950
1951
1952
@onnx_test
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1953
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
1967
1968
1969
1970
1971
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
1972

Shucai Xiao's avatar
Shucai Xiao committed
1973
1974
1975
1976
1977
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
1978
1979
1980
1981
1982

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
1983
1984
1985
1986
1987
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
1988
1989
1990
1991
1992
1993

    return ([node], [cond_input], [ret])


@onnx_test
def if_param_excp_test():
turneram's avatar
turneram committed
1994
1995
1996
1997
1998
1999
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2000
2001
2002
2003
2004
2005
2006

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2007
2008
2009
2010
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2011

turneram's avatar
turneram committed
2012
2013
2014
2015
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2016

turneram's avatar
turneram committed
2017
2018
2019
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2020

turneram's avatar
turneram committed
2021
2022
2023
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2035
2036
2037
2038
2039
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2040
2041
2042
2043
2044
2045

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_param_excp1_test():
turneram's avatar
turneram committed
2046
2047
2048
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2049
2050
2051
2052
2053

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2054
2055
2056
2057
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2058

turneram's avatar
turneram committed
2059
2060
2061
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2062
2063
2064
2065
2066
2067
2068
2069

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2070
2071
2072
2073
2074
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)
Shucai Xiao's avatar
Shucai Xiao committed
2075
2076
2077
2078
2079
2080

    return ([node], [cond_input, x], [ret])


@onnx_test
def if_param_test():
turneram's avatar
turneram committed
2081
2082
2083
2084
2085
2086
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2087
2088
2089
2090
2091
2092
2093

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2094
2095
2096
2097
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2098

turneram's avatar
turneram committed
2099
2100
2101
2102
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2103

turneram's avatar
turneram committed
2104
2105
2106
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2107

turneram's avatar
turneram committed
2108
2109
2110
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2122
2123
2124
2125
2126
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2127
2128
2129
2130
2131
2132
2133
2134

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
turneram's avatar
turneram committed
2135
2136
2137
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2138
2139
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
turneram's avatar
turneram committed
2140
2141
2142
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2143
2144
2145
2146
2147
2148
2149

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

turneram's avatar
turneram committed
2150
2151
2152
2153
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2154

turneram's avatar
turneram committed
2155
2156
2157
2158
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2159

turneram's avatar
turneram committed
2160
2161
2162
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])
Shucai Xiao's avatar
Shucai Xiao committed
2163

turneram's avatar
turneram committed
2164
2165
2166
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])
Shucai Xiao's avatar
Shucai Xiao committed
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2190
2191
2192
2193
2194
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2195
2196
2197
2198

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2199
2200
2201
2202
2203
@onnx_test
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2204
2205
2206
2207
2208
2209
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2210
2211

    xt = np.ones((2, 3)).astype(np.float)
turneram's avatar
turneram committed
2212
2213
2214
2215
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2216
2217

    yt = np.random.randn(2, 3).astype(np.float)
turneram's avatar
turneram committed
2218
2219
2220
2221
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2222

turneram's avatar
turneram committed
2223
2224
2225
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2226

turneram's avatar
turneram committed
2227
2228
2229
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2230
2231
2232
2233
2234
2235
2236
2237

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
turneram's avatar
turneram committed
2238
2239
2240
2241
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
2242
2243
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2244
2245
2246
2247
2248
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2249
2250
2251
2252

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2253
2254
2255
2256
2257
2258
2259
@onnx_test
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

turneram's avatar
turneram committed
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
Shucai Xiao's avatar
Shucai Xiao committed
2272
2273

    one = np.ones([1]).astype(np.float)
turneram's avatar
turneram committed
2274
2275
2276
2277
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2278
2279

    two = np.array([2]).astype(np.float)
turneram's avatar
turneram committed
2280
2281
2282
2283
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2284
2285

    three = np.array([3]).astype(np.float)
turneram's avatar
turneram committed
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])
Shucai Xiao's avatar
Shucai Xiao committed
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2314
2315
2316
2317
2318
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2319

turneram's avatar
turneram committed
2320
2321
    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])
Shucai Xiao's avatar
Shucai Xiao committed
2322
2323


Khalique's avatar
Khalique committed
2324
@onnx_test
Khalique's avatar
Khalique committed
2325
def imagescaler_test():
Khalique's avatar
Khalique committed
2326
2327
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
2328

turneram's avatar
turneram committed
2329
2330
2331
2332
2333
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
2334

Khalique's avatar
Khalique committed
2335
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2336

Khalique's avatar
Khalique committed
2337

Shucai Xiao's avatar
Shucai Xiao committed
2338
2339
2340
2341
2342
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

turneram's avatar
turneram committed
2343
2344
2345
2346
2347
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
2348
2349
2350
2351

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2352
@onnx_test
Khalique's avatar
Khalique committed
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2364
2365
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2366

Khalique's avatar
Khalique committed
2367
@onnx_test
Khalique's avatar
Khalique committed
2368
2369
2370
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
2371
2372
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2373
2374
2375
2376
2377
2378
2379

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2380
2381
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2382

Khalique's avatar
Khalique committed
2383
@onnx_test
Khalique's avatar
Khalique committed
2384
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
2385
2386
2387
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
2388
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2389
2390
2391
2392
2393
2394
2395

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2396
2397
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2398

2399
2400
2401
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
turneram's avatar
turneram committed
2402
2403
2404
2405
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
2419
2420
2421
2422
2423
2424
2425
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

turneram's avatar
turneram committed
2426
2427
2428
    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])
kahmed10's avatar
kahmed10 committed
2429
2430
2431
2432
2433
2434

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
turneram's avatar
turneram committed
2435
2436
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
kahmed10's avatar
kahmed10 committed
2437
2438
2439
    scale = np.array([1, 2])
    bias = np.array([0, 1])

turneram's avatar
turneram committed
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2452
2453
2454
2455
2456
2457

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2458
2459
2460
2461
2462
2463
2464
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


@onnx_test
def instance_norm_val_3d_test():
turneram's avatar
turneram committed
2465
2466
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
kahmed10's avatar
kahmed10 committed
2467
2468
2469
    scale = np.array([1, 2])
    bias = np.array([0, 1])

turneram's avatar
turneram committed
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2482
2483
2484
2485
2486
2487

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2488
2489
2490
2491
2492
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Charlie Lin's avatar
Charlie Lin committed
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
@onnx_test
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


kahmed10's avatar
kahmed10 committed
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
@onnx_test
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

turneram's avatar
turneram committed
2529
2530
2531
2532
    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2533

turneram's avatar
turneram committed
2534
2535
2536
2537
2538
    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))
kahmed10's avatar
kahmed10 committed
2539

turneram's avatar
turneram committed
2540
2541
2542
2543
    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)
kahmed10's avatar
kahmed10 committed
2544

turneram's avatar
turneram committed
2545
2546
2547
    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])
kahmed10's avatar
kahmed10 committed
2548

turneram's avatar
turneram committed
2549
2550
2551
    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])
kahmed10's avatar
kahmed10 committed
2552

turneram's avatar
turneram committed
2553
2554
2555
2556
    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)
kahmed10's avatar
kahmed10 committed
2557

turneram's avatar
turneram committed
2558
2559
2560
    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])
kahmed10's avatar
kahmed10 committed
2561

turneram's avatar
turneram committed
2562
2563
2564
    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])
kahmed10's avatar
kahmed10 committed
2565

turneram's avatar
turneram committed
2566
2567
2568
    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])
kahmed10's avatar
kahmed10 committed
2569

turneram's avatar
turneram committed
2570
2571
2572
    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])
kahmed10's avatar
kahmed10 committed
2573

turneram's avatar
turneram committed
2574
2575
2576
    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])
kahmed10's avatar
kahmed10 committed
2577

turneram's avatar
turneram committed
2578
2579
    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
kahmed10's avatar
kahmed10 committed
2580
2581


turneram's avatar
turneram committed
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
@onnx_test
def layernorm_op_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [3])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [1, 2, 3])

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x', 'w', 'b'],
                                 outputs=["output"],
                                 epsilon=1e-5)

    return ([node], [x, w, b], [output])

turneram's avatar
turneram committed
2597

Khalique's avatar
Khalique committed
2598
@onnx_test
Khalique's avatar
Khalique committed
2599
2600
2601
2602
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
2603
2604
2605
2606
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
2607

Khalique's avatar
Khalique committed
2608
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2609

Khalique's avatar
Khalique committed
2610

Khalique's avatar
Khalique committed
2611
2612
2613
@onnx_test
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
2614
2615
2616
2617
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


@onnx_test
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
2665
@onnx_test
Khalique's avatar
Khalique committed
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2676
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2677

Khalique's avatar
Khalique committed
2678

Shucai Xiao's avatar
Shucai Xiao committed
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
@onnx_test
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


Khalique's avatar
Khalique committed
2712
@onnx_test
Khalique's avatar
Khalique committed
2713
2714
2715
2716
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

turneram's avatar
turneram committed
2717
2718
2719
2720
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
2721

Khalique's avatar
Khalique committed
2722
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2723

Khalique's avatar
Khalique committed
2724

2725
2726
2727
@onnx_test
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
2728
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
2729

turneram's avatar
turneram committed
2730
2731
2732
2733
2734
2735
    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])
2736

turneram's avatar
turneram committed
2737
2738
2739
2740
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
2741

2742
    return ([node0, node1], [x], [y])
2743
2744


Shucai Xiao's avatar
Shucai Xiao committed
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
@onnx_test
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


@onnx_test
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


Charlie Lin's avatar
Charlie Lin committed
2823
2824
2825
2826
2827
@onnx_test
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2828
2829
2830
2831
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
Charlie Lin's avatar
Charlie Lin committed
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
    return ([node], [x], [y])


@onnx_test
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

turneram's avatar
turneram committed
2868
2869
2870
2871
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
Charlie Lin's avatar
Charlie Lin committed
2872
2873
2874
2875
2876
2877
2878
2879
    return ([node], [x], [y])


@onnx_test
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2880
2881
2882
2883
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
Charlie Lin's avatar
Charlie Lin committed
2884
2885
2886
    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2887
@onnx_test
Khalique's avatar
Khalique committed
2888
2889
2890
2891
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

turneram's avatar
turneram committed
2892
2893
2894
2895
2896
2897
2898
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2899

Khalique's avatar
Khalique committed
2900
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2901

Khalique's avatar
Khalique committed
2902

Khalique's avatar
Khalique committed
2903
@onnx_test
Khalique's avatar
Khalique committed
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2915
2916
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2917

Khalique's avatar
Khalique committed
2918
@onnx_test
Khalique's avatar
Khalique committed
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2930
2931
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2932

Khalique's avatar
Khalique committed
2933
@onnx_test
Khalique's avatar
Khalique committed
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2945
2946
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2947

Khalique's avatar
Khalique committed
2948
@onnx_test
Khalique's avatar
Khalique committed
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2960
2961
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2962

Khalique's avatar
Khalique committed
2963
@onnx_test
Khalique's avatar
Khalique committed
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2975
2976
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2977

Khalique's avatar
Khalique committed
2978
@onnx_test
Khalique's avatar
Khalique committed
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2990
2991
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2992

2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
3008
@onnx_test
Khalique's avatar
Khalique committed
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3021
3022
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3023

3024
3025
3026
3027
3028
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
3029
3030
3031
3032
3033
3034
3035
    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')
3036
3037
3038
3039
3040
3041
3042
3043
3044

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
3045
3046
3047
3048
3049
    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')
3050
3051
3052
3053

    return ([node], [x], [y])


turneram's avatar
turneram committed
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
@onnx_test
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

turneram's avatar
turneram committed
3066
3067
3068
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


@onnx_test
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

turneram's avatar
turneram committed
3082
3083
3084
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

turneram's avatar
turneram committed
3097
3098
3099
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


@onnx_test
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


Khalique's avatar
Khalique committed
3128
@onnx_test
Khalique's avatar
Khalique committed
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3141
3142
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3143

turneram's avatar
turneram committed
3144
3145
3146
3147
3148
3149
3150
3151
@onnx_test
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3152
3153
3154
3155
3156
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])
turneram's avatar
turneram committed
3157
3158
3159
3160

    return ([node], [input], [output])


3161
3162
3163
3164
3165
3166
3167
@onnx_test
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3168
3169
3170
3171
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3172
3173
3174
3175

    return ([node], [input], [output])


turneram's avatar
turneram committed
3176
3177
3178
3179
3180
3181
3182
3183
@onnx_test
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

turneram's avatar
turneram committed
3184
3185
3186
3187
3188
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])
turneram's avatar
turneram committed
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201

    return ([node], [input], [output])


@onnx_test
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

turneram's avatar
turneram committed
3202
3203
3204
3205
3206
3207
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])
turneram's avatar
turneram committed
3208
3209
3210
3211

    return ([node], [input], [output])


Shucai Xiao's avatar
Shucai Xiao committed
3212
3213
@onnx_test
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
3214
3215
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3216
3217
3218
3219
3220
3221

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
@onnx_test
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [6, 3])

turneram's avatar
turneram committed
3235
3236
3237
3238
3239
3240
3241
3242
    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)
3243
3244
3245
3246

    return ([node], [b, s, mo, iou, st], [out])


3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
@onnx_test
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3267
@onnx_test
Khalique's avatar
Khalique committed
3268
3269
3270
3271
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

turneram's avatar
turneram committed
3272
3273
3274
3275
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3276

Khalique's avatar
Khalique committed
3277
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3278

Khalique's avatar
Khalique committed
3279

Shucai Xiao's avatar
Shucai Xiao committed
3280
3281
3282
3283
3284
@onnx_test
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

turneram's avatar
turneram committed
3285
3286
3287
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3288
3289
3290
3291

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3292
3293
3294
@onnx_test
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
turneram's avatar
turneram committed
3295
3296
3297
3298
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
Shucai Xiao's avatar
Shucai Xiao committed
3299
3300
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

turneram's avatar
turneram committed
3301
3302
3303
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3304
3305
3306
3307
3308
3309
3310

    return ([node], [], [y], [data])


@onnx_test
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
turneram's avatar
turneram committed
3311
3312
3313
3314
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
Shucai Xiao's avatar
Shucai Xiao committed
3315
3316
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

turneram's avatar
turneram committed
3317
3318
3319
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3320
3321
3322
3323

    return ([node], [], [y], [data])


kahmed10's avatar
kahmed10 committed
3324
3325
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
3326
3327
3328
3329
3330
3331
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
3332

turneram's avatar
turneram committed
3333
3334
3335
3336
    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))
kahmed10's avatar
kahmed10 committed
3337

turneram's avatar
turneram committed
3338
3339
3340
3341
    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)
kahmed10's avatar
kahmed10 committed
3342

Shucai Xiao's avatar
Shucai Xiao committed
3343
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
3344
3345


Khalique's avatar
Khalique committed
3346
@onnx_test
Khalique's avatar
Khalique committed
3347
3348
3349
3350
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

turneram's avatar
turneram committed
3351
3352
3353
3354
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3355

Khalique's avatar
Khalique committed
3356
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3357

Khalique's avatar
Khalique committed
3358

3359
3360
3361
@onnx_test
def pad_3arg_test():
    values = np.array([1])
turneram's avatar
turneram committed
3362
3363
3364
3365
3366
3367
3368
3369
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)
3370
3371

    sizes = np.array([1, 1, 2, 2])
turneram's avatar
turneram committed
3372
3373
3374
3375
3376
3377
3378
3379
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)
3380
3381
3382
3383

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

turneram's avatar
turneram committed
3384
3385
3386
    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])
3387
3388
3389
3390

    return ([arg_val, arg_pad, node], [x], [y])


kahmed10's avatar
kahmed10 committed
3391
3392
3393
3394
3395
3396
@onnx_test
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
turneram's avatar
turneram committed
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419

    return ([arg_pad, node], [x], [y])


@onnx_test
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
turneram's avatar
turneram committed
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3433
3434
3435
3436

    return ([arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
3437
@onnx_test
Khalique's avatar
Khalique committed
3438
3439
3440
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3441
3442
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3443
3444
3445
3446
3447
3448
3449

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3450
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
3451

kahmed10's avatar
kahmed10 committed
3452

Shucai Xiao's avatar
Shucai Xiao committed
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
@onnx_test
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


turneram's avatar
turneram committed
3485
3486
3487
3488
3489
@onnx_test
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
turneram's avatar
turneram committed
3490
3491
3492
3493
3494
3495
3496
3497
3498
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
turneram's avatar
turneram committed
3499
3500
3501
    return ([node], [x], [y], [axis_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


3518
3519
@onnx_test
def quantizelinear_test():
turneram's avatar
turneram committed
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_zero_point_test():
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

turneram's avatar
turneram committed
3571
3572
3573
3574
    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


@onnx_test
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
@onnx_test
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3599
3600
3601
3602
3603
3604
3605
3606
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

    return ([node], [], [output])


@onnx_test
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3618
3619
3620
3621
3622
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)
3623
3624
3625
3626

    return ([node], [], [output])


3627
3628
3629
3630
3631
3632
3633
@onnx_test
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3634
3635
3636
3637
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3638
3639
3640
3641

    return ([node], [input], [output])


3642
3643
3644
3645
3646
3647
@onnx_test
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3648
3649
3650
3651
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666

    return ([node], [], [output])


@onnx_test
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3667
3668
3669
3670
3671
3672
3673
    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685

    return ([node], [input], [output])


@onnx_test
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3686
3687
3688
3689
    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703

    return ([node], [input], [output])


@onnx_test
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3704
3705
3706
3707
3708
3709
3710
3711
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722

    return ([node], [], [output])


@onnx_test
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3723
3724
3725
3726
3727
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)
3728
3729
3730
3731

    return ([node], [], [output])


3732
3733
3734
3735
3736
3737
3738
@onnx_test
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3739
3740
3741
3742
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3743
3744
3745
3746

    return ([node], [input], [output])


3747
3748
3749
3750
3751
3752
@onnx_test
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3753
3754
3755
3756
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771

    return ([node], [], [output])


@onnx_test
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3772
3773
3774
3775
3776
3777
3778
    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790

    return ([node], [input], [output])


@onnx_test
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3791
3792
3793
3794
    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)
3795
3796
3797
3798

    return ([node], [input], [output])


kahmed10's avatar
kahmed10 committed
3799
3800
3801
3802
3803
3804
3805
@onnx_test
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

turneram's avatar
turneram committed
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


@onnx_test
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

turneram's avatar
turneram committed
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3879
3880
3881
3882
3883
3884

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


kahmed10's avatar
kahmed10 committed
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3899
3900
3901
3902
3903
3904
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

turneram's avatar
turneram committed
3905
3906
3907
3908
3909
    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

turneram's avatar
turneram committed
3920
3921
3922
3923
3924
    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

turneram's avatar
turneram committed
3935
3936
3937
3938
3939
    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

turneram's avatar
turneram committed
3950
3951
3952
3953
3954
    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3955
3956
3957
3958

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3959
3960
3961
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3962
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3963
3964
    axes = [2]

turneram's avatar
turneram committed
3965
3966
3967
3968
3969
    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3970
3971
3972

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
3973

Khalique's avatar
Khalique committed
3974
@onnx_test
Khalique's avatar
Khalique committed
3975
3976
3977
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
3978
    axes = [2, 3]
Khalique's avatar
Khalique committed
3979

turneram's avatar
turneram committed
3980
3981
3982
3983
3984
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
3985

Khalique's avatar
Khalique committed
3986
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3987

kahmed10's avatar
kahmed10 committed
3988

Khalique's avatar
Khalique committed
3989
@onnx_test
Khalique's avatar
Khalique committed
3990
3991
3992
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
3993
    axes = [2]
Khalique's avatar
Khalique committed
3994

turneram's avatar
turneram committed
3995
3996
3997
3998
3999
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4000

Khalique's avatar
Khalique committed
4001
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4002

kahmed10's avatar
kahmed10 committed
4003

Shucai Xiao's avatar
Shucai Xiao committed
4004
4005
4006
4007
4008
4009
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

turneram's avatar
turneram committed
4010
4011
4012
4013
4014
    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
4015
4016

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4017

kahmed10's avatar
kahmed10 committed
4018

Khalique's avatar
Khalique committed
4019
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4020
def reduceprod_test():
Khalique's avatar
Khalique committed
4021
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
4022
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
4023
    axes = [2]
Khalique's avatar
Khalique committed
4024

turneram's avatar
turneram committed
4025
4026
4027
4028
4029
    node = onnx.helper.make_node('ReduceProd',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4030

Khalique's avatar
Khalique committed
4031
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4032

Khalique's avatar
Khalique committed
4033

Khalique's avatar
Khalique committed
4034
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4035
def reducesum_test():
Khalique's avatar
Khalique committed
4036
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
4037
4038
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
4039

turneram's avatar
turneram committed
4040
4041
4042
4043
4044
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
4045

Khalique's avatar
Khalique committed
4046
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4047

Khalique's avatar
Khalique committed
4048

Shucai Xiao's avatar
Shucai Xiao committed
4049
4050
4051
4052
4053
@onnx_test
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
4054
4055
4056
4057
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4058

turneram's avatar
turneram committed
4059
4060
4061
4062
4063
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)
Shucai Xiao's avatar
Shucai Xiao committed
4064
4065
4066
4067
4068
4069
4070
4071
4072

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
4073
4074
4075
4076
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4077

turneram's avatar
turneram committed
4078
4079
4080
4081
4082
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)
Shucai Xiao's avatar
Shucai Xiao committed
4083
4084
4085
4086

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
4087
@onnx_test
Khalique's avatar
Khalique committed
4088
4089
4090
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
4091
    axes = [2, 3]
Khalique's avatar
Khalique committed
4092

turneram's avatar
turneram committed
4093
4094
4095
4096
4097
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4098

Khalique's avatar
Khalique committed
4099
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4100

Khalique's avatar
Khalique committed
4101

Shucai Xiao's avatar
Shucai Xiao committed
4102
4103
4104
4105
4106
4107
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

turneram's avatar
turneram committed
4108
4109
4110
4111
4112
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

turneram's avatar
turneram committed
4123
4124
4125
4126
4127
    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
4128
4129
4130
4131

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4132
@onnx_test
Khalique's avatar
Khalique committed
4133
4134
4135
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
4136
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
4137
4138
4139
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
4140
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
4141

turneram's avatar
turneram committed
4142
4143
4144
4145
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])
Khalique's avatar
Khalique committed
4146
4147
4148

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
4149
4150


Khalique's avatar
Khalique committed
4151
@onnx_test
Khalique's avatar
Khalique committed
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

turneram's avatar
turneram committed
4163
4164
4165
4166
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])
Khalique's avatar
Khalique committed
4167
4168

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
4169
4170


Shucai Xiao's avatar
Shucai Xiao committed
4171
4172
4173
@onnx_test
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4174
4175
4176
4177
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4178
4179

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
4180
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


@onnx_test
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4196
4197
4198
4199
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4200
4201
4202
4203

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

turneram's avatar
turneram committed
4204
4205
4206
4207
4208
4209
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')
Shucai Xiao's avatar
Shucai Xiao committed
4210
4211
4212
4213

    return ([node], [X], [Y], [scale_tensor])


4214
4215
4216
@onnx_test
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
turneram's avatar
turneram committed
4217
4218
4219
4220
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
4221
4222
4223
4224

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
4225
4226
4227
4228
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
4229
4230
4231
4232

    return ([node], [X], [Y], [scale_tensor])


4233
4234
4235
@onnx_test
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4236
4237
4238
4239
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
4240
4241
4242
4243

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

turneram's avatar
turneram committed
4244
4245
4246
4247
    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])
4248

turneram's avatar
turneram committed
4249
4250
4251
4252
4253
4254
    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')
4255
4256
4257
4258

    return ([trn, node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4259
4260
4261
@onnx_test
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
turneram's avatar
turneram committed
4262
4263
4264
4265
4266
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


4282
4283
4284
@onnx_test
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
4285
4286
4287
4288
4289
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


@onnx_test
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
4306
4307
4308
4309
4310
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
4311
4312
4313
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
4314
4315
4316
4317
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
4318
4319
4320
4321

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4322
4323
4324
@onnx_test
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
turneram's avatar
turneram committed
4325
4326
4327
4328
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4329
4330
4331
4332

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

turneram's avatar
turneram committed
4333
4334
4335
4336
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')
Shucai Xiao's avatar
Shucai Xiao committed
4337
4338
4339
4340

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4341
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4342
4343
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
turneram's avatar
turneram committed
4344
4345
4346
4347
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4364
4365
4366
4367
4368
4369
4370
@onnx_test
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

turneram's avatar
turneram committed
4371
4372
4373
    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398

    return ([node], [x, roi, bi], [y])


@onnx_test
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4399
@onnx_test
4400
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
4401
4402
4403
4404
4405
4406
4407
4408
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
4451
4452
4453
4454
4455
4456
4457
4458
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


turneram's avatar
turneram committed
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
@onnx_test
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4469
4470
4471
4472
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")
turneram's avatar
turneram committed
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4487
4488
4489
4490
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")
turneram's avatar
turneram committed
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4505
4506
4507
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])
turneram's avatar
turneram committed
4508
4509
4510
4511

    return ([node], [data, indices, updates], [output])


Shucai Xiao's avatar
Shucai Xiao committed
4512
4513
4514
4515
4516
@onnx_test
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

turneram's avatar
turneram committed
4517
4518
4519
4520
4521
    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
4522
4523
4524
4525

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4526
@onnx_test
Khalique's avatar
Khalique committed
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4537
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4538

Khalique's avatar
Khalique committed
4539

Khalique's avatar
Khalique committed
4540
@onnx_test
Khalique's avatar
Khalique committed
4541
4542
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
4543
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
4544
4545
4546
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

turneram's avatar
turneram committed
4547
4548
4549
4550
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
4572
4573
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
4574

Khalique's avatar
Khalique committed
4575
@onnx_test
Khalique's avatar
Khalique committed
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4586
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4587

Khalique's avatar
Khalique committed
4588

Khalique's avatar
Khalique committed
4589
@onnx_test
Khalique's avatar
Khalique committed
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4600
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4601

Khalique's avatar
Khalique committed
4602

Khalique's avatar
Khalique committed
4603
@onnx_test
Khalique's avatar
Khalique committed
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4614
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4615

Khalique's avatar
Khalique committed
4616

Charlie Lin's avatar
Charlie Lin committed
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
@onnx_test
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
4665
4666
4667
4668
4669
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

turneram's avatar
turneram committed
4670
4671
4672
4673
4674
4675
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
4676
4677
4678
4679
4680
4681
4682
4683
4684

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
turneram's avatar
turneram committed
4685
4686
4687
4688
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
kahmed10's avatar
kahmed10 committed
4689

turneram's avatar
turneram committed
4690
4691
4692
4693
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
kahmed10's avatar
kahmed10 committed
4694
4695

    end = np.array([2, 5])
turneram's avatar
turneram committed
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
4708
4709
4710
4711

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4712
4713
4714
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
turneram's avatar
turneram committed
4715
4716
4717
4718
4719
4720
4721
4722
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4723
4724

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4725
4726
4727
4728
4729
4730
4731
4732
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4733
4734

    end = np.array([-1, -1])
turneram's avatar
turneram committed
4735
4736
4737
4738
4739
4740
4741
4742
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4743
4744

    start = np.array([-5, -3])
turneram's avatar
turneram committed
4745
4746
4747
4748
4749
4750
4751
4752
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
turneram's avatar
turneram committed
4768
4769
4770
4771
4772
4773
4774
4775
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4776
4777

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4778
4779
4780
4781
4782
4783
4784
4785
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4786

4787
    end = np.array([-5, -1])
turneram's avatar
turneram committed
4788
4789
4790
4791
4792
4793
4794
4795
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4796

4797
    start = np.array([-1, -3])
turneram's avatar
turneram committed
4798
4799
4800
4801
4802
4803
4804
4805
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_step_test():
    step = np.array([-2, 2])
turneram's avatar
turneram committed
4821
4822
4823
4824
4825
4826
4827
4828
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
4829
4830

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4831
4832
4833
4834
4835
4836
4837
4838
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
4839
4840

    end = np.array([-5, -1])
turneram's avatar
turneram committed
4841
4842
4843
4844
4845
4846
4847
4848
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
4849
4850

    start = np.array([-1, -3])
turneram's avatar
turneram committed
4851
4852
4853
4854
4855
4856
4857
4858
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


4871
4872
4873
4874
4875
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

turneram's avatar
turneram committed
4876
4877
4878
4879
4880
4881
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4882

Khalique's avatar
Khalique committed
4883
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4884

Khalique's avatar
Khalique committed
4885

Khalique's avatar
Khalique committed
4886
@onnx_test
Khalique's avatar
Khalique committed
4887
4888
4889
4890
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
4891
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
4892

Khalique's avatar
Khalique committed
4893
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4894

Khalique's avatar
Khalique committed
4895

4896
4897
4898
@onnx_test
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
4899
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
4900

turneram's avatar
turneram committed
4901
4902
4903
4904
4905
4906
    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])
4907
4908
4909

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

4910
    return ([node0, node1], [x], [y])
4911
4912


turneram's avatar
turneram committed
4913
@onnx_test
turneram's avatar
turneram committed
4914
4915
4916
4917
4918
4919
4920
4921
4922
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
turneram's avatar
turneram committed
4933
4934
4935
4936
4937
4938
4939
4940
4941
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4942
4943
4944
4945
4946
4947
4948
4949
4950
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


4968
4969
4970
4971
4972
4973
4974
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

turneram's avatar
turneram committed
4975
4976
4977
4978
4979
    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
4999
@onnx_test
Khalique's avatar
Khalique committed
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
5010
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5011

Khalique's avatar
Khalique committed
5012

Shucai Xiao's avatar
Shucai Xiao committed
5013
5014
5015
5016
5017
@onnx_test
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
turneram's avatar
turneram committed
5018
5019
5020
5021
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5022

turneram's avatar
turneram committed
5023
5024
5025
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
5026
5027
5028
5029
5030
5031
5032
5033
5034

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
5035
5036
5037
5038
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5039

turneram's avatar
turneram committed
5040
5041
5042
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
5043
5044
5045
5046

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
5047
@onnx_test
Khalique's avatar
Khalique committed
5048
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
5049
5050
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
5051
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
5052
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
5053

turneram's avatar
turneram committed
5054
5055
5056
5057
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
5058

turneram's avatar
turneram committed
5059
5060
5061
5062
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])
Khalique's avatar
Khalique committed
5063

5064
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
5065
5066


Khalique's avatar
Khalique committed
5067
@onnx_test
Khalique's avatar
Khalique committed
5068
5069
5070
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
5071
5072
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
5073
5074
5075
5076
5077

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
5078
5079
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
5080
5081
    )

Khalique's avatar
Khalique committed
5082
5083
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
5084

Khalique's avatar
Khalique committed
5085
@onnx_test
Khalique's avatar
Khalique committed
5086
5087
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
5088
5089
5090
5091
5092
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

turneram's avatar
turneram committed
5093
5094
5095
5096
    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.reshape(()).shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
5111
5112
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
5113

Shucai Xiao's avatar
Shucai Xiao committed
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
@onnx_test
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


Khalique's avatar
Khalique committed
5134
@onnx_test
Khalique's avatar
Khalique committed
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
5147
5148
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
5149

Shucai Xiao's avatar
Shucai Xiao committed
5150
5151
5152
@onnx_test
def sum_type_test():
    valb = np.array([1, 0])
turneram's avatar
turneram committed
5153
5154
5155
5156
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
                                vals=valb.astype(np.bool))
Shucai Xiao's avatar
Shucai Xiao committed
5157
5158

    val = np.array([1, 1])
turneram's avatar
turneram committed
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))
Shucai Xiao's avatar
Shucai Xiao committed
5188
5189

    valr = np.array([1.5, 2.0])
turneram's avatar
turneram committed
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)
Shucai Xiao's avatar
Shucai Xiao committed
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

turneram's avatar
turneram committed
5237
5238
5239
5240
5241
    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])
Shucai Xiao's avatar
Shucai Xiao committed
5242
5243


Khalique's avatar
Khalique committed
5244
@onnx_test
Khalique's avatar
Khalique committed
5245
5246
5247
5248
5249
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5250
5251
5252
5253
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5254

Khalique's avatar
Khalique committed
5255
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5256

Khalique's avatar
Khalique committed
5257

Khalique's avatar
Khalique committed
5258
@onnx_test
Khalique's avatar
Khalique committed
5259
5260
5261
5262
5263
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5264
5265
5266
5267
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5268

Khalique's avatar
Khalique committed
5269
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5270

Khalique's avatar
Khalique committed
5271

5272
5273
5274
5275
5276
@onnx_test
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

turneram's avatar
turneram committed
5277
5278
5279
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

turneram's avatar
turneram committed
5290
5291
5292
5293
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

turneram's avatar
turneram committed
5304
5305
5306
5307
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)
5308
5309
5310
5311

    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Shucai Xiao's avatar
Shucai Xiao committed
5336
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
5337
5338
5339
5340
5341
5342
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

turneram's avatar
turneram committed
5343
5344
5345
5346
    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
Shucai Xiao's avatar
Shucai Xiao committed
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
    return ([node], [x], [val, ind])


@onnx_test
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

turneram's avatar
turneram committed
5358
5359
5360
5361
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5362

turneram's avatar
turneram committed
5363
5364
5365
5366
5367
    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
Shucai Xiao's avatar
Shucai Xiao committed
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
    return ([node], [x], [val, ind], [k_tensor])


@onnx_test
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

turneram's avatar
turneram committed
5379
5380
5381
5382
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5383

turneram's avatar
turneram committed
5384
5385
5386
5387
5388
    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
Shucai Xiao's avatar
Shucai Xiao committed
5389
5390
5391
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


@onnx_test
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5420
@onnx_test
Khalique's avatar
Khalique committed
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
5432
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5433

Khalique's avatar
Khalique committed
5434

Khalique's avatar
Khalique committed
5435
5436
5437
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
5438
5439
5440
5441
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
5442
5443
5444
5445
5446
5447
5448
5449

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

turneram's avatar
turneram committed
5450
5451
5452
5453
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
5454
5455
5456
5457
5458
5459
5460
5461

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
5462
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
5463

Khalique's avatar
Khalique committed
5464

5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5475
@onnx_test
Khalique's avatar
Khalique committed
5476
5477
5478
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
5479
5480
5481

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5482
5483
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5484
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5485

Khalique's avatar
Khalique committed
5486
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
5487

Khalique's avatar
Khalique committed
5488
    return ([node, node2], [x, y], [a])
5489
5490


5491
5492
5493
5494
5495
5496
5497
5498
5499
@onnx_test
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

turneram's avatar
turneram committed
5500
5501
5502
5503
    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')
5504
5505
5506
5507

    return ([node], [x, y], [a])


Shucai Xiao's avatar
Shucai Xiao committed
5508
5509
5510
@onnx_test
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
5511
5512
5513
5514
5515
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5516
5517
5518
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
5519
5520
5521
5522
    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
Shucai Xiao's avatar
Shucai Xiao committed
5523
5524
5525
5526

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5527
5528
5529
@onnx_test
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
turneram's avatar
turneram committed
5530
5531
5532
5533
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
5569
5570
5571
5572
5573
5574
5575
5576
5577


@onnx_test
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
turneram's avatar
turneram committed
5578
5579
5580
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])
Shucai Xiao's avatar
Shucai Xiao committed
5581
5582

    return ([node], [c, x, y], [z])