gen_onnx.py 157 KB
Newer Older
1
2
3
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
# command: python -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
6
import numpy as np
import onnx
from onnx import helper
7
from onnx import TensorProto
Khalique's avatar
Khalique committed
8

Khalique's avatar
Khalique committed
9

Khalique's avatar
Khalique committed
10
11
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
12
13
        op_info = op_test()
        if len(op_info) > 3:
Shucai Xiao's avatar
Shucai Xiao committed
14
15
16
17
18
19
            graph_def = helper.make_graph(
                op_info[0],
                op_test.__name__,
                op_info[1],
                op_info[2],
                initializer=op_info[3])
Khalique's avatar
Khalique committed
20
        else:
Khalique's avatar
Khalique committed
21
22
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
Shucai Xiao's avatar
Shucai Xiao committed
23
24
        model_def = helper.make_model(
            graph_def, producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
25
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
28
    return run_test

Khalique's avatar
Khalique committed
29

Khalique's avatar
Khalique committed
30
@onnx_test
Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
39
40
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
41
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
42

Khalique's avatar
Khalique committed
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
58
@onnx_test
Khalique's avatar
Khalique committed
59
60
61
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
62
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
63

Shucai Xiao's avatar
Shucai Xiao committed
64
65
    node = onnx.helper.make_node(
        'Add', inputs=['0', '1'], broadcast=1, axis=1, outputs=['2'])
Khalique's avatar
Khalique committed
66
67

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
68
69


Khalique's avatar
Khalique committed
70
@onnx_test
Khalique's avatar
Khalique committed
71
72
73
74
75
76
77
78
79
80
81
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
82
    return (
Khalique's avatar
Khalique committed
83
        [node],
Khalique's avatar
Khalique committed
84
        [x, y],
Khalique's avatar
Khalique committed
85
86
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
87
88
89
90
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
91
92


Khalique's avatar
Khalique committed
93
@onnx_test
Khalique's avatar
Khalique committed
94
def add_scalar_test():
95
96
97
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
98

Khalique's avatar
Khalique committed
99
100
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

101
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
102
103


Khalique's avatar
Khalique committed
104
@onnx_test
Khalique's avatar
Khalique committed
105
106
107
108
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Shucai Xiao's avatar
Shucai Xiao committed
109
110
    node = onnx.helper.make_node(
        'ArgMax', inputs=['x'], outputs=['y'], axis=2, keepdims=0)
Khalique's avatar
Khalique committed
111

Khalique's avatar
Khalique committed
112
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
113

Khalique's avatar
Khalique committed
114

Khalique's avatar
Khalique committed
115
@onnx_test
Khalique's avatar
Khalique committed
116
117
118
119
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Shucai Xiao's avatar
Shucai Xiao committed
120
121
    node = onnx.helper.make_node(
        'ArgMin', inputs=['x'], outputs=['y'], axis=3, keepdims=0)
Khalique's avatar
Khalique committed
122

Khalique's avatar
Khalique committed
123
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
124

Khalique's avatar
Khalique committed
125

Khalique's avatar
Khalique committed
126
@onnx_test
Khalique's avatar
Khalique committed
127
128
129
130
131
132
133
134
135
136
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
137
138
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
154
@onnx_test
Khalique's avatar
Khalique committed
155
156
157
158
159
160
161
162
163
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
164

Khalique's avatar
Khalique committed
165
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
166

Khalique's avatar
Khalique committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


182
183
184
185
186
@onnx_test
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

Shucai Xiao's avatar
Shucai Xiao committed
187
188
    node = onnx.helper.make_node(
        'AveragePool', inputs=['0'], outputs=['1'], kernel_shape=[3])
189
190
191
192
193
194
195
196
197
198

    return ([node], [x], [out])


@onnx_test
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

Shucai Xiao's avatar
Shucai Xiao committed
199
200
    node = onnx.helper.make_node(
        'AveragePool', inputs=['0'], outputs=['1'], kernel_shape=[3, 3, 3])
201
202
203
204

    return ([node], [x], [out])


205
206
207
208
209
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

Shucai Xiao's avatar
Shucai Xiao committed
210
211
212
213
214
215
216
217
    node = onnx.helper.make_node(
        'AveragePool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[6, 6],
        strides=[2, 2],
        pads=[0, 0, 1, 1],
        auto_pad='NOTSET')
218
219
220
221

    return ([node], [x], [y])


222
223
224
225
226
@onnx_test
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

Shucai Xiao's avatar
Shucai Xiao committed
227
228
229
230
231
232
233
234
235
    node = onnx.helper.make_node(
        'AveragePool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[6, 6],
        strides=[2, 2],
        pads=[0, 0, 1, 1],
        auto_pad='NOTSET',
        count_include_pad=1)
236
237
238
239

    return ([node], [x], [y])


240
241
242
243
244
@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
245
246
247
248
249
250
    node = onnx.helper.make_node(
        'AveragePool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad='SAME_LOWER')
251
252
253
254

    return ([node], [x], [y])


255
256
257
258
259
@onnx_test
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
260
261
262
263
264
265
266
    node = onnx.helper.make_node(
        'AveragePool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad='SAME_LOWER',
        count_include_pad=1)
267
268
269
270

    return ([node], [x], [y])


271
272
273
274
275
@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
276
277
278
279
280
281
    node = onnx.helper.make_node(
        'AveragePool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad='SAME_UPPER')
282
283
284
285

    return ([node], [x], [y])


286
287
288
289
290
291
292
293
294
@onnx_test
def batchnorm_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 3, 5])

Shucai Xiao's avatar
Shucai Xiao committed
295
296
297
298
299
300
    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['0', '1', '2', '3', '4'],
        outputs=['5'],
        epsilon=1e-6,
        momentum=0.9)
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    return ([node], [x, scale, bias, mean, var], [out])


@onnx_test
def batchnorm_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT,
                                        [1, 3, 5, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
319
320
    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['0', '1', '2', '3', '4'],
        outputs=['5'],
        epsilon=1e-6,
        momentum=0.9)
321
322
323
324

    return ([node], [x, scale, bias, mean, var], [out])


Khalique's avatar
Khalique committed
325
@onnx_test
Khalique's avatar
Khalique committed
326
327
328
329
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
330
331
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
332
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
333

kahmed10's avatar
kahmed10 committed
334

Shucai Xiao's avatar
Shucai Xiao committed
335
336
337
338
339
340
341
342
343
344
345
346
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
347

kahmed10's avatar
kahmed10 committed
348

349
350
351
352
353
@onnx_test
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

Shucai Xiao's avatar
Shucai Xiao committed
354
355
    node = onnx.helper.make_node(
        'Celu', inputs=['x'], outputs=['y'], alpha=0.8)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    return ([node], [x], [y])


@onnx_test
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
375
376
    node = onnx.helper.make_node(
        'Celu', inputs=['x'], outputs=['y'], alpha=0.5)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

    return ([node], [x], [y])


@onnx_test
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
396
397
    node = onnx.helper.make_node(
        'Celu', inputs=['x'], outputs=['y'], alpha=0.0)
398
399
400
401

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
402
@onnx_test
Khalique's avatar
Khalique committed
403
404
405
406
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Shucai Xiao's avatar
Shucai Xiao committed
407
408
    node = onnx.helper.make_node(
        'Clip', inputs=['0'], outputs=['1'], max=6.0, min=0.0)
Khalique's avatar
Khalique committed
409

Khalique's avatar
Khalique committed
410
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
411

Khalique's avatar
Khalique committed
412

kahmed10's avatar
kahmed10 committed
413
414
415
416
417
418
419
420
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

Shucai Xiao's avatar
Shucai Xiao committed
421
422
    node = onnx.helper.make_node(
        'Clip', inputs=['0', 'min', 'max'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
423
424
425
426

    return ([node], [x], [y], [min_val, max_val])


Shucai Xiao's avatar
Shucai Xiao committed
427
428
429
430
431
432
433
@onnx_test
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

Shucai Xiao's avatar
Shucai Xiao committed
434
435
    node = onnx.helper.make_node(
        'Clip', inputs=['0', '', 'max'], outputs=['1'])
Shucai Xiao's avatar
Shucai Xiao committed
436
437
438
439

    return ([node], [x], [y], [max_val])


kahmed10's avatar
kahmed10 committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
462
463
464
465
466
467
468
469
470
471
@onnx_test
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


472
473
474
475
476
477
478
479
480
@onnx_test
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
481
482
    node = onnx.helper.make_node(
        'Clip', inputs=['0', 'min', 'max'], outputs=['1'])
483
484
485
486

    return ([node], [x], [y], [min_val, max_val])


Khalique's avatar
Khalique committed
487
@onnx_test
Khalique's avatar
Khalique committed
488
489
490
491
492
493
494
495
496
497
498
499
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
500
501
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
502

Khalique's avatar
Khalique committed
503
@onnx_test
Khalique's avatar
Khalique committed
504
505
506
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
507

Khalique's avatar
Khalique committed
508
509
510
511
512
513
514
515
516
517
518
519
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
520
    return ([node], [], [y])
Khalique's avatar
Khalique committed
521

Khalique's avatar
Khalique committed
522

Khalique's avatar
Khalique committed
523
@onnx_test
Khalique's avatar
Khalique committed
524
def constant_fill_test():
Khalique's avatar
Khalique committed
525
526
527
528
529
530
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
531
532
533
534
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
535
536
    )

Khalique's avatar
Khalique committed
537
    return ([node], [], [value])
Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539

Khalique's avatar
Khalique committed
540
@onnx_test
Khalique's avatar
Khalique committed
541
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
542
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
543
544
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
545
546
547
548
549
    ts_shape = helper.make_tensor(
        name='shape_tensor',
        data_type=TensorProto.INT32,
        dims=np_shape.shape,
        vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
550
551
552
553
554
555
556
557
558
559
560
561

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
562
563
564
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
565
566
    )

Khalique's avatar
Khalique committed
567
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
568

Khalique's avatar
Khalique committed
569

Khalique's avatar
Khalique committed
570
@onnx_test
Khalique's avatar
Khalique committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
587
    return ([node], [], [y])
Khalique's avatar
Khalique committed
588

Khalique's avatar
Khalique committed
589

Khalique's avatar
Khalique committed
590
@onnx_test
Khalique's avatar
Khalique committed
591
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
592
593
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
594
    empty_val = np.array([]).astype(np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
595
596
597
598
599
    empty_ts = helper.make_tensor(
        name='empty_tensor',
        data_type=TensorProto.INT32,
        dims=empty_val.shape,
        vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
600
601
602
603
604
605
606
607
608
609
610
611
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
612
        value=tensor_val,
Khalique's avatar
Khalique committed
613
614
    )

Khalique's avatar
Khalique committed
615
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
616

Khalique's avatar
Khalique committed
617

Khalique's avatar
Khalique committed
618
@onnx_test
Khalique's avatar
Khalique committed
619
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
620
621
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
622
623

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
624
625
626
627
628
    shape_ts = helper.make_tensor(
        name='shape_tensor',
        data_type=TensorProto.INT32,
        dims=shape_val.shape,
        vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
629
630
631
632
633
634
635
636
637

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
638
639
    node = onnx.helper.make_node(
        'ConstantOfShape', inputs=['shape'], outputs=['y'], value=tensor_val)
Khalique's avatar
Khalique committed
640

Khalique's avatar
Khalique committed
641
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
642

Khalique's avatar
Khalique committed
643

Khalique's avatar
Khalique committed
644
@onnx_test
Khalique's avatar
Khalique committed
645
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
646
647
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
648
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
649
650
651
652
653
    shape_ts = helper.make_tensor(
        name='shape_tensor',
        data_type=TensorProto.INT32,
        dims=shape_val.shape,
        vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
654
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
655
656
657
658
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
659
660
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
661

Shucai Xiao's avatar
Shucai Xiao committed
662
663
    node = onnx.helper.make_node(
        'ConstantOfShape', inputs=['shape'], outputs=['y'], value=tensor_val)
Khalique's avatar
Khalique committed
664

Khalique's avatar
Khalique committed
665
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
666

Khalique's avatar
Khalique committed
667

Khalique's avatar
Khalique committed
668
@onnx_test
Khalique's avatar
Khalique committed
669
670
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
671
672
673
674
675
    shape_ts = helper.make_tensor(
        name='shape_tensor',
        data_type=TensorProto.INT32,
        dims=shape_val.shape,
        vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
676
677
678
679
680
681
682
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
683

Khalique's avatar
Khalique committed
684
685
686
687
688
689
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
690
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
691

Khalique's avatar
Khalique committed
692

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
@onnx_test
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

Shucai Xiao's avatar
Shucai Xiao committed
722
723
    node = onnx.helper.make_node(
        'Conv', inputs=['0', '1'], strides=[1, 1], outputs=['2'])
724
725
726
727

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
728
@onnx_test
Khalique's avatar
Khalique committed
729
730
731
732
733
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Shucai Xiao's avatar
Shucai Xiao committed
734
735
736
737
738
739
740
741
    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        outputs=['2'],
        dilations=[1, 1],
        strides=[1, 1],
        auto_pad='SAME',
        pads=[0, 0, 1, 1, 0, 0, 1, 1])
Khalique's avatar
Khalique committed
742
743

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
744
745


746
747
748
749
750
751
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

Shucai Xiao's avatar
Shucai Xiao committed
752
753
754
755
756
757
758
    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        outputs=['2'],
        dilations=[1, 1],
        strides=[1, 1],
        auto_pad='SAME')
759
760
761
762

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
763
@onnx_test
Khalique's avatar
Khalique committed
764
765
766
767
768
769
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Shucai Xiao's avatar
Shucai Xiao committed
770
771
772
773
774
775
    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1', '2'],
        outputs=['3'],
        dilations=[1, 1],
        strides=[1, 1])
Khalique's avatar
Khalique committed
776
777

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
778
779


Khalique's avatar
Khalique committed
780
@onnx_test
Khalique's avatar
Khalique committed
781
782
783
784
785
786
787
788
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
789
790
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
791

Shucai Xiao's avatar
Shucai Xiao committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    node0 = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1', '2'],
        outputs=['7'],
        dilations=[1, 1],
        strides=[1, 1],
        pads=[0, 0, 0, 0])

    node1 = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['7', '3', '4', '5', '6'],
        outputs=['8'],
        epsilon=9.99999974737875e-06,
        momentum=0.899999976158142)
Khalique's avatar
Khalique committed
806

Khalique's avatar
Khalique committed
807
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Shucai Xiao's avatar
Shucai Xiao committed
808
809
810
811
812
813
814
    node3 = onnx.helper.make_node(
        'MaxPool',
        inputs=['9'],
        outputs=['10'],
        pads=[0, 0, 0, 0],
        strides=[2, 2],
        kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
815
816

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
817
818


Khalique's avatar
Khalique committed
819
@onnx_test
Khalique's avatar
Khalique committed
820
821
822
823
824
825
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Shucai Xiao's avatar
Shucai Xiao committed
826
827
828
829
830
831
832
    node1 = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1', '2'],
        outputs=['3'],
        dilations=[1, 1],
        strides=[1, 1],
        pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
833

Khalique's avatar
Khalique committed
834
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
835

Shucai Xiao's avatar
Shucai Xiao committed
836
837
838
839
840
841
842
    node3 = onnx.helper.make_node(
        'MaxPool',
        inputs=['4'],
        outputs=['5'],
        pads=[0, 0, 0, 0],
        strides=[2, 2],
        kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
843
844

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
845
846


Khalique's avatar
Khalique committed
847
@onnx_test
Khalique's avatar
Khalique committed
848
849
850
851
852
853
854
855
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
856
857
858
859
860
861
862
    node1 = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1', '2'],
        outputs=['5'],
        dilations=[1, 1],
        strides=[1, 1],
        pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
863

Khalique's avatar
Khalique committed
864
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
865

Shucai Xiao's avatar
Shucai Xiao committed
866
867
868
869
870
871
872
    node3 = onnx.helper.make_node(
        'MaxPool',
        inputs=['6'],
        outputs=['7'],
        pads=[0, 0, 0, 0],
        strides=[2, 2],
        kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
873

Shucai Xiao's avatar
Shucai Xiao committed
874
875
876
877
878
879
880
    node4 = onnx.helper.make_node(
        'Conv',
        inputs=['7', '3', '4'],
        outputs=['8'],
        dilations=[1, 1],
        strides=[1, 1],
        pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
881

Khalique's avatar
Khalique committed
882
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
883

Shucai Xiao's avatar
Shucai Xiao committed
884
885
886
887
888
889
890
    node6 = onnx.helper.make_node(
        'MaxPool',
        inputs=['9'],
        outputs=['10'],
        pads=[0, 0, 0, 0],
        strides=[2, 2],
        kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
891
892

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
893
894


895
896
897
898
899
900
901
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

Shucai Xiao's avatar
Shucai Xiao committed
902
903
904
905
906
907
    node = onnx.helper.make_node(
        'ConvInteger',
        inputs=['0', '1', '2'],
        outputs=['3'],
        dilations=[1, 1],
        strides=[1, 1])
908
909
910
911

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
912
@onnx_test
Khalique's avatar
Khalique committed
913
914
915
916
917
918
919
920
921
922
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
923
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
924

Khalique's avatar
Khalique committed
925

Khalique's avatar
Khalique committed
926
@onnx_test
Khalique's avatar
Khalique committed
927
928
929
930
931
932
933
934
935
936
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
937
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
938

Khalique's avatar
Khalique committed
939

kahmed10's avatar
kahmed10 committed
940
941
942
943
944
945
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
946
947
    node = onnx.helper.make_node(
        'ConvTranspose', name='conv1', inputs=['x', 'w'], outputs=['y'])
kahmed10's avatar
kahmed10 committed
948
949
950
951
952
953
954
955
956
957
958

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
959
960
    node = onnx.helper.make_node(
        'ConvTranspose', name='conv1', inputs=['x', 'w', 'b'], outputs=['y'])
kahmed10's avatar
kahmed10 committed
961
962
963
964
965
966
967
968
969
970

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

Shucai Xiao's avatar
Shucai Xiao committed
971
972
973
974
975
976
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2],
        pads=[1, 1, 1, 1])
kahmed10's avatar
kahmed10 committed
977
978
979
980
981
982
983
984
985
986

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

Shucai Xiao's avatar
Shucai Xiao committed
987
988
989
990
991
992
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2],
        pads=[0, 0, 1, 1])
kahmed10's avatar
kahmed10 committed
993
994
995
996
997

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
998
999
1000
1001
1002
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

Shucai Xiao's avatar
Shucai Xiao committed
1003
1004
1005
1006
1007
1008
1009
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[2],
        pads=[0, 1],
        dilations=[1])
kahmed10's avatar
kahmed10 committed
1010
1011
1012
1013
1014
1015

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
1016
1017
1018
1019
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

Shucai Xiao's avatar
Shucai Xiao committed
1020
1021
1022
1023
1024
1025
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2],
        output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1026
1027
1028
1029
1030

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
1031
1032
1033
1034
1035
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

Shucai Xiao's avatar
Shucai Xiao committed
1036
1037
1038
1039
1040
1041
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2, 2],
        output_padding=[1, 1, 1])
kahmed10's avatar
kahmed10 committed
1042
1043
1044
1045
1046
1047

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
1048
1049
1050
1051
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
1055
1056
1057
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2],
        output_shape=[10, 8])
kahmed10's avatar
kahmed10 committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

Shucai Xiao's avatar
Shucai Xiao committed
1068
1069
1070
1071
1072
1073
    node = onnx.helper.make_node(
        'ConvTranspose',
        inputs=['x', 'w'],
        outputs=['y'],
        strides=[3, 2, 2],
        output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
    node = onnx.helper.make_node(
        'ConvTranspose', inputs=['x', 'w'], outputs=['y'], strides=[3, 2])
kahmed10's avatar
kahmed10 committed
1086
1087
1088
1089

    return ([node], [x, w], [y])


1090
1091
1092
1093
1094
1095
@onnx_test
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

Shucai Xiao's avatar
Shucai Xiao committed
1096
1097
    node = onnx.helper.make_node(
        'DepthToSpace', inputs=['x'], outputs=['y'], blocksize=2, mode='DCR')
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

    return ([node], [x], [y])


@onnx_test
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
    node = onnx.helper.make_node(
        'DepthToSpace', inputs=['x'], outputs=['y'], blocksize=2, mode='DCR')
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

    return ([node], [x], [y])


@onnx_test
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
    node = onnx.helper.make_node(
        'DepthToSpace', inputs=['x'], outputs=['y'], blocksize=2, mode='CRD')
1122
1123
1124
1125

    return ([node], [x], [y])


Umang Yadav's avatar
Umang Yadav committed
1126
1127
1128
1129
1130
1131
@onnx_test
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
1132
1133
    node = onnx.helper.make_node(
        'spacetodepth', inputs=['x'], outputs=['y'], blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

    return ([node], [x], [y])


@onnx_test
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
    node = onnx.helper.make_node(
        'SpaceToDepth', inputs=['x'], outputs=['y'], blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

    return ([node], [x], [y])


@onnx_test
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
1156
1157
    node = onnx.helper.make_node(
        'SpaceToDepth', inputs=['x'], outputs=['y'], blocksize=0.3)
Umang Yadav's avatar
Umang Yadav committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

    return ([node], [x], [y])


@onnx_test
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

Shucai Xiao's avatar
Shucai Xiao committed
1168
1169
    node = onnx.helper.make_node(
        'SpaceToDepth', inputs=['x'], outputs=['y'], blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1170
1171
1172
1173

    return ([node], [x], [y])


1174
1175
@onnx_test
def dequantizelinear_test():
turneram's avatar
turneram committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def dequantizelinear_zero_point_test():
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
    node = onnx.helper.make_node(
        'DequantizeLinear', inputs=['0', '1', '2'], outputs=['out'], axis=axis)
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


@onnx_test
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


Khalique's avatar
Khalique committed
1228
@onnx_test
Khalique's avatar
Khalique committed
1229
def dropout_test():
Khalique's avatar
Khalique committed
1230
1231
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1232

Khalique's avatar
Khalique committed
1233
1234
1235
1236
1237
1238
1239
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1240
1241


Khalique's avatar
Khalique committed
1242
@onnx_test
Khalique's avatar
Khalique committed
1243
1244
1245
1246
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Shucai Xiao's avatar
Shucai Xiao committed
1247
1248
    node = onnx.helper.make_node(
        'Elu', inputs=['0'], outputs=['1'], alpha=0.01)
Khalique's avatar
Khalique committed
1249

Khalique's avatar
Khalique committed
1250
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1251

Khalique's avatar
Khalique committed
1252

1253
1254
1255
1256
1257
1258
@onnx_test
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

Shucai Xiao's avatar
Shucai Xiao committed
1259
1260
1261
1262
1263
    index_tensor = helper.make_tensor(
        name='index_val',
        data_type=TensorProto.INT32,
        dims=index_val.shape,
        vals=index_val.astype(np.int32))
1264

Shucai Xiao's avatar
Shucai Xiao committed
1265
1266
    index = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['index'], value=index_tensor)
1267

Shucai Xiao's avatar
Shucai Xiao committed
1268
1269
1270
1271
1272
    offset_tensor = helper.make_tensor(
        name='offset_val',
        data_type=TensorProto.INT32,
        dims=offset_val.reshape(()).shape,
        vals=offset_val.astype(np.int32))
1273

Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
    offset = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['offset'], value=offset_tensor)
1276
1277
1278
1279
1280
1281
1282

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

Shucai Xiao's avatar
Shucai Xiao committed
1283
1284
1285
1286
1287
1288
    node1 = onnx.helper.make_node(
        'ATen',
        inputs=['weight', 'index', 'offset'],
        outputs=['y1'],
        mode=0,
        operator='embedding_bag')
1289

Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    node2 = onnx.helper.make_node(
        'ATen',
        inputs=['weight', 'index', 'offset'],
        outputs=['y2'],
        mode=1,
        operator='embedding_bag')

    node3 = onnx.helper.make_node(
        'ATen',
        inputs=['weight', 'index', 'offset'],
        outputs=['y3'],
        mode=2,
        operator='embedding_bag')
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


@onnx_test
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

Shucai Xiao's avatar
Shucai Xiao committed
1313
1314
1315
1316
1317
    index_tensor = helper.make_tensor(
        name='index_val',
        data_type=TensorProto.INT32,
        dims=index_val.shape,
        vals=index_val.astype(np.int32))
1318

Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
    index = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['index'], value=index_tensor)
1321

Shucai Xiao's avatar
Shucai Xiao committed
1322
1323
1324
1325
1326
    offset_tensor = helper.make_tensor(
        name='offset_val',
        data_type=TensorProto.INT32,
        dims=offset_val.shape,
        vals=offset_val.astype(np.int32))
1327

Shucai Xiao's avatar
Shucai Xiao committed
1328
1329
    offset = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['offset'], value=offset_tensor)
1330
1331
1332
1333
1334

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
1335
1336
1337
1338
1339
1340
    node = onnx.helper.make_node(
        'ATen',
        inputs=['weight', 'index', 'offset'],
        outputs=['y'],
        mode=0,
        operator='embedding_bag')
1341
1342
1343
1344

    return ([index, offset, node], [weight], [y])


1345
1346
1347
@onnx_test
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
Shucai Xiao's avatar
Shucai Xiao committed
1348
1349
1350
1351
1352
    x1 = helper.make_tensor(
        "x1",
        data_type=TensorProto.FLOAT,
        dims=(2, 3),
        vals=ax1.astype(np.float32))
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Khalique's avatar
Khalique committed
1384
@onnx_test
Khalique's avatar
Khalique committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1395
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1396

Khalique's avatar
Khalique committed
1397

Khalique's avatar
Khalique committed
1398
@onnx_test
Khalique's avatar
Khalique committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1409
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1410

Khalique's avatar
Khalique committed
1411

Khalique's avatar
Khalique committed
1412
@onnx_test
Khalique's avatar
Khalique committed
1413
1414
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
1415
1416
1417
1418
1419
    shape_ts = helper.make_tensor(
        name='shape_tensor',
        data_type=TensorProto.INT32,
        dims=shape_val.shape,
        vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Shucai Xiao's avatar
Shucai Xiao committed
1429
1430
    node = onnx.helper.make_node(
        'Expand', inputs=['x', 'shape'], outputs=['y'])
Khalique's avatar
Khalique committed
1431
1432
1433

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1434

Charlie Lin's avatar
Charlie Lin committed
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
@onnx_test
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
Shucai Xiao's avatar
Shucai Xiao committed
1486
1487
    node = onnx.helper.make_node(
        'EyeLike', inputs=['T1'], outputs=['T2'], k=-2)
Charlie Lin's avatar
Charlie Lin committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
Shucai Xiao's avatar
Shucai Xiao committed
1523
1524
    node = onnx.helper.make_node(
        'EyeLike', inputs=['T1'], outputs=['T2'], k=-2)
Charlie Lin's avatar
Charlie Lin committed
1525
1526
1527
1528
1529
1530
1531
    return ([node], [T1], [T2])


@onnx_test
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
Shucai Xiao's avatar
Shucai Xiao committed
1532
1533
    node = onnx.helper.make_node(
        'EyeLike', inputs=['T1'], outputs=['T2'], dtype=TensorProto.DOUBLE)
Charlie Lin's avatar
Charlie Lin committed
1534
1535
1536
    return ([node], [T1], [T2])


Khalique's avatar
Khalique committed
1537
@onnx_test
Khalique's avatar
Khalique committed
1538
1539
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1540
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1541
1542
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Shucai Xiao's avatar
Shucai Xiao committed
1543
1544
    node = onnx.helper.make_node(
        'Flatten', inputs=['0'], axis=2, outputs=['2'])
Khalique's avatar
Khalique committed
1545

Khalique's avatar
Khalique committed
1546
1547
1548
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1549

kahmed10's avatar
kahmed10 committed
1550

Khalique's avatar
Khalique committed
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
@onnx_test
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

Shucai Xiao's avatar
Shucai Xiao committed
1564
1565
    node = onnx.helper.make_node(
        'Flatten', inputs=['tx'], axis=2, outputs=['2'])
Khalique's avatar
Khalique committed
1566
1567
1568
1569
1570
1571

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


Shucai Xiao's avatar
Shucai Xiao committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1584

kahmed10's avatar
kahmed10 committed
1585

Khalique's avatar
Khalique committed
1586
@onnx_test
Khalique's avatar
Khalique committed
1587
1588
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
1589
1590
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1600
1601
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
1602

Shucai Xiao's avatar
Shucai Xiao committed
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
@onnx_test
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


@onnx_test
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


Khalique's avatar
Khalique committed
1635
@onnx_test
Khalique's avatar
Khalique committed
1636
1637
1638
1639
1640
1641
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Shucai Xiao's avatar
Shucai Xiao committed
1642
1643
1644
1645
1646
1647
1648
1649
    node = onnx.helper.make_node(
        'Gemm',
        inputs=['0', '1', '2'],
        outputs=['3'],
        alpha=2.0,
        beta=2.0,
        transA=1,
        transB=1)
Khalique's avatar
Khalique committed
1650
1651

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
1652
1653


Khalique's avatar
Khalique committed
1654
@onnx_test
Khalique's avatar
Khalique committed
1655
def gemm_ex_test():
Shucai Xiao's avatar
Shucai Xiao committed
1656
1657
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 8, 7])
Khalique's avatar
Khalique committed
1658
1659
1660
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Shucai Xiao's avatar
Shucai Xiao committed
1661
1662
1663
1664
1665
1666
1667
    node = onnx.helper.make_node(
        'Gemm',
        inputs=['1', '2', '3'],
        outputs=['y'],
        alpha=0.5,
        beta=0.8,
        transA=1)
Khalique's avatar
Khalique committed
1668
1669

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1670
1671


Khalique's avatar
Khalique committed
1672
@onnx_test
Khalique's avatar
Khalique committed
1673
1674
1675
1676
1677
1678
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Shucai Xiao's avatar
Shucai Xiao committed
1679
1680
1681
1682
1683
1684
1685
    node = onnx.helper.make_node(
        'Gemm',
        inputs=['1', '2', '3'],
        outputs=['y'],
        alpha=0.5,
        beta=0.8,
        transA=1)
Khalique's avatar
Khalique committed
1686
1687

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1688
1689


Shucai Xiao's avatar
Shucai Xiao committed
1690
1691
1692
1693
1694
1695
1696
@onnx_test
def gemm_half_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 1, 8, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 1, 6, 7])

Shucai Xiao's avatar
Shucai Xiao committed
1697
1698
1699
1700
1701
1702
1703
    node = onnx.helper.make_node(
        'Gemm',
        inputs=['1', '2', '3'],
        outputs=['y'],
        alpha=0.5,
        beta=0.8,
        transA=1)
Shucai Xiao's avatar
Shucai Xiao committed
1704
1705
1706
1707

    return ([node], [m1, m2, m3], [y])


Khalique's avatar
Khalique committed
1708
@onnx_test
Khalique's avatar
Khalique committed
1709
def globalavgpool_test():
Khalique's avatar
Khalique committed
1710
1711
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1712
1713
1714
1715
1716
1717
1718

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1719
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1720

Khalique's avatar
Khalique committed
1721

Khalique's avatar
Khalique committed
1722
@onnx_test
Khalique's avatar
Khalique committed
1723
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1724
1725
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1726
1727
1728
1729
1730
1731
1732

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1733
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1734

Khalique's avatar
Khalique committed
1735

Khalique's avatar
Khalique committed
1736
1737
1738
@onnx_test
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
Shucai Xiao's avatar
Shucai Xiao committed
1739
1740
1741
1742
1743
    x1 = helper.make_tensor(
        "x1",
        data_type=TensorProto.FLOAT,
        dims=(2, 3),
        vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


turneram's avatar
turneram committed
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
@onnx_test
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
1791
@onnx_test
Khalique's avatar
Khalique committed
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1804
1805
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1806

turneram's avatar
turneram committed
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
@onnx_test
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

Shucai Xiao's avatar
Shucai Xiao committed
1822
1823
    node = onnx.helper.make_node(
        'HardSigmoid', inputs=['x'], outputs=['y'], alpha=0.3, beta=0.7)
turneram's avatar
turneram committed
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
@onnx_test
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1858
1859
1860
1861
1862
@onnx_test
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
1863
1864
1865
1866
    then_out = onnx.helper.make_tensor_value_info(
        'then_out', onnx.TensorProto.FLOAT, [2, 3])
    else_out = onnx.helper.make_tensor_value_info(
        'else_out', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
1867
1868

    xt = np.ones((2, 3)).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
1869
1870
1871
1872
1873
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1874
1875

    yt = np.random.randn(2, 3).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
1876
1877
1878
1879
1880
    yt_tensor = helper.make_tensor(
        name='yt',
        data_type=TensorProto.FLOAT,
        dims=yt.shape,
        vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1881

Shucai Xiao's avatar
Shucai Xiao committed
1882
1883
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1884

Shucai Xiao's avatar
Shucai Xiao committed
1885
1886
    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'yt'], outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1887
1888
1889
1890
1891
1892
1893
1894

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
Shucai Xiao's avatar
Shucai Xiao committed
1895
1896
1897
1898
1899
    cond_tensor = helper.make_tensor(
        name="cond",
        data_type=TensorProto.BOOL,
        dims=cond.shape,
        vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
1900
1901
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
1902
1903
1904
1905
1906
1907
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['res'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
1908
1909
1910
1911

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1912
1913
1914
1915
1916
1917
1918
1919
1920
@onnx_test
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1921
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
1935
1936
1937
1938
1939
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
1940

Shucai Xiao's avatar
Shucai Xiao committed
1941
1942
1943
1944
1945
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
1946
1947
1948
1949
1950

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
1951
1952
1953
1954
1955
1956
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['ret'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
1957
1958
1959
1960
1961
1962

    return ([node], [cond_input], [ret])


@onnx_test
def if_param_excp_test():
Shucai Xiao's avatar
Shucai Xiao committed
1963
1964
1965
1966
    then_out = onnx.helper.make_tensor_value_info(
        'then_out', onnx.TensorProto.FLOAT, [2, 3])
    else_out = onnx.helper.make_tensor_value_info(
        'else_out', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
1967
1968
1969
1970
1971
1972
1973

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

Shucai Xiao's avatar
Shucai Xiao committed
1974
1975
1976
1977
1978
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1979

Shucai Xiao's avatar
Shucai Xiao committed
1980
1981
1982
1983
1984
    yt_tensor = helper.make_tensor(
        name='yt',
        data_type=TensorProto.FLOAT,
        dims=yt.shape,
        vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1985

Shucai Xiao's avatar
Shucai Xiao committed
1986
1987
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1988

Shucai Xiao's avatar
Shucai Xiao committed
1989
1990
    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'yt'], outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2002
2003
2004
2005
2006
2007
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['ret'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2008
2009
2010
2011
2012
2013

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_param_excp1_test():
Shucai Xiao's avatar
Shucai Xiao committed
2014
2015
    then_out = onnx.helper.make_tensor_value_info(
        'sub_out', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2016
2017
2018
2019
2020

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

Shucai Xiao's avatar
Shucai Xiao committed
2021
2022
2023
2024
2025
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2026

Shucai Xiao's avatar
Shucai Xiao committed
2027
2028
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['sub_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2029
2030
2031
2032
2033
2034
2035
2036

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2037
2038
2039
2040
2041
2042
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['ret'],
        then_branch=sub_body,
        else_branch=sub_body)
Shucai Xiao's avatar
Shucai Xiao committed
2043
2044
2045
2046
2047
2048

    return ([node], [cond_input, x], [ret])


@onnx_test
def if_param_test():
Shucai Xiao's avatar
Shucai Xiao committed
2049
2050
2051
2052
    then_out = onnx.helper.make_tensor_value_info(
        'then_out', onnx.TensorProto.FLOAT, [2, 3])
    else_out = onnx.helper.make_tensor_value_info(
        'else_out', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2053
2054
2055
2056
2057
2058
2059

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

Shucai Xiao's avatar
Shucai Xiao committed
2060
2061
2062
2063
2064
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2065

Shucai Xiao's avatar
Shucai Xiao committed
2066
2067
2068
2069
2070
    yt_tensor = helper.make_tensor(
        name='yt',
        data_type=TensorProto.FLOAT,
        dims=yt.shape,
        vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2071

Shucai Xiao's avatar
Shucai Xiao committed
2072
2073
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2074

Shucai Xiao's avatar
Shucai Xiao committed
2075
2076
    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'yt'], outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2088
2089
2090
2091
2092
2093
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['ret'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2094
2095
2096
2097
2098
2099
2100
2101

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2102
2103
    out_l_x = onnx.helper.make_tensor_value_info(
        'out_l_x', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2104
2105
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2106
2107
    out_l_y = onnx.helper.make_tensor_value_info(
        'out_l_y', onnx.TensorProto.FLOAT, [3, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2108
2109
2110
2111
2112
2113
2114

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

Shucai Xiao's avatar
Shucai Xiao committed
2115
2116
2117
2118
2119
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2120

Shucai Xiao's avatar
Shucai Xiao committed
2121
2122
2123
2124
2125
    yt_tensor = helper.make_tensor(
        name='yt',
        data_type=TensorProto.FLOAT,
        dims=yt.shape,
        vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2126

Shucai Xiao's avatar
Shucai Xiao committed
2127
2128
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['out_x'])
Shucai Xiao's avatar
Shucai Xiao committed
2129

Shucai Xiao's avatar
Shucai Xiao committed
2130
2131
    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'yt'], outputs=['out_y'])
Shucai Xiao's avatar
Shucai Xiao committed
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2155
2156
2157
2158
2159
2160
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['ret'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2161
2162
2163
2164

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2165
2166
2167
2168
2169
@onnx_test
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2170
2171
2172
2173
    then_out = onnx.helper.make_tensor_value_info(
        'then_out', onnx.TensorProto.FLOAT, [2, 3])
    else_out = onnx.helper.make_tensor_value_info(
        'else_out', onnx.TensorProto.FLOAT, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2174
2175

    xt = np.ones((2, 3)).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
2176
2177
2178
2179
2180
    xt_tensor = helper.make_tensor(
        name='xt',
        data_type=TensorProto.FLOAT,
        dims=xt.shape,
        vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2181
2182

    yt = np.random.randn(2, 3).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
2183
2184
2185
2186
2187
    yt_tensor = helper.make_tensor(
        name='yt',
        data_type=TensorProto.FLOAT,
        dims=yt.shape,
        vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2188

Shucai Xiao's avatar
Shucai Xiao committed
2189
2190
    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'xt'], outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2191

Shucai Xiao's avatar
Shucai Xiao committed
2192
2193
    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'yt'], outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2194
2195
2196
2197
2198
2199
2200
2201

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
Shucai Xiao's avatar
Shucai Xiao committed
2202
2203
2204
2205
2206
    cond_tensor = helper.make_tensor(
        name="cond",
        data_type=TensorProto.BOOL,
        dims=cond.shape,
        vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
2207
2208
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2209
2210
2211
2212
2213
2214
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['res'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2215
2216
2217
2218

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2219
2220
2221
2222
2223
2224
2225
@onnx_test
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

Shucai Xiao's avatar
Shucai Xiao committed
2226
2227
2228
2229
2230
2231
2232
2233
    then_out0 = onnx.helper.make_tensor_value_info(
        'then_out0', onnx.TensorProto.FLOAT, [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info(
        'then_out1', onnx.TensorProto.FLOAT, [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info(
        'else_out0', onnx.TensorProto.FLOAT, [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info(
        'else_out1', onnx.TensorProto.FLOAT, [3, 4])
Shucai Xiao's avatar
Shucai Xiao committed
2234
2235

    one = np.ones([1]).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
2236
2237
2238
2239
2240
    one_tensor = helper.make_tensor(
        name='one',
        data_type=TensorProto.FLOAT,
        dims=one.shape,
        vals=one.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2241
2242

    two = np.array([2]).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
2243
2244
2245
2246
2247
    two_tensor = helper.make_tensor(
        name='two',
        data_type=TensorProto.FLOAT,
        dims=two.shape,
        vals=two.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2248
2249

    three = np.array([3]).astype(np.float)
Shucai Xiao's avatar
Shucai Xiao committed
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
    three_tensor = helper.make_tensor(
        name='three',
        data_type=TensorProto.FLOAT,
        dims=three.shape,
        vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node(
        'Add', inputs=['x', 'one'], outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node(
        'Mul', inputs=['y', 'two'], outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node(
        'Mul', inputs=['x', 'three'], outputs=['else_out0'])
    else_add_node = onnx.helper.make_node(
        'Add', inputs=['y', 'three'], outputs=['else_out1'])
Shucai Xiao's avatar
Shucai Xiao committed
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
2275
2276
2277
2278
2279
2280
    node = onnx.helper.make_node(
        'If',
        inputs=['cond'],
        outputs=['res0', 'res1'],
        then_branch=then_body,
        else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2281

Shucai Xiao's avatar
Shucai Xiao committed
2282
2283
    return ([node], [cond_input, x, y], [res0, res1],
            [one_tensor, two_tensor, three_tensor])
Shucai Xiao's avatar
Shucai Xiao committed
2284
2285


Khalique's avatar
Khalique committed
2286
@onnx_test
Khalique's avatar
Khalique committed
2287
def imagescaler_test():
Khalique's avatar
Khalique committed
2288
2289
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
2290

Shucai Xiao's avatar
Shucai Xiao committed
2291
2292
2293
2294
2295
2296
    node = onnx.helper.make_node(
        'ImageScaler',
        inputs=['0'],
        outputs=['1'],
        bias=[0.01, 0.02, 0.03],
        scale=0.5)
Khalique's avatar
Khalique committed
2297

Khalique's avatar
Khalique committed
2298
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2299

Khalique's avatar
Khalique committed
2300

Shucai Xiao's avatar
Shucai Xiao committed
2301
2302
2303
2304
2305
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

Shucai Xiao's avatar
Shucai Xiao committed
2306
2307
2308
2309
2310
2311
    node = onnx.helper.make_node(
        'ImageScaler',
        inputs=['0'],
        outputs=['1'],
        bias=[0.01, 0.02, 0.03],
        scale=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
2312
2313
2314
2315

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2316
@onnx_test
Khalique's avatar
Khalique committed
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2328
2329
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2330

Khalique's avatar
Khalique committed
2331
@onnx_test
Khalique's avatar
Khalique committed
2332
2333
2334
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
2335
2336
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2337
2338
2339
2340
2341
2342
2343

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2344
2345
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2346

Khalique's avatar
Khalique committed
2347
@onnx_test
Khalique's avatar
Khalique committed
2348
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
2349
2350
2351
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
2352
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2353
2354
2355
2356
2357
2358
2359

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2360
2361
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2362

2363
2364
2365
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
Shucai Xiao's avatar
Shucai Xiao committed
2366
2367
2368
2369
2370
    w = helper.make_tensor(
        name='w',
        data_type=TensorProto.FLOAT,
        dims=values.shape,
        vals=values.flatten().astype(np.float))
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
2384
2385
2386
2387
2388
2389
2390
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2391
2392
    node = onnx.helper.make_node(
        'InstanceNormalization', inputs=['0', '1', '2'], outputs=['3'])
kahmed10's avatar
kahmed10 committed
2393
2394
2395
2396
2397
2398

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
Shucai Xiao's avatar
Shucai Xiao committed
2399
2400
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[0, 1, 2], [3, 4, 5],
                                                       [6, 7, 8]]]])
kahmed10's avatar
kahmed10 committed
2401
2402
2403
    scale = np.array([1, 2])
    bias = np.array([0, 1])

Shucai Xiao's avatar
Shucai Xiao committed
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
    x_tensor = helper.make_tensor(
        name='x_tensor',
        data_type=TensorProto.FLOAT,
        dims=x.shape,
        vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(
        name='scale_tensor',
        data_type=TensorProto.FLOAT,
        dims=scale.shape,
        vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(
        name='bias_tensor',
        data_type=TensorProto.FLOAT,
        dims=bias.shape,
        vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2419
2420
2421
2422
2423
2424

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2425
2426
2427
2428
2429
2430
2431
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


@onnx_test
def instance_norm_val_3d_test():
Shucai Xiao's avatar
Shucai Xiao committed
2432
2433
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]], [[[0, 1], [2, 3]],
                                                          [[4, 5], [6, 7]]]]])
kahmed10's avatar
kahmed10 committed
2434
2435
2436
    scale = np.array([1, 2])
    bias = np.array([0, 1])

Shucai Xiao's avatar
Shucai Xiao committed
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
    x_tensor = helper.make_tensor(
        name='x_tensor',
        data_type=TensorProto.FLOAT,
        dims=x.shape,
        vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(
        name='scale_tensor',
        data_type=TensorProto.FLOAT,
        dims=scale.shape,
        vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(
        name='bias_tensor',
        data_type=TensorProto.FLOAT,
        dims=bias.shape,
        vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2452
2453
2454
2455
2456
2457

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2458
2459
2460
2461
2462
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Charlie Lin's avatar
Charlie Lin committed
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
@onnx_test
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


kahmed10's avatar
kahmed10 committed
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
@onnx_test
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

Shucai Xiao's avatar
Shucai Xiao committed
2499
2500
2501
2502
2503
    pow_tensor = helper.make_tensor(
        name='pow',
        data_type=TensorProto.FLOAT,
        dims=pow_2.shape,
        vals=pow_2.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2504

Shucai Xiao's avatar
Shucai Xiao committed
2505
2506
2507
2508
2509
    epsilon_tensor = helper.make_tensor(
        name='epsilon',
        data_type=TensorProto.FLOAT,
        dims=epsilon.shape,
        vals=epsilon.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2510

Shucai Xiao's avatar
Shucai Xiao committed
2511
2512
    mean = onnx.helper.make_node(
        'ReduceMean', inputs=['0'], outputs=['mean_out'], axes=axes)
kahmed10's avatar
kahmed10 committed
2513

Shucai Xiao's avatar
Shucai Xiao committed
2514
2515
    sub_mean = onnx.helper.make_node(
        'Sub', inputs=['0', 'mean_out'], outputs=['sub_out'])
kahmed10's avatar
kahmed10 committed
2516

Shucai Xiao's avatar
Shucai Xiao committed
2517
2518
    sub_pow = onnx.helper.make_node(
        'Pow', inputs=['sub_out', 'pow'], outputs=['pow_out'])
kahmed10's avatar
kahmed10 committed
2519

Shucai Xiao's avatar
Shucai Xiao committed
2520
2521
    var = onnx.helper.make_node(
        'ReduceMean', inputs=['pow_out'], outputs=['var_out'], axes=axes)
kahmed10's avatar
kahmed10 committed
2522

Shucai Xiao's avatar
Shucai Xiao committed
2523
2524
    add = onnx.helper.make_node(
        'Add', inputs=['var_out', 'epsilon'], outputs=['add_out'])
kahmed10's avatar
kahmed10 committed
2525

Shucai Xiao's avatar
Shucai Xiao committed
2526
2527
    sqrt = onnx.helper.make_node(
        'Sqrt', inputs=['add_out'], outputs=['sqrt_out'])
kahmed10's avatar
kahmed10 committed
2528

Shucai Xiao's avatar
Shucai Xiao committed
2529
2530
    div = onnx.helper.make_node(
        'Div', inputs=['sub_out', 'sqrt_out'], outputs=['div_out'])
kahmed10's avatar
kahmed10 committed
2531

Shucai Xiao's avatar
Shucai Xiao committed
2532
2533
    mul = onnx.helper.make_node(
        'Mul', inputs=['scale', 'div_out'], outputs=['mul_out'])
kahmed10's avatar
kahmed10 committed
2534

Shucai Xiao's avatar
Shucai Xiao committed
2535
2536
    bias_add = onnx.helper.make_node(
        'Add', inputs=['mul_out', 'bias'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
2537

Shucai Xiao's avatar
Shucai Xiao committed
2538
2539
    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul, bias_add],
            [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
kahmed10's avatar
kahmed10 committed
2540
2541


Khalique's avatar
Khalique committed
2542
@onnx_test
Khalique's avatar
Khalique committed
2543
2544
2545
2546
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Shucai Xiao's avatar
Shucai Xiao committed
2547
2548
    node = onnx.helper.make_node(
        'LeakyRelu', inputs=['0'], outputs=['1'], alpha=0.01)
Khalique's avatar
Khalique committed
2549

Khalique's avatar
Khalique committed
2550
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2551

Khalique's avatar
Khalique committed
2552

Khalique's avatar
Khalique committed
2553
2554
2555
@onnx_test
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
Shucai Xiao's avatar
Shucai Xiao committed
2556
2557
2558
2559
2560
    x1 = helper.make_tensor(
        "x1",
        data_type=TensorProto.FLOAT,
        dims=(2, 3),
        vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


@onnx_test
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
2608
@onnx_test
Khalique's avatar
Khalique committed
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2619
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2620

Khalique's avatar
Khalique committed
2621

Shucai Xiao's avatar
Shucai Xiao committed
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
@onnx_test
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


Khalique's avatar
Khalique committed
2655
@onnx_test
Khalique's avatar
Khalique committed
2656
2657
2658
2659
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Shucai Xiao's avatar
Shucai Xiao committed
2660
2661
    node = onnx.helper.make_node(
        'LogSoftmax', inputs=['x'], outputs=['y'], axis=1)
Khalique's avatar
Khalique committed
2662

Khalique's avatar
Khalique committed
2663
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2664

Khalique's avatar
Khalique committed
2665

2666
2667
2668
@onnx_test
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
2669
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
2670

Shucai Xiao's avatar
Shucai Xiao committed
2671
2672
2673
2674
2675
2676
2677
    node0 = onnx.helper.make_node(
        'Slice',
        inputs=['0'],
        axes=[0, 1],
        starts=[1, 0],
        ends=[4, 4],
        outputs=['1'])
2678

Shucai Xiao's avatar
Shucai Xiao committed
2679
2680
    node1 = onnx.helper.make_node(
        'LogSoftmax', inputs=['1'], outputs=['2'], axis=-1)
2681

2682
    return ([node0, node1], [x], [y])
2683
2684


Shucai Xiao's avatar
Shucai Xiao committed
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
@onnx_test
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


@onnx_test
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


Charlie Lin's avatar
Charlie Lin committed
2763
2764
2765
2766
2767
@onnx_test
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2768
2769
    node = onnx.helper.make_node(
        'LpNormalization', inputs=['x'], outputs=['y'], axis=2)
Charlie Lin's avatar
Charlie Lin committed
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
    return ([node], [x], [y])


@onnx_test
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
2806
2807
    node = onnx.helper.make_node(
        'LpNormalization', inputs=['x'], outputs=['y'], p=2)
Charlie Lin's avatar
Charlie Lin committed
2808
2809
2810
2811
2812
2813
2814
2815
    return ([node], [x], [y])


@onnx_test
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2816
2817
    node = onnx.helper.make_node(
        'LpNormalization', inputs=['x'], outputs=['y'], p=3)
Charlie Lin's avatar
Charlie Lin committed
2818
2819
2820
    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2821
@onnx_test
Khalique's avatar
Khalique committed
2822
2823
2824
2825
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Shucai Xiao's avatar
Shucai Xiao committed
2826
2827
2828
2829
2830
2831
2832
2833
    node = onnx.helper.make_node(
        'LRN',
        inputs=['0'],
        size=5,
        alpha=0.0001,
        beta=0.75,
        bias=1.0,
        outputs=['1'])
Khalique's avatar
Khalique committed
2834

Khalique's avatar
Khalique committed
2835
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2836

Khalique's avatar
Khalique committed
2837

Khalique's avatar
Khalique committed
2838
@onnx_test
Khalique's avatar
Khalique committed
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2850
2851
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2852

Khalique's avatar
Khalique committed
2853
@onnx_test
Khalique's avatar
Khalique committed
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2865
2866
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2867

Khalique's avatar
Khalique committed
2868
@onnx_test
Khalique's avatar
Khalique committed
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2880
2881
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2882

Khalique's avatar
Khalique committed
2883
@onnx_test
Khalique's avatar
Khalique committed
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2895
2896
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2897

Khalique's avatar
Khalique committed
2898
@onnx_test
Khalique's avatar
Khalique committed
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2910
2911
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2912

Khalique's avatar
Khalique committed
2913
@onnx_test
Khalique's avatar
Khalique committed
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2925
2926
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2927

2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
2943
@onnx_test
Khalique's avatar
Khalique committed
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2956
2957
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2958

2959
2960
2961
2962
2963
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

Shucai Xiao's avatar
Shucai Xiao committed
2964
2965
2966
2967
2968
2969
2970
2971
    node = onnx.helper.make_node(
        'MaxPool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[6, 6],
        strides=[2, 2],
        pads=[0, 0, 1, 1],
        auto_pad='NOTSET')
2972
2973
2974
2975
2976
2977
2978
2979
2980

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
2981
2982
2983
2984
2985
2986
    node = onnx.helper.make_node(
        'MaxPool',
        inputs=['x'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad='SAME_UPPER')
2987
2988
2989
2990

    return ([node], [x], [y])


turneram's avatar
turneram committed
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
@onnx_test
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3003
3004
    node = onnx.helper.make_node(
        "Mean", inputs=["0", "1", "2", "3", "4"], outputs=["mean"])
turneram's avatar
turneram committed
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


@onnx_test
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3018
3019
    node = onnx.helper.make_node(
        "Mean", inputs=["0", "1", "2"], outputs=["mean"])
turneram's avatar
turneram committed
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3032
3033
    node = onnx.helper.make_node(
        "Mean", inputs=["0", "1", "2"], outputs=["mean"])
turneram's avatar
turneram committed
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


@onnx_test
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


Khalique's avatar
Khalique committed
3062
@onnx_test
Khalique's avatar
Khalique committed
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3075
3076
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3077

turneram's avatar
turneram committed
3078
3079
3080
3081
3082
3083
3084
3085
@onnx_test
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3086
3087
3088
3089
3090
3091
    node = onnx.helper.make_node(
        'Multinomial',
        inputs=['input'],
        sample_size=sample_size,
        seed=seed,
        outputs=['output'])
turneram's avatar
turneram committed
3092
3093
3094
3095

    return ([node], [input], [output])


3096
3097
3098
3099
3100
3101
3102
@onnx_test
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3103
3104
3105
3106
3107
    node = onnx.helper.make_node(
        'Multinomial',
        inputs=['input'],
        sample_size=sample_size,
        outputs=['output'])
3108
3109
3110
3111

    return ([node], [input], [output])


turneram's avatar
turneram committed
3112
3113
3114
3115
3116
3117
3118
3119
@onnx_test
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3120
3121
3122
3123
3124
3125
    node = onnx.helper.make_node(
        'Multinomial',
        inputs=['input'],
        sample_size=sample_size,
        dtype=dtype,
        outputs=['output'])
turneram's avatar
turneram committed
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138

    return ([node], [input], [output])


@onnx_test
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3139
3140
3141
3142
3143
3144
3145
    node = onnx.helper.make_node(
        'Multinomial',
        inputs=['input'],
        sample_size=sample_size,
        dtype=dtype,
        seed=seed,
        outputs=['output'])
turneram's avatar
turneram committed
3146
3147
3148
3149

    return ([node], [input], [output])


Shucai Xiao's avatar
Shucai Xiao committed
3150
3151
@onnx_test
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
3152
3153
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3154
3155
3156
3157
3158
3159

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
@onnx_test
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [6, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3173
3174
3175
3176
3177
3178
3179
3180
    node = onnx.helper.make_node(
        'NonMaxSuppression',
        inputs=[
            'boxes', 'scores', 'max_output_boxes_per_class', 'iou_threshold',
            'score_threshold'
        ],
        outputs=['selected_indices'],
        center_point_box=1)
3181
3182
3183
3184

    return ([node], [b, s, mo, iou, st], [out])


3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
@onnx_test
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3205
@onnx_test
Khalique's avatar
Khalique committed
3206
3207
3208
3209
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Shucai Xiao's avatar
Shucai Xiao committed
3210
3211
    node = onnx.helper.make_node(
        'Pad', inputs=['0'], pads=[0, 0, 0, 0], outputs=['1'])
Khalique's avatar
Khalique committed
3212

Khalique's avatar
Khalique committed
3213
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3214

Khalique's avatar
Khalique committed
3215

Shucai Xiao's avatar
Shucai Xiao committed
3216
3217
3218
3219
3220
@onnx_test
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3221
3222
    node = onnx.helper.make_node(
        'NonZero', inputs=['data'], outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3223
3224
3225
3226

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3227
3228
3229
@onnx_test
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
Shucai Xiao's avatar
Shucai Xiao committed
3230
3231
3232
3233
3234
    data = helper.make_tensor(
        name='data',
        data_type=TensorProto.FLOAT,
        dims=data1.shape,
        vals=data1.flatten().astype(np.float))
Shucai Xiao's avatar
Shucai Xiao committed
3235
3236
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
3237
3238
    node = onnx.helper.make_node(
        'NonZero', inputs=['data'], outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3239
3240
3241
3242
3243
3244
3245

    return ([node], [], [y], [data])


@onnx_test
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
Shucai Xiao's avatar
Shucai Xiao committed
3246
3247
3248
3249
3250
    data = helper.make_tensor(
        name='data',
        data_type=TensorProto.INT16,
        dims=data1.shape,
        vals=data1.flatten().astype(np.int16))
Shucai Xiao's avatar
Shucai Xiao committed
3251
3252
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3253
3254
    node = onnx.helper.make_node(
        'NonZero', inputs=['data'], outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3255
3256
3257
3258

    return ([node], [], [y], [data])


kahmed10's avatar
kahmed10 committed
3259
3260
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
3261
3262
3263
3264
3265
3266
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
3267

Shucai Xiao's avatar
Shucai Xiao committed
3268
3269
3270
3271
3272
    depth_tensor = helper.make_tensor(
        name="depth",
        data_type=TensorProto.INT32,
        dims=None,
        vals=depth.astype(int))
kahmed10's avatar
kahmed10 committed
3273

Shucai Xiao's avatar
Shucai Xiao committed
3274
3275
3276
3277
3278
    node = onnx.helper.make_node(
        'OneHot',
        inputs=['indices', 'depth', 'values'],
        outputs=['y'],
        axis=axis_value)
kahmed10's avatar
kahmed10 committed
3279

Shucai Xiao's avatar
Shucai Xiao committed
3280
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
3281
3282


Khalique's avatar
Khalique committed
3283
@onnx_test
Khalique's avatar
Khalique committed
3284
3285
3286
3287
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3288
3289
    node = onnx.helper.make_node(
        'Pad', inputs=['0'], pads=[1, 1, 1, 1], outputs=['1'])
Khalique's avatar
Khalique committed
3290

Khalique's avatar
Khalique committed
3291
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3292

Khalique's avatar
Khalique committed
3293

3294
3295
3296
@onnx_test
def pad_3arg_test():
    values = np.array([1])
Shucai Xiao's avatar
Shucai Xiao committed
3297
3298
3299
3300
3301
3302
3303
    val_tensor = helper.make_tensor(
        name='val',
        data_type=TensorProto.FLOAT,
        dims=values.reshape(()).shape,
        vals=values.astype(float))
    arg_val = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['arg_val'], value=val_tensor)
3304
3305

    sizes = np.array([1, 1, 2, 2])
Shucai Xiao's avatar
Shucai Xiao committed
3306
3307
3308
3309
3310
3311
3312
    pad_tensor = helper.make_tensor(
        name='pad_size',
        data_type=TensorProto.INT32,
        dims=sizes.shape,
        vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['arg_pad'], value=pad_tensor)
3313
3314
3315
3316

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

Shucai Xiao's avatar
Shucai Xiao committed
3317
3318
    node = onnx.helper.make_node(
        'Pad', inputs=['0', 'arg_pad', 'arg_val'], outputs=['1'])
3319
3320
3321
3322

    return ([arg_val, arg_pad, node], [x], [y])


kahmed10's avatar
kahmed10 committed
3323
3324
3325
3326
3327
3328
@onnx_test
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
Shucai Xiao's avatar
Shucai Xiao committed
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
    pad_tensor = helper.make_tensor(
        name='pad_size',
        data_type=TensorProto.INT32,
        dims=sizes.shape,
        vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['arg_pad'], value=pad_tensor)

    node = onnx.helper.make_node(
        'Pad', mode='reflect', inputs=['0', 'arg_pad'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348

    return ([arg_pad, node], [x], [y])


@onnx_test
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
Shucai Xiao's avatar
Shucai Xiao committed
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
    pad_tensor = helper.make_tensor(
        name='pad_size',
        data_type=TensorProto.INT32,
        dims=sizes.shape,
        vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['arg_pad'], value=pad_tensor)

    node = onnx.helper.make_node(
        'Pad', mode='reflect', inputs=['0', 'arg_pad'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
3359
3360
3361
3362

    return ([arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
3363
@onnx_test
Khalique's avatar
Khalique committed
3364
3365
3366
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3367
3368
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3369
3370
3371
3372
3373
3374
3375

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3376
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
3377

kahmed10's avatar
kahmed10 committed
3378

Shucai Xiao's avatar
Shucai Xiao committed
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
@onnx_test
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


turneram's avatar
turneram committed
3411
3412
3413
3414
3415
@onnx_test
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
Shucai Xiao's avatar
Shucai Xiao committed
3416
3417
3418
3419
3420
3421
3422
    axis_tensor = helper.make_tensor(
        name="axis",
        data_type=TensorProto.INT32,
        dims=axis_val.shape,
        vals=axis_val.astype(int))
    node = onnx.helper.make_node(
        'CumSum', inputs=['x', 'axis'], outputs=['y'], exclusive=1, reverse=1)
turneram's avatar
turneram committed
3423
3424
3425
    return ([node], [x], [y], [axis_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


3442
3443
@onnx_test
def quantizelinear_test():
turneram's avatar
turneram committed
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_zero_point_test():
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

Shucai Xiao's avatar
Shucai Xiao committed
3495
3496
    node = onnx.helper.make_node(
        'QuantizeLinear', inputs=['0', '1', '2'], outputs=['out'], axis=axis)
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


@onnx_test
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
@onnx_test
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3521
3522
3523
3524
3525
3526
3527
3528
3529
    node = onnx.helper.make_node(
        'RandomNormal',
        inputs=[],
        outputs=['output'],
        dtype=dtype,
        mean=mean,
        scale=scale,
        seed=seed,
        shape=shape)
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540

    return ([node], [], [output])


@onnx_test
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3541
3542
3543
3544
3545
3546
    node = onnx.helper.make_node(
        'RandomNormal',
        inputs=[],
        outputs=['output'],
        dtype=dtype,
        shape=shape)
3547
3548
3549
3550

    return ([node], [], [output])


3551
3552
3553
3554
3555
3556
3557
@onnx_test
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3558
3559
3560
3561
3562
    node = onnx.helper.make_node(
        'RandomNormal',
        inputs=['input'],
        sample_size=sample_size,
        outputs=['output'])
3563
3564
3565
3566

    return ([node], [input], [output])


3567
3568
3569
3570
3571
3572
@onnx_test
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3573
3574
    node = onnx.helper.make_node(
        'RandomNormal', inputs=[], outputs=['output'], dtype=dtype)
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589

    return ([node], [], [output])


@onnx_test
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3590
3591
3592
3593
3594
3595
3596
3597
    node = onnx.helper.make_node(
        'RandomNormalLike',
        inputs=['input'],
        outputs=['output'],
        dtype=dtype,
        mean=mean,
        scale=scale,
        seed=seed)
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609

    return ([node], [input], [output])


@onnx_test
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3610
3611
    node = onnx.helper.make_node(
        'RandomNormalLike', inputs=['input'], outputs=['output'], seed=seed)
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625

    return ([node], [input], [output])


@onnx_test
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3626
3627
3628
3629
3630
3631
3632
3633
3634
    node = onnx.helper.make_node(
        'RandomUniform',
        inputs=[],
        outputs=['output'],
        dtype=dtype,
        high=high,
        low=low,
        seed=seed,
        shape=shape)
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645

    return ([node], [], [output])


@onnx_test
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3646
3647
3648
3649
3650
3651
    node = onnx.helper.make_node(
        'RandomUniform',
        inputs=[],
        outputs=['output'],
        dtype=dtype,
        shape=shape)
3652
3653
3654
3655

    return ([node], [], [output])


3656
3657
3658
3659
3660
3661
3662
@onnx_test
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

Shucai Xiao's avatar
Shucai Xiao committed
3663
3664
3665
3666
3667
    node = onnx.helper.make_node(
        'RandomUniform',
        inputs=['input'],
        sample_size=sample_size,
        outputs=['output'])
3668
3669
3670
3671

    return ([node], [input], [output])


3672
3673
3674
3675
3676
3677
@onnx_test
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3678
3679
    node = onnx.helper.make_node(
        'RandomUniform', inputs=[], outputs=['output'], dtype=dtype)
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694

    return ([node], [], [output])


@onnx_test
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3695
3696
3697
3698
3699
3700
3701
3702
    node = onnx.helper.make_node(
        'RandomUniformLike',
        inputs=['input'],
        outputs=['output'],
        dtype=dtype,
        high=high,
        low=low,
        seed=seed)
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714

    return ([node], [input], [output])


@onnx_test
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

Shucai Xiao's avatar
Shucai Xiao committed
3715
3716
    node = onnx.helper.make_node(
        'RandomUniformLike', inputs=['input'], outputs=['output'], seed=seed)
3717
3718
3719
3720

    return ([node], [input], [output])


kahmed10's avatar
kahmed10 committed
3721
3722
3723
3724
3725
3726
3727
@onnx_test
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

Shucai Xiao's avatar
Shucai Xiao committed
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
    start_tensor = helper.make_tensor(
        name='start_val',
        data_type=TensorProto.INT64,
        dims=start_val.reshape(()).shape,
        vals=start_val.astype(np.int64))
    start = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['start'], value=start_tensor)

    limit_tensor = helper.make_tensor(
        name='limit_val',
        data_type=TensorProto.INT64,
        dims=limit_val.reshape(()).shape,
        vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['limit'], value=limit_tensor)

    delta_tensor = helper.make_tensor(
        name='delta_val',
        data_type=TensorProto.INT64,
        dims=delta_val.reshape(()).shape,
        vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['delta'], value=delta_tensor)

    node = onnx.helper.make_node(
        'Range', inputs=['start', 'limit', 'delta'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


@onnx_test
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

Shucai Xiao's avatar
Shucai Xiao committed
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
    start_tensor = helper.make_tensor(
        name='start_val',
        data_type=TensorProto.FLOAT,
        dims=start_val.reshape(()).shape,
        vals=start_val.astype(np.float))
    start = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['start'], value=start_tensor)

    limit_tensor = helper.make_tensor(
        name='limit_val',
        data_type=TensorProto.FLOAT,
        dims=limit_val.reshape(()).shape,
        vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['limit'], value=limit_tensor)

    delta_tensor = helper.make_tensor(
        name='delta_val',
        data_type=TensorProto.FLOAT,
        dims=delta_val.reshape(()).shape,
        vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node(
        'Constant', inputs=[], outputs=['delta'], value=delta_tensor)

    node = onnx.helper.make_node(
        'Range', inputs=['start', 'limit', 'delta'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
3793
3794
3795
3796
3797
3798

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


kahmed10's avatar
kahmed10 committed
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3813
3814
3815
3816
3817
3818
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

Shucai Xiao's avatar
Shucai Xiao committed
3819
3820
    node = onnx.helper.make_node(
        'ReduceL1', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

Shucai Xiao's avatar
Shucai Xiao committed
3831
3832
    node = onnx.helper.make_node(
        'ReduceL2', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

Shucai Xiao's avatar
Shucai Xiao committed
3843
3844
    node = onnx.helper.make_node(
        'ReduceLogSum', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

Shucai Xiao's avatar
Shucai Xiao committed
3855
3856
    node = onnx.helper.make_node(
        'ReduceLogSumExp', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3857
3858
3859
3860

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3861
3862
3863
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3864
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3865
3866
    axes = [2]

Shucai Xiao's avatar
Shucai Xiao committed
3867
3868
    node = onnx.helper.make_node(
        'ReduceMax', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3869
3870
3871

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
3872

Khalique's avatar
Khalique committed
3873
@onnx_test
Khalique's avatar
Khalique committed
3874
3875
3876
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
3877
    axes = [2, 3]
Khalique's avatar
Khalique committed
3878

Shucai Xiao's avatar
Shucai Xiao committed
3879
3880
    node = onnx.helper.make_node(
        'ReduceMean', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Khalique's avatar
Khalique committed
3881

Khalique's avatar
Khalique committed
3882
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3883

kahmed10's avatar
kahmed10 committed
3884

Khalique's avatar
Khalique committed
3885
@onnx_test
Khalique's avatar
Khalique committed
3886
3887
3888
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
3889
    axes = [2]
Khalique's avatar
Khalique committed
3890

Shucai Xiao's avatar
Shucai Xiao committed
3891
3892
    node = onnx.helper.make_node(
        'ReduceMean', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Khalique's avatar
Khalique committed
3893

Khalique's avatar
Khalique committed
3894
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3895

kahmed10's avatar
kahmed10 committed
3896

Shucai Xiao's avatar
Shucai Xiao committed
3897
3898
3899
3900
3901
3902
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

Shucai Xiao's avatar
Shucai Xiao committed
3903
3904
    node = onnx.helper.make_node(
        'ReduceMin', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3905
3906

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3907

kahmed10's avatar
kahmed10 committed
3908

Khalique's avatar
Khalique committed
3909
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
3910
def reduceprod_test():
Khalique's avatar
Khalique committed
3911
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3912
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
3913
    axes = [2]
Khalique's avatar
Khalique committed
3914

Shucai Xiao's avatar
Shucai Xiao committed
3915
3916
    node = onnx.helper.make_node(
        'ReduceProd', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Khalique's avatar
Khalique committed
3917

Khalique's avatar
Khalique committed
3918
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3919

Khalique's avatar
Khalique committed
3920

Khalique's avatar
Khalique committed
3921
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
3922
def reducesum_test():
Khalique's avatar
Khalique committed
3923
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3924
3925
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
3926

Shucai Xiao's avatar
Shucai Xiao committed
3927
3928
    node = onnx.helper.make_node(
        'ReduceSum', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Khalique's avatar
Khalique committed
3929

Khalique's avatar
Khalique committed
3930
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3931

Khalique's avatar
Khalique committed
3932

Shucai Xiao's avatar
Shucai Xiao committed
3933
3934
3935
3936
3937
@onnx_test
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
3938
3939
3940
3941
3942
    axes_tensor = helper.make_tensor(
        name="axes",
        data_type=TensorProto.INT64,
        dims=axes.shape,
        vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
3943

Shucai Xiao's avatar
Shucai Xiao committed
3944
3945
3946
3947
3948
3949
    node = onnx.helper.make_node(
        'ReduceSum',
        inputs=['x', 'axes'],
        outputs=['y'],
        keepdims=0,
        noop_with_empty_axes=False)
Shucai Xiao's avatar
Shucai Xiao committed
3950
3951
3952
3953
3954
3955
3956
3957
3958

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
3959
3960
3961
3962
3963
    axes_tensor = helper.make_tensor(
        name="axes",
        data_type=TensorProto.INT64,
        dims=axes.shape,
        vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
3964

Shucai Xiao's avatar
Shucai Xiao committed
3965
3966
3967
3968
3969
3970
    node = onnx.helper.make_node(
        'ReduceSum',
        inputs=['x', 'axes'],
        outputs=['y'],
        keepdims=0,
        noop_with_empty_axes=True)
Shucai Xiao's avatar
Shucai Xiao committed
3971
3972
3973
3974

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
3975
@onnx_test
Khalique's avatar
Khalique committed
3976
3977
3978
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
3979
    axes = [2, 3]
Khalique's avatar
Khalique committed
3980

Shucai Xiao's avatar
Shucai Xiao committed
3981
3982
    node = onnx.helper.make_node(
        'ReduceSum', inputs=['x'], outputs=['y'], axes=axes, keepdims=1)
Khalique's avatar
Khalique committed
3983

Khalique's avatar
Khalique committed
3984
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3985

Khalique's avatar
Khalique committed
3986

Shucai Xiao's avatar
Shucai Xiao committed
3987
3988
3989
3990
3991
3992
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

Shucai Xiao's avatar
Shucai Xiao committed
3993
3994
    node = onnx.helper.make_node(
        'ReduceSum', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

Shucai Xiao's avatar
Shucai Xiao committed
4005
4006
    node = onnx.helper.make_node(
        'ReduceSumSquare', inputs=['x'], outputs=['y'], axes=axes, keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
4007
4008
4009
4010

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4011
@onnx_test
Khalique's avatar
Khalique committed
4012
4013
4014
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
4015
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
4016
4017
4018
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
4019
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
4020

Shucai Xiao's avatar
Shucai Xiao committed
4021
4022
    node2 = onnx.helper.make_node(
        'Reshape', inputs=['0'], shape=x_shape_list, outputs=['3'])
Khalique's avatar
Khalique committed
4023
4024
4025

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
4026
4027


Khalique's avatar
Khalique committed
4028
@onnx_test
Khalique's avatar
Khalique committed
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Shucai Xiao's avatar
Shucai Xiao committed
4040
4041
    res = onnx.helper.make_node(
        'Reshape', inputs=['trans_x'], outputs=['y'], shape=[4, 3, 2])
Khalique's avatar
Khalique committed
4042
4043

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
4044
4045


Shucai Xiao's avatar
Shucai Xiao committed
4046
4047
4048
@onnx_test
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4049
4050
4051
4052
4053
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4054
4055

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
4056
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


@onnx_test
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4072
4073
4074
4075
4076
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4077
4078
4079
4080

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4081
4082
4083
4084
4085
4086
4087
    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='asymmetric',
        mode='nearest',
        nearest_mode='ceil')
Shucai Xiao's avatar
Shucai Xiao committed
4088
4089
4090
4091

    return ([node], [X], [Y], [scale_tensor])


4092
4093
4094
@onnx_test
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4095
4096
4097
4098
4099
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
4100
4101
4102
4103

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
4104
4105
    node = onnx.helper.make_node(
        'Resize', inputs=['X', '', 'scales'], outputs=['Y'], mode='linear')
4106
4107
4108
4109

    return ([node], [X], [Y], [scale_tensor])


4110
4111
4112
@onnx_test
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4113
4114
4115
4116
4117
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
4118
4119
4120
4121

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4122
4123
    trn = onnx.helper.make_node(
        'Transpose', inputs=['X'], outputs=['TX'], perm=[0, 1, 3, 2])
4124

Shucai Xiao's avatar
Shucai Xiao committed
4125
4126
4127
4128
4129
4130
4131
    node = onnx.helper.make_node(
        'Resize',
        inputs=['TX', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='asymmetric',
        mode='nearest',
        nearest_mode='ceil')
4132
4133
4134
4135

    return ([trn, node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4136
4137
4138
@onnx_test
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
4139
4140
4141
4142
4143
    out_lens_tensor = helper.make_tensor(
        name='out_lens',
        data_type=TensorProto.INT64,
        dims=out_lens.shape,
        vals=out_lens.flatten().astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


4159
4160
4161
@onnx_test
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4162
4163
4164
4165
4166
    scales_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


@onnx_test
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4183
4184
4185
4186
4187
    scales_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
4188
4189
4190
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
4191
4192
    node = onnx.helper.make_node(
        'Resize', inputs=['X', '', 'scales'], outputs=['Y'], mode='linear')
4193
4194
4195
4196

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4197
4198
4199
@onnx_test
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4200
4201
4202
4203
4204
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4205
4206
4207
4208

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

Shucai Xiao's avatar
Shucai Xiao committed
4209
4210
    node = onnx.helper.make_node(
        'Resize', inputs=['X', '', 'scales'], outputs=['Y'], mode='nearest')
Shucai Xiao's avatar
Shucai Xiao committed
4211
4212
4213
4214

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4215
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4216
4217
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
4218
4219
4220
4221
4222
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4239
4240
4241
4242
4243
4244
4245
@onnx_test
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

Shucai Xiao's avatar
Shucai Xiao committed
4246
4247
    node = onnx.helper.make_node(
        'RoiAlign', inputs=['x', 'rois', 'batch_ind'], outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272

    return ([node], [x, roi, bi], [y])


@onnx_test
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4273
@onnx_test
4274
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
4275
4276
4277
4278
4279
4280
4281
4282
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
4325
4326
4327
4328
4329
4330
4331
4332
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


turneram's avatar
turneram committed
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
@onnx_test
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4343
4344
4345
4346
4347
    node = onnx.helper.make_node(
        'ScatterND',
        inputs=['data', 'indices', 'updates'],
        outputs=['output'],
        reduction="add")
turneram's avatar
turneram committed
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4362
4363
4364
4365
4366
    node = onnx.helper.make_node(
        'ScatterND',
        inputs=['data', 'indices', 'updates'],
        outputs=['output'],
        reduction="mul")
turneram's avatar
turneram committed
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4381
4382
    node = onnx.helper.make_node(
        'ScatterND', inputs=['data', 'indices', 'updates'], outputs=['output'])
turneram's avatar
turneram committed
4383
4384
4385
4386

    return ([node], [data, indices, updates], [output])


Shucai Xiao's avatar
Shucai Xiao committed
4387
4388
4389
4390
4391
@onnx_test
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
4392
4393
    node = onnx.helper.make_node(
        'Selu', inputs=['x'], outputs=['y'], alpha=0.3, gamma=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
4394
4395
4396
4397

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4398
@onnx_test
Khalique's avatar
Khalique committed
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4409
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4410

Khalique's avatar
Khalique committed
4411

Khalique's avatar
Khalique committed
4412
@onnx_test
Khalique's avatar
Khalique committed
4413
4414
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
4415
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
4416
4417
4418
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Shucai Xiao's avatar
Shucai Xiao committed
4419
4420
4421
4422
4423
    value_tensor = helper.make_tensor(
        name='const_tensor',
        data_type=TensorProto.INT32,
        dims=values.shape,
        vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
4445
4446
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
4447

Khalique's avatar
Khalique committed
4448
@onnx_test
Khalique's avatar
Khalique committed
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4459
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4460

Khalique's avatar
Khalique committed
4461

Khalique's avatar
Khalique committed
4462
@onnx_test
Khalique's avatar
Khalique committed
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4473
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4474

Khalique's avatar
Khalique committed
4475

Khalique's avatar
Khalique committed
4476
@onnx_test
Khalique's avatar
Khalique committed
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4487
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4488

Khalique's avatar
Khalique committed
4489

Charlie Lin's avatar
Charlie Lin committed
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
@onnx_test
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
4538
4539
4540
4541
4542
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

Shucai Xiao's avatar
Shucai Xiao committed
4543
4544
4545
4546
4547
4548
4549
    node = onnx.helper.make_node(
        'Slice',
        inputs=['0'],
        axes=[0, 1],
        starts=[1, 0],
        ends=[2, 2],
        outputs=['1'])
kahmed10's avatar
kahmed10 committed
4550
4551
4552
4553
4554
4555
4556
4557
4558

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
Shucai Xiao's avatar
Shucai Xiao committed
4559
4560
4561
4562
4563
    start_tensor = helper.make_tensor(
        name="start",
        data_type=TensorProto.INT32,
        dims=start.shape,
        vals=start.astype(int))
kahmed10's avatar
kahmed10 committed
4564

Shucai Xiao's avatar
Shucai Xiao committed
4565
4566
    arg_start = helper.make_node(
        "Constant", inputs=[], outputs=['arg_start'], value=start_tensor)
kahmed10's avatar
kahmed10 committed
4567
4568

    end = np.array([2, 5])
Shucai Xiao's avatar
Shucai Xiao committed
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
    end_tensor = helper.make_tensor(
        name="end",
        data_type=TensorProto.INT32,
        dims=end.shape,
        vals=end.astype(int))
    arg_end = helper.make_node(
        "Constant", inputs=[], outputs=['arg_end'], value=end_tensor)

    node = onnx.helper.make_node(
        'Slice', inputs=['0', 'arg_start', 'arg_end'], outputs=['1'])
kahmed10's avatar
kahmed10 committed
4579
4580
4581
4582

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4583
4584
4585
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
Shucai Xiao's avatar
Shucai Xiao committed
4586
4587
4588
4589
4590
4591
4592
    step_tensor = helper.make_tensor(
        name="step",
        data_type=TensorProto.INT32,
        dims=step.shape,
        vals=step.astype(int))
    arg_step = helper.make_node(
        "Constant", inputs=[], outputs=['arg_step'], value=step_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4593
4594

    axis = np.array([-1, -2])
Shucai Xiao's avatar
Shucai Xiao committed
4595
4596
4597
4598
4599
4600
4601
    axis_tensor = helper.make_tensor(
        name="axis",
        data_type=TensorProto.INT32,
        dims=axis.shape,
        vals=axis.astype(int))
    arg_axis = helper.make_node(
        "Constant", inputs=[], outputs=['arg_axis'], value=axis_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4602
4603

    end = np.array([-1, -1])
Shucai Xiao's avatar
Shucai Xiao committed
4604
4605
4606
4607
4608
4609
4610
    end_tensor = helper.make_tensor(
        name="end",
        data_type=TensorProto.INT32,
        dims=end.shape,
        vals=end.astype(int))
    arg_end = helper.make_node(
        "Constant", inputs=[], outputs=['arg_end'], value=end_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4611
4612

    start = np.array([-5, -3])
Shucai Xiao's avatar
Shucai Xiao committed
4613
4614
4615
4616
4617
4618
4619
    start_tensor = helper.make_tensor(
        name="start",
        data_type=TensorProto.INT32,
        dims=start.shape,
        vals=start.astype(int))
    arg_start = helper.make_node(
        "Constant", inputs=[], outputs=['arg_start'], value=start_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
Shucai Xiao's avatar
Shucai Xiao committed
4635
4636
4637
4638
4639
4640
4641
    step_tensor = helper.make_tensor(
        name="step",
        data_type=TensorProto.INT32,
        dims=step.shape,
        vals=step.astype(int))
    arg_step = helper.make_node(
        "Constant", inputs=[], outputs=['arg_step'], value=step_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4642
4643

    axis = np.array([-1, -2])
Shucai Xiao's avatar
Shucai Xiao committed
4644
4645
4646
4647
4648
4649
4650
    axis_tensor = helper.make_tensor(
        name="axis",
        data_type=TensorProto.INT32,
        dims=axis.shape,
        vals=axis.astype(int))
    arg_axis = helper.make_node(
        "Constant", inputs=[], outputs=['arg_axis'], value=axis_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4651

4652
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
4653
4654
4655
4656
4657
4658
4659
    end_tensor = helper.make_tensor(
        name="end",
        data_type=TensorProto.INT32,
        dims=end.shape,
        vals=end.astype(int))
    arg_end = helper.make_node(
        "Constant", inputs=[], outputs=['arg_end'], value=end_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4660

4661
    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
4662
4663
4664
4665
4666
4667
4668
    start_tensor = helper.make_tensor(
        name="start",
        data_type=TensorProto.INT32,
        dims=start.shape,
        vals=start.astype(int))
    arg_start = helper.make_node(
        "Constant", inputs=[], outputs=['arg_start'], value=start_tensor)
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_step_test():
    step = np.array([-2, 2])
Shucai Xiao's avatar
Shucai Xiao committed
4684
4685
4686
4687
4688
4689
4690
    step_tensor = helper.make_tensor(
        name="step",
        data_type=TensorProto.INT32,
        dims=step.shape,
        vals=step.astype(int))
    arg_step = helper.make_node(
        "Constant", inputs=[], outputs=['arg_step'], value=step_tensor)
4691
4692

    axis = np.array([-1, -2])
Shucai Xiao's avatar
Shucai Xiao committed
4693
4694
4695
4696
4697
4698
4699
    axis_tensor = helper.make_tensor(
        name="axis",
        data_type=TensorProto.INT32,
        dims=axis.shape,
        vals=axis.astype(int))
    arg_axis = helper.make_node(
        "Constant", inputs=[], outputs=['arg_axis'], value=axis_tensor)
4700
4701

    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
4702
4703
4704
4705
4706
4707
4708
    end_tensor = helper.make_tensor(
        name="end",
        data_type=TensorProto.INT32,
        dims=end.shape,
        vals=end.astype(int))
    arg_end = helper.make_node(
        "Constant", inputs=[], outputs=['arg_end'], value=end_tensor)
4709
4710

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
4711
4712
4713
4714
4715
4716
4717
    start_tensor = helper.make_tensor(
        name="start",
        data_type=TensorProto.INT32,
        dims=start.shape,
        vals=start.astype(int))
    arg_start = helper.make_node(
        "Constant", inputs=[], outputs=['arg_start'], value=start_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


4730
4731
4732
4733
4734
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

Shucai Xiao's avatar
Shucai Xiao committed
4735
4736
4737
4738
4739
4740
4741
    node = onnx.helper.make_node(
        'Slice',
        inputs=['0'],
        axes=[0, 1],
        starts=[1, 2],
        ends=[3000000000, -1],
        outputs=['1'])
Khalique's avatar
Khalique committed
4742

Khalique's avatar
Khalique committed
4743
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4744

Khalique's avatar
Khalique committed
4745

Khalique's avatar
Khalique committed
4746
@onnx_test
Khalique's avatar
Khalique committed
4747
4748
4749
4750
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
4751
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
4752

Khalique's avatar
Khalique committed
4753
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4754

Khalique's avatar
Khalique committed
4755

4756
4757
4758
@onnx_test
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
4759
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
4760

Shucai Xiao's avatar
Shucai Xiao committed
4761
4762
4763
4764
4765
4766
4767
    node0 = onnx.helper.make_node(
        'Slice',
        inputs=['0'],
        axes=[0, 1],
        starts=[1, 0],
        ends=[4, 4],
        outputs=['1'])
4768
4769
4770

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

4771
    return ([node0, node1], [x], [y])
4772
4773


turneram's avatar
turneram committed
4774
@onnx_test
turneram's avatar
turneram committed
4775
4776
4777
4778
4779
4780
4781
4782
4783
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
turneram's avatar
turneram committed
4794
4795
4796
4797
4798
4799
4800
4801
4802
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4803
4804
4805
4806
4807
4808
4809
4810
4811
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


4829
4830
4831
4832
4833
4834
4835
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

Shucai Xiao's avatar
Shucai Xiao committed
4836
4837
4838
4839
4840
4841
    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=1,
        split=[7, 4, 4])
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
4861
@onnx_test
Khalique's avatar
Khalique committed
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4872
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4873

Khalique's avatar
Khalique committed
4874

Shucai Xiao's avatar
Shucai Xiao committed
4875
4876
4877
4878
4879
@onnx_test
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
4880
4881
4882
4883
4884
    axes_tensor = helper.make_tensor(
        name="axes",
        data_type=TensorProto.INT64,
        dims=axes.shape,
        vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4885

Shucai Xiao's avatar
Shucai Xiao committed
4886
4887
    node = onnx.helper.make_node(
        'Squeeze', inputs=['x', 'axes'], outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
4888
4889
4890
4891
4892
4893
4894
4895
4896

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
Shucai Xiao's avatar
Shucai Xiao committed
4897
4898
4899
4900
4901
    axes_tensor = helper.make_tensor(
        name="axes",
        data_type=TensorProto.INT64,
        dims=axes.shape,
        vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4902

Shucai Xiao's avatar
Shucai Xiao committed
4903
4904
    node = onnx.helper.make_node(
        'Squeeze', inputs=['x', 'axes'], outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
4905
4906
4907
4908

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
4909
@onnx_test
Khalique's avatar
Khalique committed
4910
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
4911
4912
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
4913
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
4914
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
4915

Shucai Xiao's avatar
Shucai Xiao committed
4916
4917
    node = onnx.helper.make_node(
        'Squeeze', inputs=['0'], axes=[0, 2, 3, 5], outputs=['1'])
Khalique's avatar
Khalique committed
4918

Shucai Xiao's avatar
Shucai Xiao committed
4919
4920
    node2 = onnx.helper.make_node(
        'Unsqueeze', inputs=['1'], axes=[0, 1, 3, 5], outputs=['2'])
Khalique's avatar
Khalique committed
4921

4922
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
4923
4924


Khalique's avatar
Khalique committed
4925
@onnx_test
Khalique's avatar
Khalique committed
4926
4927
4928
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
4929
4930
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4931
4932
4933
4934
4935

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
4936
4937
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
4938
4939
    )

Khalique's avatar
Khalique committed
4940
4941
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
4942

Khalique's avatar
Khalique committed
4943
@onnx_test
Khalique's avatar
Khalique committed
4944
4945
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
4946
4947
4948
4949
4950
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

Shucai Xiao's avatar
Shucai Xiao committed
4951
4952
4953
4954
4955
    values_tensor = helper.make_tensor(
        name='const',
        data_type=TensorProto.FLOAT,
        dims=values.reshape(()).shape,
        vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
4970
4971
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
4972

Shucai Xiao's avatar
Shucai Xiao committed
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
@onnx_test
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


Khalique's avatar
Khalique committed
4993
@onnx_test
Khalique's avatar
Khalique committed
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
5006
5007
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
5008

Shucai Xiao's avatar
Shucai Xiao committed
5009
5010
5011
@onnx_test
def sum_type_test():
    valb = np.array([1, 0])
Shucai Xiao's avatar
Shucai Xiao committed
5012
5013
5014
5015
5016
    t_bool = helper.make_tensor(
        name="bool",
        data_type=TensorProto.BOOL,
        dims=valb.shape,
        vals=valb.astype(np.bool))
Shucai Xiao's avatar
Shucai Xiao committed
5017
5018

    val = np.array([1, 1])
Shucai Xiao's avatar
Shucai Xiao committed
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
    t_int8 = helper.make_tensor(
        name="int8",
        data_type=TensorProto.INT8,
        dims=val.shape,
        vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(
        name="uint8",
        data_type=TensorProto.UINT8,
        dims=val.shape,
        vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(
        name="uint16",
        data_type=TensorProto.UINT16,
        dims=val.shape,
        vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(
        name="uint32",
        data_type=TensorProto.UINT32,
        dims=val.shape,
        vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(
        name="uint64",
        data_type=TensorProto.UINT64,
        dims=val.shape,
        vals=val.astype(np.uint64))

    t_double = helper.make_tensor(
        name="double",
        data_type=TensorProto.DOUBLE,
        dims=val.shape,
        vals=val.astype(np.float64))
Shucai Xiao's avatar
Shucai Xiao committed
5054
5055

    valr = np.array([1.5, 2.0])
Shucai Xiao's avatar
Shucai Xiao committed
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
    t_raw = helper.make_tensor(
        name="raw",
        data_type=TensorProto.DOUBLE,
        dims=valr.shape,
        vals=valr.tobytes(),
        raw=True)

    n_bool = onnx.helper.make_node(
        'Cast', inputs=['bool'], outputs=['o_bool'], to=11)

    n_int8 = onnx.helper.make_node(
        'Cast', inputs=['int8'], outputs=['o_int8'], to=11)

    n_uint8 = onnx.helper.make_node(
        'Cast', inputs=['uint8'], outputs=['o_uint8'], to=11)

    n_uint16 = onnx.helper.make_node(
        'Cast', inputs=['uint16'], outputs=['o_uint16'], to=11)

    n_uint32 = onnx.helper.make_node(
        'Cast', inputs=['uint32'], outputs=['o_uint32'], to=11)

    n_uint64 = onnx.helper.make_node(
        'Cast', inputs=['uint64'], outputs=['o_uint64'], to=11)
Shucai Xiao's avatar
Shucai Xiao committed
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

Shucai Xiao's avatar
Shucai Xiao committed
5092
5093
5094
5095
5096
    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64, node], [],
            [y], [
                t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                t_double, t_raw
            ])
Shucai Xiao's avatar
Shucai Xiao committed
5097
5098


Khalique's avatar
Khalique committed
5099
@onnx_test
Khalique's avatar
Khalique committed
5100
5101
5102
5103
5104
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5105
5106
5107
5108
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5109

Khalique's avatar
Khalique committed
5110
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5111

Khalique's avatar
Khalique committed
5112

Khalique's avatar
Khalique committed
5113
@onnx_test
Khalique's avatar
Khalique committed
5114
5115
5116
5117
5118
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5119
5120
5121
5122
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5123

Khalique's avatar
Khalique committed
5124
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5125

Khalique's avatar
Khalique committed
5126

5127
5128
5129
5130
5131
@onnx_test
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
5132
5133
    node = onnx.helper.make_node(
        'ThresholdedRelu', inputs=['x'], outputs=['y'])
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

Shucai Xiao's avatar
Shucai Xiao committed
5144
5145
    node = onnx.helper.make_node(
        'ThresholdedRelu', inputs=['x'], outputs=['y'], alpha=alpha)
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

Shucai Xiao's avatar
Shucai Xiao committed
5156
5157
    node = onnx.helper.make_node(
        'ThresholdedRelu', inputs=['x'], outputs=['y'], alpha=alpha)
5158
5159
5160
5161

    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Shucai Xiao's avatar
Shucai Xiao committed
5186
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
5187
5188
5189
5190
5191
5192
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

Shucai Xiao's avatar
Shucai Xiao committed
5193
5194
    node = onnx.helper.make_node(
        'TopK', inputs=['data'], outputs=['val', 'indices'], k=2)
Shucai Xiao's avatar
Shucai Xiao committed
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
    return ([node], [x], [val, ind])


@onnx_test
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

Shucai Xiao's avatar
Shucai Xiao committed
5206
5207
5208
5209
5210
    k_tensor = helper.make_tensor(
        name='k',
        data_type=TensorProto.INT64,
        dims=k.shape,
        vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5211

Shucai Xiao's avatar
Shucai Xiao committed
5212
5213
5214
5215
5216
5217
    node = onnx.helper.make_node(
        'TopK',
        inputs=['data', 'k'],
        outputs=['val', 'indices'],
        axis=-2,
        sorted=0)
Shucai Xiao's avatar
Shucai Xiao committed
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
    return ([node], [x], [val, ind], [k_tensor])


@onnx_test
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

Shucai Xiao's avatar
Shucai Xiao committed
5229
5230
5231
5232
5233
    k_tensor = helper.make_tensor(
        name='k',
        data_type=TensorProto.INT64,
        dims=k.shape,
        vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5234

Shucai Xiao's avatar
Shucai Xiao committed
5235
5236
5237
5238
5239
5240
    node = onnx.helper.make_node(
        'TopK',
        inputs=['data', 'k'],
        outputs=['val', 'indices'],
        largest=0,
        axis=1)
Shucai Xiao's avatar
Shucai Xiao committed
5241
5242
5243
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


@onnx_test
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5272
@onnx_test
Khalique's avatar
Khalique committed
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
5284
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5285

Khalique's avatar
Khalique committed
5286

Khalique's avatar
Khalique committed
5287
5288
5289
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
5290
5291
5292
5293
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
5294
5295
5296
5297
5298
5299
5300
5301

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Shucai Xiao's avatar
Shucai Xiao committed
5302
5303
5304
5305
5306
    ti = onnx.helper.make_node(
        'Transpose',
        inputs=['indices'],
        outputs=['tindices'],
        perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
5307
5308
5309
5310
5311
5312
5313
5314

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
5315
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
5316

Khalique's avatar
Khalique committed
5317

5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5328
@onnx_test
Khalique's avatar
Khalique committed
5329
5330
5331
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
5332
5333
5334

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5335
5336
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5337
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5338

Khalique's avatar
Khalique committed
5339
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
5340

Khalique's avatar
Khalique committed
5341
    return ([node, node2], [x, y], [a])
5342
5343


5344
5345
5346
5347
5348
5349
5350
5351
5352
@onnx_test
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Shucai Xiao's avatar
Shucai Xiao committed
5353
5354
    node = onnx.helper.make_node(
        'ATen', inputs=['0', '1'], outputs=['2'], operator='unknown')
5355
5356
5357
5358

    return ([node], [x, y], [a])


Shucai Xiao's avatar
Shucai Xiao committed
5359
5360
5361
@onnx_test
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
5362
5363
5364
5365
5366
    scales_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5367
5368
5369
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

Shucai Xiao's avatar
Shucai Xiao committed
5370
5371
    node = onnx.helper.make_node(
        'Upsample', inputs=['X', '', 'scales'], outputs=['Y'], mode='linear')
Shucai Xiao's avatar
Shucai Xiao committed
5372
5373
5374
5375

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5376
5377
5378
@onnx_test
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
5379
5380
5381
5382
5383
    scale_tensor = helper.make_tensor(
        name='scales',
        data_type=TensorProto.FLOAT,
        dims=scales.shape,
        vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
5419
5420
5421
5422
5423
5424
5425
5426
5427


@onnx_test
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
Shucai Xiao's avatar
Shucai Xiao committed
5428
5429
    node = onnx.helper.make_node(
        'Where', inputs=['c', 'x', 'y'], outputs=['z'])
Shucai Xiao's avatar
Shucai Xiao committed
5430
5431

    return ([node], [c, x, y], [z])