lowering.cpp 32.5 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
5
#include <migraphx/op/identity.hpp>
6
#include <migraphx/op/batch_norm_inference.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/op/convolution.hpp>
kahmed10's avatar
kahmed10 committed
8
#include <migraphx/op/deconvolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
9
#include <migraphx/op/quant_convolution.hpp>
Paul's avatar
Paul committed
10
#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/quant_dot.hpp>
Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
22
#include <migraphx/op/rnn_var_sl_last_output.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/par_dfor.hpp>
26
#include <migraphx/clamp.hpp>
Paul's avatar
Paul committed
27
#include <migraphx/cpu/gemm.hpp>
28
#include <migraphx/register_op.hpp>
29
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
30
#include <unordered_map>
Paul's avatar
Paul committed
31
#include <utility>
kahmed10's avatar
kahmed10 committed
32
#include <iostream>
Paul's avatar
Paul committed
33

Paul's avatar
Paul committed
34
namespace migraphx {
Paul's avatar
Paul committed
35
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
36
37
38
39
40
41
42
43
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
44
45
46
47
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
48
49
50
51
{
    return x;
}

52
53
54
55
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
56
57
58
59
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
60
// args[4] -> bias
61
62
63
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
64
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
65
66
67
68
69
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
70
    op::batch_norm_inference op;
71

72
73
74
75
76
77
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

78
79
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
80
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
81

Paul's avatar
Paul committed
82
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
83
    {
84
85
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
86
87
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
88
89
90
91
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
92

93
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
94
95
96
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
97
98
99
100
101
102
103
104
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx = output_shape.multi(i);
                        auto c   = idx[1];
                        assert((variance[c] + epsilon) > 0);
                        result[i] =
                            gamma[c] * (buffer[i] - mean[c]) / std::sqrt(variance[c] + epsilon) +
                            bias[c];
                    });
Scott Thornton's avatar
Scott Thornton committed
105
                });
106
107
        }

108
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
109
        {
Shucai Xiao's avatar
Shucai Xiao committed
110
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
111
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
Shucai Xiao's avatar
Shucai Xiao committed
112
113
114
115
116
117
118
119
120
121
                    par_for(output_shape.elements(), [&](auto i) {
                        auto idx   = output_shape.multi(i);
                        idx[0]     = 0;
                        auto index = output_shape.index(idx);

                        assert((variance[index] + epsilon) > 0);
                        result[i] = gamma[index] * (buffer[i] - mean[index]) /
                                        std::sqrt(variance[index] + epsilon) +
                                    bias[index];
                    });
Scott Thornton's avatar
Scott Thornton committed
122
                });
123
        }
124
125
126
127

        return output;
    }
};
128
MIGRAPHX_REGISTER_OP(cpu_batch_norm_inference)
129

Khalique's avatar
Khalique committed
130
struct cpu_lrn
Khalique's avatar
Khalique committed
131
{
Khalique's avatar
Khalique committed
132
    op::lrn op;
Khalique's avatar
Khalique committed
133

134
135
136
137
138
139
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
140
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
141
142
143
144
145
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
146
147
148
149
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
150
            float alphaoverarea = op.alpha / float(op.size);
151
152
            int radius_lower    = (op.size - 1) / 2;
            int radius_upper    = op.size / 2 + 1;
Khalique's avatar
Khalique committed
153

154
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
155
                float scale = 0;
Khalique's avatar
Khalique committed
156
                dfor(channels)([&](int c) {
157
158
                    auto start = (c - radius_lower) < 0 ? 0 : (c - radius_lower);
                    auto end   = (c + radius_upper) > channels ? channels : (c + radius_upper);
Khalique's avatar
Khalique committed
159
160
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
161
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
162
163
164
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
165
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
166
167
168
169
170
171
172
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};
173
MIGRAPHX_REGISTER_OP(cpu_lrn)
Khalique's avatar
Khalique committed
174

Paul Fultz II's avatar
Paul Fultz II committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
template <class V, class T, class... Ts>
void visit_quantize_impl(V&& v, T&& x, Ts&&... xs)
{
    x.visit([&](auto y) { visit_all(xs...)([&](auto... ys) { v(y, ys...); }); });
}

template <class T, class... Ts>
auto visit_quantize(T&& x, Ts&&... xs)
{
    return [&](auto v) {
        // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70100
        visit_quantize_impl(v, x, xs...);
    };
}

190
template <class Op>
191
struct cpu_convolution : auto_register_op<cpu_convolution<Op>>
Paul's avatar
Paul committed
192
{
193
194
195
196
    cpu_convolution() = default;

    cpu_convolution(Op pop) : op(std::move(pop)) {}

197
    Op op;
198

199
200
201
202
203
204
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

205
    std::string name() const { return "cpu::" + op.name(); }
206
207
208
209
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Paul Fultz II's avatar
Paul Fultz II committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        visit_quantize(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_lens = input.get_shape().lens();

            auto wei_lens = weights.get_shape().lens();
            auto wei_n    = wei_lens[0];
            auto wei_c    = wei_lens[1];
            std::vector<std::size_t> win_size(wei_lens.begin() + 1, wei_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto w     = idx_o[1];
                auto n_dim = idx_o.size();

                std::vector<std::ptrdiff_t> win_start;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2 = dim - 2;
                    win_start.push_back(std::ptrdiff_t(idx_o[dim] * op.stride[d_2]) -
                                        std::ptrdiff_t(op.padding[d_2]));
                }
                const auto group_id = w / (wei_n / op.group);

                shape win_shape{output_shape.type(), win_size};

                double acc = 0.0;
                shape_for_each(win_shape, [&](auto idx_win) {
                    auto k           = idx_win[0];
                    const auto in_ch = group_id * wei_c + k;
                    std::vector<std::ptrdiff_t> idx(idx_o.begin(), idx_o.end());
                    idx[1] = in_ch;
                    std::transform(idx_win.begin() + 1,
                                   idx_win.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](std::ptrdiff_t ii, std::ptrdiff_t jj) { return ii + jj; });
                    std::vector<std::ptrdiff_t> idx_wei(idx_o.size());
                    idx_wei[0] = w;
                    std::copy(idx_win.begin(), idx_win.end(), idx_wei.begin() + 1);
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx.begin(),
                                  idx.end(),
                                  in_lens.begin(),
                                  in_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        acc +=
                            input(idx.begin(), idx.end()) * weights(idx_wei.begin(), idx_wei.end());
                    }
                });

                output[i] = acc;
261
            });
262
263
264
265
266
        });
        return result;
    }
};

kahmed10's avatar
kahmed10 committed
267
template <class Op>
268
struct cpu_deconvolution : auto_register_op<cpu_deconvolution<Op>>
kahmed10's avatar
kahmed10 committed
269
{
270
271
272
273
    cpu_deconvolution() = default;

    cpu_deconvolution(Op pop) : op(std::move(pop)) {}

kahmed10's avatar
kahmed10 committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    Op op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::" + op.name(); }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            using type = typename decltype(output)::value_type;

            std::fill(output.begin(), output.end(), type{0});

kahmed10's avatar
kahmed10 committed
292
293
294
            auto in_lens = input.get_shape().lens();
            auto in_n    = in_lens[0];
            auto in_c    = in_lens[1];
kahmed10's avatar
kahmed10 committed
295
296
297
298

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
kahmed10's avatar
kahmed10 committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

            auto out_lens = output_shape.lens();
            auto kdims    = op.kdims();

            std::vector<std::size_t> win_size{in_c};
            std::copy(in_lens.begin() + 2, in_lens.end(), std::back_inserter(win_size));
            std::copy(wei.begin() + 2, wei.end(), std::back_inserter(win_size));
            shape win_shape{output_shape.type(), win_size};

            par_dfor(in_n, wei_c)([&](int o, int k) {

                shape_for_each(win_shape, [&](auto idx_win) {
                    const int w = idx_win[0];

                    auto input_dims_start = idx_win.begin() + 1;
                    auto wei_dims_start   = idx_win.begin() + kdims + 1;

                    std::vector<std::ptrdiff_t> win_start;
                    for(std::size_t n = 0; n < kdims; ++n)
                    {
                        win_start.push_back(std::ptrdiff_t(*(input_dims_start + n) * op.stride[n]) -
                                            std::ptrdiff_t(op.padding[n]));
                    }

                    const int group_id = w / (wei_n / op.group);
                    const int in_ch    = group_id * wei_c + k;

                    std::vector<std::ptrdiff_t> idx_out{o, in_ch};

                    for(size_t n = 0; n < kdims; n++)
                    {
                        idx_out.push_back(win_start[n] + *(wei_dims_start + n) * op.dilation[n]);
                    }

                    std::vector<std::ptrdiff_t> idx_wei{w, k};
                    std::copy(wei_dims_start, idx_win.end(), std::back_inserter(idx_wei));

                    std::vector<std::ptrdiff_t> idx_in{o, w};
                    std::copy(input_dims_start, wei_dims_start, std::back_inserter(idx_in));

                    if(std::all_of(
                           idx_out.begin() + 2, idx_out.end(), [&](auto ii) { return ii >= 0; }) and
                       std::equal(idx_out.begin() + 2,
                                  idx_out.end(),
                                  out_lens.begin() + 2,
                                  out_lens.end(),
                                  std::less<std::ptrdiff_t>{}))
                    {
                        output(idx_out.begin(), idx_out.end()) +=
                            input(idx_in.begin(), idx_in.end()) *
                            weights(idx_wei.begin(), idx_wei.end());
                    }
                });

kahmed10's avatar
kahmed10 committed
353
            });
kahmed10's avatar
kahmed10 committed
354

kahmed10's avatar
kahmed10 committed
355
356
357
358
359
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
360
361
struct cpu_im2col
{
362
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
363

364
365
366
367
368
369
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
370
371
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
372

wsttiger's avatar
wsttiger committed
373
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
374
    {
Scott Thornton's avatar
Scott Thornton committed
375
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
376
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
377
378
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
379
380
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
381
382
383
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
384
385
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
386
387
388
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
389
390
            long kdiv2_h = long(kernel_h) / 2;
            long kdiv2_w = long(kernel_w) / 2;
Scott Thornton's avatar
Scott Thornton committed
391
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
392
393
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
394
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
395
            long iinput = kdiv2_h - long(pad_h);
wsttiger's avatar
wsttiger committed
396
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
397
398
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
399
                long jinput = kdiv2_w - long(pad_w);
Scott Thornton's avatar
Scott Thornton committed
400
401
402
403
404
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
405
406
407
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
408
409
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
410
411
412
413
414
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
415
416
                }
            }
Scott Thornton's avatar
Scott Thornton committed
417
        });
Scott Thornton's avatar
Scott Thornton committed
418
419
420
        return result;
    }
};
421
MIGRAPHX_REGISTER_OP(cpu_im2col)
Scott Thornton's avatar
Scott Thornton committed
422

Paul's avatar
Paul committed
423
424
425
struct max_pool
{
    static std::string name() { return "max"; }
Shucai Xiao's avatar
Shucai Xiao committed
426
427
428
429
430
    template <class T>
    static T start()
    {
        return std::numeric_limits<T>::lowest();
    }
Paul's avatar
Paul committed
431
432
433
434
435
436
437

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

Shucai Xiao's avatar
Shucai Xiao committed
438
    static double final(double x, std::size_t) { return (x); }
Paul's avatar
Paul committed
439
440
441
442
443
};

struct avg_pool
{
    static std::string name() { return "average"; }
Shucai Xiao's avatar
Shucai Xiao committed
444
445
446
447
448
449

    template <class T>
    static double start()
    {
        return 0.0;
    }
Paul's avatar
Paul committed
450
451
452

    static double apply(double x, double y) { return x + y; }

Shucai Xiao's avatar
Shucai Xiao committed
453
    static double final(double x, std::size_t y) { return (y == 0) ? 0.0 : (x / y); }
Paul's avatar
Paul committed
454
455
456
};

template <class Op>
457
struct cpu_pooling : auto_register_op<cpu_pooling<Op>>
Paul's avatar
Paul committed
458
{
459
460
461
462
    cpu_pooling() = default;

    cpu_pooling(op::pooling pop) : op(std::move(pop)) {}

463
    op::pooling op;
Paul's avatar
Paul committed
464

465
466
467
468
469
470
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
471
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
472
473
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
474
475
476
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
            using type   = typename decltype(output)::value_type;
            auto in_s    = input.get_shape();
            auto in_lens = in_s.lens();
            std::vector<std::size_t> vec_len(in_lens.begin() + 2, in_lens.end());

            par_for(output_shape.elements(), [&](auto i) {
                auto idx_o = output_shape.multi(i);
                auto n_dim = idx_o.size();
                std::vector<std::size_t> win_start;
                std::vector<std::size_t> win_size;
                for(std::size_t dim = 2; dim < n_dim; ++dim)
                {
                    auto d_2  = dim - 2;
                    int start = static_cast<int>(idx_o[dim] * op.stride[d_2]) -
                                static_cast<int>(op.padding[d_2]);
                    int end = std::min(start + op.lengths[d_2], in_lens[dim]);
                    start   = std::max(start, 0);
                    win_start.push_back(start);
                    win_size.push_back(end - start);
                }

                shape win_shape{output_shape.type(), win_size};
                auto pool_size = win_shape.elements();
Shucai Xiao's avatar
Shucai Xiao committed
500
                double acc     = Op::template start<type>();
501
502
503
504
505
506
507
508
509
510
511
512
                shape_for_each(win_shape, [&](auto idx_w) {
                    auto idx = idx_o;
                    std::transform(idx_w.begin(),
                                   idx_w.end(),
                                   win_start.begin(),
                                   idx.begin() + 2,
                                   [](auto ii, auto jj) { return ii + jj; });
                    if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
                       idx < in_lens)
                    {
                        acc = Op::apply(acc, input[in_s.index(idx)]);
                    }
Paul's avatar
Paul committed
513
                });
514
515
516

                output[i] = type(Op::final(acc, pool_size));
            });
Paul's avatar
Paul committed
517
        });
518

Paul's avatar
Paul committed
519
520
521
522
        return result;
    }
};

523
struct cpu_op
Paul's avatar
Paul committed
524
{
525
    operation op = op::identity{};
kahmed10's avatar
kahmed10 committed
526
527
528
529
530
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
531
    std::string name() const { return "cpu::op"; }
Paul's avatar
Paul committed
532
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
533
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
534
    {
Paul's avatar
Paul committed
535
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
536
    }
537
538
539
540
541
542
543
544
545
546
547
    value to_value() const
    {
        value v;
        v["name"]     = op.name();
        v["operator"] = op.to_value();
        return v;
    }
    void from_value(const value& v)
    {
        op = make_op(v.at("name").to<std::string>(), v.at("operator"));
    }
548
    friend std::ostream& operator<<(std::ostream& os, const cpu_op& x)
Paul's avatar
Paul committed
549
    {
550
551
        os << "cpu::" << x.op;
        return os;
Paul's avatar
Paul committed
552
553
    }
};
554
MIGRAPHX_REGISTER_OP(cpu_op)
Paul's avatar
Paul committed
555

Khalique's avatar
Khalique committed
556
struct cpu_pad
557
{
Khalique's avatar
Khalique committed
558
    op::pad op;
559
560
561
562
563
564
565

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

kahmed10's avatar
kahmed10 committed
566
    std::string name() const { return "cpu::pad"; }
567
568
569
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
570
        assert(output_shape.standard());
571
        argument result{output_shape};
572
573
574
575
        result.visit([&](auto output) {
            using type = typename decltype(output)::value_type;
            std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
        });
Khalique's avatar
Khalique committed
576
577

        visit_all(result, args[0])([&](auto output, auto input) {
578
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
579
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
580
581
582
583
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
584
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
585
            });
Khalique's avatar
Khalique committed
586
587
        });

588
589
590
        return result;
    }
};
591
MIGRAPHX_REGISTER_OP(cpu_pad)
592

Paul's avatar
Paul committed
593
594
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
595
    op::dot op;
596
597
598
599
600
601

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
602
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
603
604
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
605
606
607
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
608
            check_shapes{{c_shape}, *this}.not_broadcasted();
Shucai Xiao's avatar
Shucai Xiao committed
609
        }
Shucai Xiao's avatar
Shucai Xiao committed
610
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
611
    }
Paul's avatar
Paul committed
612

Paul's avatar
Paul committed
613
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
614
615
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
616
        // 3 inputs, it is alpha * A * B + beta * C, then
617
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
640
641
642
        return result;
    }
};
643
MIGRAPHX_REGISTER_OP(cpu_gemm)
Paul's avatar
Paul committed
644

645
646
647
struct cpu_quant_gemm
{
    op::quant_dot op;
648
649
650
651
652
653
654

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

655
656
657
658
659
660
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
661
            check_shapes{{c_shape}, *this}.not_broadcasted();
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
676
677
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
678
679
680
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
681
682
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
705
        migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
706
707
708
709

        return result;
    }
};
710
MIGRAPHX_REGISTER_OP(cpu_gemm)
711

Khalique's avatar
Khalique committed
712
713
714
715
716
717
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
718
        auto a = op.alpha;
Khalique's avatar
Khalique committed
719
720
721
722
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
723
724
725
726
727
728
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
729
        auto a = op.alpha;
Khalique's avatar
Khalique committed
730
731
732
733
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
734
template <typename Op>
735
struct cpu_unary : auto_register_op<cpu_unary<Op>>
Paul's avatar
Paul committed
736
{
737
738
739
740
741
742
743
    cpu_unary() = default;

    template <class T>
    cpu_unary(T pop) : op(Op{std::move(pop)})
    {
    }

Paul's avatar
Paul committed
744
    Op op;
745
746
747
748
749
750

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
751
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
752
    shape compute_shape(const std::vector<shape>& inputs) const
753
    {
754
        check_shapes{inputs, *this}.has(1);
Shucai Xiao's avatar
Shucai Xiao committed
755
        auto s = inputs.at(0);
756
        return {s.type(), s.lens()};
757
758
    }

Paul's avatar
Paul committed
759
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
760
761
    {
        argument result{output_shape};
762
763
764
        visit_all(result, args[0])([&](auto output, auto input) {
            assert(input.get_shape().standard());
            std::transform(input.begin(), input.end(), output.begin(), op.fcn());
Paul's avatar
Paul committed
765
        });
766

Paul's avatar
Paul committed
767
768
769
770
        return result;
    }
};

771
template <class Op>
772
struct cpu_softmax : auto_register_op<cpu_softmax<Op>>
Paul's avatar
Paul committed
773
{
774
775
776
777
    cpu_softmax() = default;

    cpu_softmax(Op pop) : op(std::move(pop)) {}

778
    Op op;
Khalique's avatar
Khalique committed
779
780
781
782
783
784
785

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

786
    std::string name() const { return "cpu::" + op.name(); }
Khalique's avatar
Khalique committed
787
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
788
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
789
790
    {
        argument result{output_shape};
791
792
793
794
        auto batch_lens    = output_shape.lens();
        int64_t tuned_axis = (op.axis < 0) ? op.axis + args[0].get_shape().lens().size() : op.axis;
        std::size_t n_dims = batch_lens[tuned_axis];
        batch_lens[tuned_axis] = 1;
795
796
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
797
798
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
799
800
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
801
802
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
803
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
804
                for(std::size_t j = 0; j < n_dims; ++j)
805
                {
806
807
                    idx[tuned_axis] = j;
                    batch_max[i]    = std::max(batch_max[i], input(idx.begin(), idx.end()));
808
                }
Khalique's avatar
Khalique committed
809

Shucai Xiao's avatar
Shucai Xiao committed
810
                for(std::size_t j = 0; j < n_dims; ++j)
811
                {
812
                    idx[tuned_axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
813
814
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
815
                }
Khalique's avatar
Khalique committed
816

Shucai Xiao's avatar
Shucai Xiao committed
817
                for(std::size_t j = 0; j < n_dims; ++j)
818
                {
819
                    idx[tuned_axis] = j;
820
821
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
822

Shucai Xiao's avatar
Shucai Xiao committed
823
                for(std::size_t j = 0; j < n_dims; ++j)
824
                {
825
                    idx[tuned_axis] = j;
826
827
                    output(idx.begin(), idx.end()) =
                        op.output()(output(idx.begin(), idx.end()), batch_sum[i]);
828
                }
Shucai Xiao's avatar
Shucai Xiao committed
829
830
831
832
833
834
835
            });
        });

        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
struct cpu_rnn_var_sl_last_output
{
    op::rnn_var_sl_last_output op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::rnn_var_sl_last_output"; }

    shape compute_shape(std::vector<shape> inputs) const
    {
        return op.compute_shape(std::move(inputs));
    }

    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto out_comp_lens = args[0].get_shape().lens();
        out_comp_lens[0]   = 1;
        shape out_comp_s{output_shape.type(), out_comp_lens};

        visit_all(result, args[0])([&](auto output, auto input) {
            args[1].visit([&](auto seq_lens) {
                par_for(output_shape.elements(), [&](auto i) {
                    auto idx = out_comp_s.multi(i);
                    auto b   = idx[2];
                    if(op.direction == op::rnn_direction::reverse or idx[1] == 1)
                    {
                        idx[0] = 0;
                    }
                    else
                    {
                        idx[0] = seq_lens[b] - 1;
                    }
                    output[i] = input(idx.begin(), idx.end());
                });
            });
        });

        return result;
    }
};
881
MIGRAPHX_REGISTER_OP(cpu_rnn_var_sl_last_output)
Shucai Xiao's avatar
Shucai Xiao committed
882

Paul's avatar
Paul committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
902
        apply_map["batch_norm_inference"] =
903
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
904
        apply_map["convolution"] = extend_op<cpu_convolution<op::convolution>, op::convolution>();
kahmed10's avatar
kahmed10 committed
905
906
907
908
        apply_map["deconvolution"] =
            extend_op<cpu_deconvolution<op::deconvolution>, op::deconvolution>();
        apply_map["dot"]       = extend_op<cpu_gemm, op::dot>();
        apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
909
910
911
912
913
914
915
916
917
        apply_map["quant_convolution"] =
            extend_op<cpu_convolution<op::quant_convolution>, op::quant_convolution>();
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]     = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"] = extend_op<cpu_softmax<op::logsoftmax>, op::logsoftmax>();
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]    = extend_op<cpu_softmax<op::softmax>, op::softmax>();
Shucai Xiao's avatar
Shucai Xiao committed
918
919
        apply_map["rnn_var_sl_last_output"] =
            extend_op<cpu_rnn_var_sl_last_output, op::rnn_var_sl_last_output>();
Paul's avatar
Paul committed
920
921
922
923
924
925
926
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
927
            if(it->name() == "pooling")
Paul's avatar
Paul committed
928
929
930
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
931
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
932
            {
Paul's avatar
Paul committed
933
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
934
            }
Paul's avatar
Paul committed
935
            else if(is_context_free(it->get_operator()))
936
937
938
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
939
940
941
        }
    }

942
    void apply_cpu_op(instruction_ref ins) const
943
944
945
946
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
947
948
949
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
950
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
951
952
953
954
955
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
956
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
957
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
958
959
    }

960
    void apply_pooling(instruction_ref ins) const
Paul's avatar
Paul committed
961
    {
962
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
963
        if(op.mode == "max")
Paul's avatar
Paul committed
964
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
965
        else if(op.mode == "average")
Paul's avatar
Paul committed
966
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
967
968
969
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
970
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
971
972

} // namespace cpu
Paul's avatar
Paul committed
973
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
974
} // namespace migraphx