tf.cpp 46 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
40
41
    std::vector<size_t>
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t& num_dims) const
42
    {
43
44
45
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
46
        if(is_nhwc)
47
        {
Khalique's avatar
Khalique committed
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
49
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
50
            });
51
52
53
54
        }
        return axes;
    }

Khalique's avatar
Khalique committed
55
    template <class T>
Khalique's avatar
Khalique committed
56
    std::vector<T> parse_axes(std::vector<T> axes, const size_t& num_dims) const
Khalique's avatar
Khalique committed
57
58
59
    {
        if(is_nhwc)
        {
60
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
61
62
63
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
64
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
65
            return new_axes;
Khalique's avatar
Khalique committed
66
        }
67
        return axes;
Khalique's avatar
Khalique committed
68
69
    }

Khalique's avatar
Khalique committed
70
71
72
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
73
    template <class T>
74
    void reorder_data(std::vector<T>& prev_data) const
75
76
    {
        std::vector<T> new_data(prev_data.size());
77
        for(size_t i = 0; i < new_data.size(); i++)
78
        {
Khalique's avatar
Khalique committed
79
            auto new_idx         = parse_axis(i, new_data.size());
80
            new_data.at(new_idx) = prev_data.at(i);
81
        }
82
83
84
85
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
86
    T parse_axis(const T& dim, const size_t& num_dims) const
87
    {
Khalique's avatar
Khalique committed
88
        T new_dim = dim;
Khalique's avatar
Khalique committed
89
        if(is_nhwc and num_dims >= 4)
90
91
92
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
93
94
95
96
97
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
98
99
            }
        }
Khalique's avatar
Khalique committed
100
        return new_dim;
101
102
    }

103
104
105
106
107
108
109
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
110
111
112
113
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
114
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
115

116
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
117
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
118

119
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
120
121
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
122
123
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
124
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
125
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims);
Khalique's avatar
Khalique committed
126
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
127
        add_mem_op("MatMul", &tf_parser::parse_matmul);
128
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
129
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
130
        add_mem_op("Pack", &tf_parser::parse_pack);
Khalique's avatar
Khalique committed
131
        add_mem_op("Pad", &tf_parser::parse_pad);
132
133
134
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
135
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
136
137
    }

138
139
140
141
142
143
144
145
146
147
148
149
150
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
151
152
153
    template <class F>
    void add_mem_op(std::string name, F f)
    {
154
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
155
156
157
158
159
160
161
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
162
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
163
164
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
165
166
167
168
169
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
170
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
171
172
173
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
174
175
176
177
178
179
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
180
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
196
197
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
198
199
200
201
202

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

203
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
224
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
225
226
227
228
229
230
231
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
232
233
234
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
235
236
237
238
239
240
241
242
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

243
    instruction_ref
Khalique's avatar
Khalique committed
244
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
245
    {
246
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
247
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
248
        return prog.add_instruction(op::add{}, args[0], l0);
249
250
    }

Khalique's avatar
Khalique committed
251
252
253
254
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
255
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
256
257
        size_t axis =
            parse_axis(args[axis_idx]->eval().at<int64_t>(), args[0]->get_shape().lens().size());
Khalique's avatar
Khalique committed
258
        op::concat op{axis};
259
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
260
        return prog.add_instruction(
261
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
262
263
264
265
266
267
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
268
269
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
270
271
272
273
274
275
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
276
        }
277
        return l0;
Khalique's avatar
Khalique committed
278
279
280
281
282
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
283
        op::convolution op;
Khalique's avatar
Khalique committed
284
285
        if(contains(attributes, "strides"))
        {
286
            std::vector<size_t> stride;
287
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
288
            reorder_data(stride);
289
290
            if(stride.size() != 4)
            {
291
                MIGRAPHX_THROW("strides should have 4 values");
292
            }
293
294
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
295
296
297
        }
        if(contains(attributes, "dilations"))
        {
298
            std::vector<size_t> dilation;
299
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
300
            reorder_data(dilation);
301
302
303
304
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
305
306
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
307
        }
Khalique's avatar
Khalique committed
308
        auto weights = args[1];
309
        // check if weights are from a constant
Khalique's avatar
Khalique committed
310
311

        if(weights->name() != "@param")
312
        {
Khalique's avatar
Khalique committed
313
314
315
316
317
318
319
320
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
321
        }
Khalique's avatar
Khalique committed
322

Khalique's avatar
Khalique committed
323
        auto l0 = args[0];
324
325
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
326
            const std::string& pad_mode = attributes.at("padding").s();
327
328
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
329
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
330
331
332
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
333
334

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
335
336
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
337
338
339
340
341
342
343
344
345
346
347
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
348
349
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
350
                }
351
352
353
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
354
                op.padding_mode = op::padding_mode_t::valid;
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
373
        return prog.add_instruction(op, {l0, weights});
Khalique's avatar
Khalique committed
374
375
    }

Khalique's avatar
Khalique committed
376
377
378
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
379
380
381
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
382
        op.group            = num_channels;
Khalique's avatar
Khalique committed
383

Khalique's avatar
Khalique committed
384
385
386
387
388
389
390
391
392
393
394
395
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
Khalique's avatar
Khalique committed
396
397
398
399
400
401
402
403
404
405
406
407
408
        if(contains(attributes, "dilations"))
        {
            std::vector<size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
            reorder_data(dilation);
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
        }

Khalique's avatar
Khalique committed
409
410
411
412
413
414
415
416
417
418
419
        auto weights = args[1];
        // check if weights are from a constant
        if(weights->name() != "@param")
        {
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
420
            }
Khalique's avatar
Khalique committed
421
        }
Khalique's avatar
Khalique committed
422

Khalique's avatar
Khalique committed
423
        auto l0 = args[0];
Khalique's avatar
Khalique committed
424
425
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
426
427
            const std::string& pad_mode = attributes.at("padding").s();

Khalique's avatar
Khalique committed
428
429
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
430
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
431
432
433
434
435
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
436
437
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
438
439
440
441
442
443
444
445
446
447
448
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
449
450
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
451
                }
Khalique's avatar
Khalique committed
452
453
454
455
456
457
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
458

Khalique's avatar
Khalique committed
459
460
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
461
462
463
464

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
465
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
466
467
468
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
469
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
470
471
        auto cweights    = prog.add_instruction(op::contiguous{}, weights);
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, cweights);
Khalique's avatar
Khalique committed
472

Khalique's avatar
Khalique committed
473
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
474
475
    }

Khalique's avatar
Khalique committed
476
477
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
478
479
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
480
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
481
        size_t num_dims = input_dims.size();
Khalique's avatar
Khalique committed
482
483
484
        int32_t dim     = parse_axis(args[1]->eval().at<int32_t>(), num_dims);

        if(dim < 0)
Khalique's avatar
Khalique committed
485
486
487
488
489
490
491
492
493
494
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
495
496
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
497
498
499
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
500

501
502
503
504
505
506
507
508
509
510
511
512
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
513
        std::iter_swap(perm.end() - 1, perm.end() - 2);
514
515
516
517
518
519
520

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
521
522
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
523
524
    {
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
525
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
526
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
527
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
528
529
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
530
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
531
532
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
533
534
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
535
536
537
538
539
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
540
541
542
543
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
544
545
546
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
547
548
549
550
551
552
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
553
554
555
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
556
557
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
558
559
        }
        // check if input arg needs axis to be converted to NCHW
Khalique's avatar
Khalique committed
560
        axis = parse_axis(axis, input_size);
561

Khalique's avatar
Khalique committed
562
563
564
565
566
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Khalique's avatar
Khalique committed
567
568
569
        return prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args);
    }

Khalique's avatar
Khalique committed
570
571
572
573
574
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
575
576
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
577
578
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
579
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
580
        {
Khalique's avatar
Khalique committed
581
582
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
583
584
585
586
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
587
588
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
589
        {
Khalique's avatar
Khalique committed
590
591
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
592
593
594
595
596
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

597
598
599
600
601
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
602

603
604
        if(contains(attributes, "strides"))
        {
605
            std::vector<size_t> stride;
606
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
607
            reorder_data(stride);
608
609
610
611
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
612
613
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
614
615
616
        }
        if(contains(attributes, "ksize"))
        {
617
            std::vector<size_t> ksize;
618
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
619
            reorder_data(ksize);
620
621
622
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
623
            }
624
625
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
626
        }
Khalique's avatar
Khalique committed
627
628

        auto l0 = args[0];
Khalique's avatar
Khalique committed
629
630
631
632
633
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
634
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
635
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
636
637
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
638
639
640
641
642
643
644
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
645
646
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
647
648
649
                }
                else
                {
Khalique's avatar
Khalique committed
650
651
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
652
                }
Khalique's avatar
Khalique committed
653
654
655
656
657
658
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
659
        return prog.add_instruction(op, l0);
660
    }
Khalique's avatar
Khalique committed
661

662
    instruction_ref
Khalique's avatar
Khalique committed
663
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
664
665
666
667
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
668
        auto s = args[1]->eval();
669
670
671
672
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
673
674
675
676
677
678
679
680
681
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
682
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
683
684
685
        }
    }

686
687
688
689
690
691
692
693
694
695
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
696
697
698
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
699
700
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
701
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
702
        auto axes       = parse_axes(attributes, "squeeze_dims", input_dims.size());
703
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
704

705
706
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
707
            for(size_t i = 0; i < input_dims.size(); i++)
708
            {
Khalique's avatar
Khalique committed
709
                if(input_dims.at(i) == 1)
710
711
712
713
                {
                    op.axes.push_back(i);
                }
            }
714
        }
715
        return prog.add_instruction(op, args[0]);
716
717
    }

Khalique's avatar
Khalique committed
718
719
720
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
721
722
    {
        op::slice op;
Khalique's avatar
Khalique committed
723
724
725
726
727
728
729
730
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
        if(num_axes >= 4)
        {
            reorder_data(starts);
            reorder_data(ends);
        }
731

Khalique's avatar
Khalique committed
732
733
734
735
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
736
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
737
        uint32_t bitwise_compare  = 1;
738
739
740
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
741
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
742

Khalique's avatar
Khalique committed
743
        for(size_t i = 0; i < num_axes; i++)
744
        {
745
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
746
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
747
748
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
749
        squeeze_axes = parse_axes(squeeze_axes, num_axes);
Khalique's avatar
Khalique committed
750

751
752
753
754
        auto l0 = prog.add_instruction(op, args[0]);
        return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
    }

Khalique's avatar
Khalique committed
755
756
757
758
759
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
760
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
761
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
762
763
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
764
            if(is_nhwc and dims.size() >= 4)
765
            {
766
                reorder_data(dims);
767
            }
Khalique's avatar
Khalique committed
768
769
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
770
771
772
        }
        for(auto&& p : nodes)
        {
773
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
800
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
809
810
811
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
812
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
813
814
815
816
817
818
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
819
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
820

Khalique's avatar
Khalique committed
821
822
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
882
883
884
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
912
913
914
915
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
916
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
917
918
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
919
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
920
921
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
922
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
923
924
925
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
926
927
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
928
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
929
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
930
            case tensorflow::DataType::DT_UINT16:
931
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
932
            case tensorflow::DataType::DT_INT16:
933
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
934
935
936
937
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
938
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
939
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
940
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
941
942
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
943
944
945
946
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
978
979
980
981
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
982
983
984
985
986
987
988
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
989
990
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
991
992
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
993
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
994
        case tensorflow::DataType::DT_UINT16:
995
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
996
        case tensorflow::DataType::DT_INT16:
997
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
998
        case tensorflow::DataType::DT_INT32:
999
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1000
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1001
1002
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1003
1004
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1005
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1006
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1007
        {
1008
1009
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1010
1011
1012
1013
1014
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1015
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1016
        }
Khalique's avatar
Khalique committed
1017
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1018
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1019
1020
1021
1022
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1054
1055
1056
1057
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1058
1059
1060
1061
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1062
    template <class T>
Khalique's avatar
Khalique committed
1063
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1064
                                        const size_t& shape_size)
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1077
1078
1079
1080
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1081
1082
1083
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1084
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1085
1086
        return dims;
    }
1087
1088

    template <class T>
Khalique's avatar
Khalique committed
1089
    static literal
1090
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1091
    {
Khalique's avatar
Khalique committed
1092
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1093
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1094
            return literal{{shape_type}, data};
1095
1096
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx