lowering.cpp 20.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
27
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
28
#include <migraphx/gpu/elu.hpp>
29
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/gemm.hpp>
31
#include <migraphx/gpu/greater.hpp>
32
#include <migraphx/gpu/int8_conv_pack.hpp>
33
#include <migraphx/gpu/leaky_relu.hpp>
34
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
35
36
37
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
38
39
40
41
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
42
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
43
#include <migraphx/gpu/where.hpp>
44
#include <migraphx/iterator_for.hpp>
45
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
46
#include <utility>
47
#include <functional>
Khalique's avatar
Khalique committed
48
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
49
#include <map>
Paul's avatar
Paul committed
50

Paul's avatar
Paul committed
51
namespace migraphx {
Paul's avatar
Paul committed
52
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
53
namespace gpu {
Paul's avatar
Paul committed
54
55
56

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
57
    module* mod          = nullptr;
58
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
59
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
60
    instruction_ref last{};
61
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
62
63
    bool offload_copy   = false;
    bool int8_x4_format = true;
Khalique Ahmed's avatar
Khalique Ahmed committed
64
    bool compute_fp32   = false;
Paul's avatar
Paul committed
65

66
    context& get_context() const
67
68
69
70
71
72
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
73
74
75
76
77
78
79
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

80
81
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
82
        this->last = instruction::get_output_alias(std::prev(mod->end()));
83
84
        if(this->last->name() == "@return")
        {
85
            const auto& prog_outputs = last->inputs();
86
87
88
89
90
91
92
93
94
95
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
96
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
97
98
99
100
            }
        }
    }

Khalique Ahmed's avatar
Khalique Ahmed committed
101
102
103
104
105
106
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

107
108
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
109
        assert(mod != nullptr);
110
        assert(pass != nullptr);
111

Shucai Xiao's avatar
Shucai Xiao committed
112
113
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
Khalique Ahmed's avatar
Khalique Ahmed committed
114
        const auto device_name =
115
            trim(split_string(get_device_name(), ':').front());
Khalique Ahmed's avatar
Khalique Ahmed committed
116
        if(contains(get_rocblas_fp32_archs(), device_name))
Khalique Ahmed's avatar
Khalique Ahmed committed
117
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
118
119
120
121
122
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
123
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
124
        create_output_names();
Paul's avatar
Paul committed
125

126
127
128
129
130
131
132
133
134
135
136
137
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
138
        add_generic_op("equal");
139
140
141
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
142
143
        add_generic_op("greater");
        add_generic_op("less");
144
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
145
146
147
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
148
149
150
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
151
        add_generic_op("not");
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
167
        add_generic_op("where");
168

Shucai Xiao's avatar
Shucai Xiao committed
169
        add_extend_op("abs");
170
171
172
173
174
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
175
        add_extend_op("elu");
176
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_extend_op("leaky_relu");
178
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_extend_op("lrn");
turneram's avatar
turneram committed
180
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_extend_op("nonzero");
182
        add_extend_op("pad");
183
        add_extend_op("pooling");
184
        add_extend_op("prefix_scan_sum");
185
186
187
188
189
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
190
        add_extend_op("reverse");
191
192
193
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
194
        add_extend_op("scatter");
195
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
196
        add_extend_op("topk");
197

198
199
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
200
        add_batch_norm_inference_op();
201
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
202
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
203
204
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
205
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
206
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
207
        add_neg_op();
208
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
209
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
210
        add_roialign();
211
212
    }

213
214
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
215
        if(not offload_copy)
216
            return;
217

Shucai Xiao's avatar
Shucai Xiao committed
218
        for(auto ins : iterator_for(*mod))
219
220
221
        {
            if(ins->name() != "@param")
                continue;
222

Shucai Xiao's avatar
Shucai Xiao committed
223
224
225
226
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

227
228
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
229
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
230
            mod->replace_instruction(ins, c);
231
        }
232
233

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
234
        auto ret = std::prev(mod->end());
235
236
        if(ret->name() == "@return")
        {
237
            const auto& inputs = ret->inputs();
238
239
240

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
241
            for(const auto& in : inputs)
242
            {
243
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
244
245
246
247
248
249
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
250
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
251
        }
252
253
    }

Paul's avatar
Paul committed
254
255
    void apply()
    {
256
        init();
Shucai Xiao's avatar
Shucai Xiao committed
257
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
258
        {
Paul's avatar
Paul committed
259
            auto s = it->get_shape();
260
            if(apply_map.count(it->name()) > 0)
261
            {
262
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
263
            }
Paul's avatar
Paul committed
264
        }
265

266
        copy_params();
Paul's avatar
Paul committed
267
268
    }

Paul's avatar
Paul committed
269
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
270
    {
271
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
272
        if(offload_copy)
Paul's avatar
Paul committed
273
        {
274
275
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
276
277
            return result;
        }
278
279
280
281

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
282
            return mod->add_parameter(prog_output_names[ins_alias], s);
283
284
285
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
286
            return mod->add_parameter("output", s);
287
288
        }

289
290
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
291
292
    }

Shucai Xiao's avatar
Shucai Xiao committed
293
    void add_convolution_op()
Paul's avatar
Paul committed
294
    {
295
296
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
297

298
            auto conv = miopen_convolution{op, make_conv(op)};
299
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
300

301
302
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
303

Shucai Xiao's avatar
Shucai Xiao committed
304
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
319

Shucai Xiao's avatar
Shucai Xiao committed
320
            return mod->replace_instruction(
321
322
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
323
324
    }

325
326
    template <typename Op>
    void add_gemm_op(const std::string& name)
327
328
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
329
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
330
            if(refs.size() == 2)
331
332
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
333
334
335
336
337
338
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
339
                {
340
341
342
343
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
344
345
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
346
347
348
349
                else
                {
                    refs.push_back(refs.back());
                }
350
            }
Shucai Xiao's avatar
Shucai Xiao committed
351
            return mod->replace_instruction(
Khalique Ahmed's avatar
Khalique Ahmed committed
352
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
353
354
355
        });
    }

356
357
358
359
360
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
361
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
362

Shucai Xiao's avatar
Shucai Xiao committed
363
            auto args      = ins->inputs();
364
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
365
366
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
367
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
368
369
370
        });
    }

371
372
373
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
374
    {
375
        apply_map.emplace(op_name, [=](instruction_ref ins) {
376
377
378
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
379

Shucai Xiao's avatar
Shucai Xiao committed
380
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
381
        });
Paul's avatar
Paul committed
382
    }
Paul's avatar
Paul committed
383

384
385
386
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
387
    {
388
389
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
390
391
392
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
393

Shucai Xiao's avatar
Shucai Xiao committed
394
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
395
        });
Khalique's avatar
Khalique committed
396
397
    }

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
413
    void add_batch_norm_inference_op()
414
    {
415
416
417
418
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
433
434
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
435
436
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
437
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
438

Shucai Xiao's avatar
Shucai Xiao committed
439
440
441
442
443
444
445
446
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
447

448
        });
449
    }
Shucai Xiao's avatar
Shucai Xiao committed
450
451
452
453
454
455
456

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
457
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
458
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
459
            return mod->replace_instruction(
460
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
461
462
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
463

Shucai Xiao's avatar
Shucai Xiao committed
464
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
465
466
467
468
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
469
470
471
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
494
495
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
496
497
498
499
500
501
502
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
503

Shucai Xiao's avatar
Shucai Xiao committed
504
505
506
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
507

Shucai Xiao's avatar
Shucai Xiao committed
508
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
509
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
510
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
511
512
513
514
515
516
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
517
518
519
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
577
578
};

Shucai Xiao's avatar
Shucai Xiao committed
579
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
580

Paul's avatar
Paul committed
581
} // namespace gpu
Paul's avatar
Paul committed
582
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
583
} // namespace migraphx