lowering.cpp 20.4 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Khalique Ahmed's avatar
Khalique Ahmed committed
63
    bool compute_fp32   = false;
Paul's avatar
Paul committed
64

65
    context& get_context() const
66
67
68
69
70
71
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
72
73
74
75
76
77
78
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

79
80
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
81
        this->last = instruction::get_output_alias(std::prev(mod->end()));
82
83
        if(this->last->name() == "@return")
        {
84
            const auto& prog_outputs = last->inputs();
85
86
87
88
89
90
91
92
93
94
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
95
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
96
97
98
99
            }
        }
    }

100
101
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
102
        assert(mod != nullptr);
103
        assert(pass != nullptr);
104

Shucai Xiao's avatar
Shucai Xiao committed
105
106
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
Khalique Ahmed's avatar
Khalique Ahmed committed
107
108
        if(ctx.get_stream().get_device_name() == "gfx908")
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
109
110
111
112
113
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
114
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
115
        create_output_names();
Paul's avatar
Paul committed
116

117
118
119
120
121
122
123
124
125
126
127
128
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
129
        add_generic_op("equal");
130
131
132
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
133
134
        add_generic_op("greater");
        add_generic_op("less");
135
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
136
137
138
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
139
140
141
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
142
        add_generic_op("not");
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
158
        add_generic_op("where");
159

Shucai Xiao's avatar
Shucai Xiao committed
160
        add_extend_op("abs");
161
162
163
164
165
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_extend_op("elu");
167
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("leaky_relu");
169
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
170
        add_extend_op("lrn");
turneram's avatar
turneram committed
171
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
172
        add_extend_op("nonzero");
173
        add_extend_op("pad");
174
        add_extend_op("pooling");
175
        add_extend_op("prefix_scan_sum");
176
177
178
179
180
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
181
        add_extend_op("reverse");
182
183
184
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
185
        add_extend_op("scatter");
186
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
187
        add_extend_op("topk");
188

189
190
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
191
        add_batch_norm_inference_op();
192
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
193
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
194
195
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
196
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
197
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
198
        add_neg_op();
199
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
200
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
201
        add_roialign();
202
203
    }

204
205
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
206
        if(not offload_copy)
207
            return;
208

Shucai Xiao's avatar
Shucai Xiao committed
209
        for(auto ins : iterator_for(*mod))
210
211
212
        {
            if(ins->name() != "@param")
                continue;
213

Shucai Xiao's avatar
Shucai Xiao committed
214
215
216
217
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

218
219
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
220
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
221
            mod->replace_instruction(ins, c);
222
        }
223
224

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
225
        auto ret = std::prev(mod->end());
226
227
        if(ret->name() == "@return")
        {
228
            const auto& inputs = ret->inputs();
229
230
231

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
232
            for(const auto& in : inputs)
233
            {
234
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
235
236
237
238
239
240
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
241
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
242
        }
243
244
    }

Paul's avatar
Paul committed
245
246
    void apply()
    {
247
        init();
Shucai Xiao's avatar
Shucai Xiao committed
248
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
249
        {
Paul's avatar
Paul committed
250
            auto s = it->get_shape();
251
            if(apply_map.count(it->name()) > 0)
252
            {
253
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
254
            }
Paul's avatar
Paul committed
255
        }
256

257
        copy_params();
Paul's avatar
Paul committed
258
259
    }

Paul's avatar
Paul committed
260
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
261
    {
262
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
263
        if(offload_copy)
Paul's avatar
Paul committed
264
        {
265
266
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
267
268
            return result;
        }
269
270
271
272

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
273
            return mod->add_parameter(prog_output_names[ins_alias], s);
274
275
276
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
277
            return mod->add_parameter("output", s);
278
279
        }

280
281
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
282
283
    }

Shucai Xiao's avatar
Shucai Xiao committed
284
    void add_convolution_op()
Paul's avatar
Paul committed
285
    {
286
287
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
288

289
            auto conv = miopen_convolution{op, make_conv(op)};
290
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
291

292
293
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
294

Shucai Xiao's avatar
Shucai Xiao committed
295
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
310

Shucai Xiao's avatar
Shucai Xiao committed
311
            return mod->replace_instruction(
312
313
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
314
315
    }

316
317
    template <typename Op>
    void add_gemm_op(const std::string& name)
318
319
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
320
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
321
            if(refs.size() == 2)
322
323
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
324
325
326
327
328
329
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
330
                {
331
332
333
334
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
335
336
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
337
338
339
340
                else
                {
                    refs.push_back(refs.back());
                }
341
            }
Shucai Xiao's avatar
Shucai Xiao committed
342
            return mod->replace_instruction(
Khalique Ahmed's avatar
Khalique Ahmed committed
343
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
344
345
346
        });
    }

347
348
349
350
351
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
352
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
353

Shucai Xiao's avatar
Shucai Xiao committed
354
            auto args      = ins->inputs();
355
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
356
357
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
358
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
359
360
361
        });
    }

362
363
364
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
365
    {
366
        apply_map.emplace(op_name, [=](instruction_ref ins) {
367
368
369
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
370

Shucai Xiao's avatar
Shucai Xiao committed
371
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
372
        });
Paul's avatar
Paul committed
373
    }
Paul's avatar
Paul committed
374

375
376
377
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
378
    {
379
380
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
381
382
383
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
384

Shucai Xiao's avatar
Shucai Xiao committed
385
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
386
        });
Khalique's avatar
Khalique committed
387
388
    }

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
404
    void add_batch_norm_inference_op()
405
    {
406
407
408
409
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
424
425
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
426
427
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
428
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
429

Shucai Xiao's avatar
Shucai Xiao committed
430
431
432
433
434
435
436
437
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
438

439
        });
440
    }
Shucai Xiao's avatar
Shucai Xiao committed
441
442
443
444
445
446
447

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
448
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
449
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
450
            return mod->replace_instruction(
451
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
452
453
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
454

Shucai Xiao's avatar
Shucai Xiao committed
455
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
456
457
458
459
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
460
461
462
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
485
486
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
487
488
489
490
491
492
493
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
494

Shucai Xiao's avatar
Shucai Xiao committed
495
496
497
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
498

Shucai Xiao's avatar
Shucai Xiao committed
499
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
500
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
501
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
502
503
504
505
506
507
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
508
509
510
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
568
569
};

Shucai Xiao's avatar
Shucai Xiao committed
570
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
571

Paul's avatar
Paul committed
572
} // namespace gpu
Paul's avatar
Paul committed
573
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
574
} // namespace migraphx