lowering.cpp 18.2 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
26
#include <migraphx/gpu/elu.hpp>
27
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
28
#include <migraphx/gpu/gemm.hpp>
29
#include <migraphx/gpu/greater.hpp>
30
#include <migraphx/gpu/int8_conv_pack.hpp>
31
#include <migraphx/gpu/leaky_relu.hpp>
32
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
36
37
38
39
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
40
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
41
#include <migraphx/gpu/where.hpp>
42
#include <migraphx/iterator_for.hpp>
43
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
44
#include <utility>
45
#include <functional>
Khalique's avatar
Khalique committed
46
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
47
#include <map>
Paul's avatar
Paul committed
48

Paul's avatar
Paul committed
49
namespace migraphx {
Paul's avatar
Paul committed
50
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
51
namespace gpu {
Paul's avatar
Paul committed
52
53
54

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
55
    module* mod          = nullptr;
56
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
57
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
58
    instruction_ref last{};
59
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
60
61
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
62

63
    context& get_context() const
64
65
66
67
68
69
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
70
71
72
73
74
75
76
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

77
78
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
79
        this->last = instruction::get_output_alias(std::prev(mod->end()));
80
81
        if(this->last->name() == "@return")
        {
82
            const auto& prog_outputs = last->inputs();
83
84
85
86
87
88
89
90
91
92
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
93
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
94
95
96
97
            }
        }
    }

98
99
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
100
        assert(mod != nullptr);
101
        assert(pass != nullptr);
102

Shucai Xiao's avatar
Shucai Xiao committed
103
104
105
106
107
108
109
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
110
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
111
        create_output_names();
Paul's avatar
Paul committed
112

113
114
115
116
117
118
119
120
121
122
123
124
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
125
        add_generic_op("equal");
126
127
128
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
129
130
        add_generic_op("greater");
        add_generic_op("less");
131
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
132
133
134
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
135
136
137
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
138
        add_generic_op("not");
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
154
        add_generic_op("where");
155

Shucai Xiao's avatar
Shucai Xiao committed
156
        add_extend_op("abs");
157
158
159
160
161
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
162
        add_extend_op("elu");
163
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
164
        add_extend_op("leaky_relu");
165
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_extend_op("lrn");
turneram's avatar
turneram committed
167
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("nonzero");
169
        add_extend_op("pad");
170
        add_extend_op("pooling");
171
        add_extend_op("prefix_scan_sum");
172
173
174
175
176
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
177
        add_extend_op("reverse");
178
179
180
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
181
        add_extend_op("scatter");
182
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("topk");
184

Shucai Xiao's avatar
Shucai Xiao committed
185
        add_batch_norm_inference_op();
186
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
187
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
190
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
191
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
192
193
        add_neg_op();
        add_quant_convolution_op();
194
195
    }

196
197
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
198
        if(not offload_copy)
199
            return;
200

Shucai Xiao's avatar
Shucai Xiao committed
201
        for(auto ins : iterator_for(*mod))
202
203
204
        {
            if(ins->name() != "@param")
                continue;
205

Shucai Xiao's avatar
Shucai Xiao committed
206
207
208
209
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

210
211
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
212
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
213
            mod->replace_instruction(ins, c);
214
        }
215
216

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
217
        auto ret = std::prev(mod->end());
218
219
        if(ret->name() == "@return")
        {
220
            const auto& inputs = ret->inputs();
221
222
223

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
224
            for(const auto& in : inputs)
225
            {
226
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
227
228
229
230
231
232
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
233
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
234
        }
235
236
    }

Paul's avatar
Paul committed
237
238
    void apply()
    {
239
        init();
Shucai Xiao's avatar
Shucai Xiao committed
240
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
241
        {
Paul's avatar
Paul committed
242
            auto s = it->get_shape();
243
            if(apply_map.count(it->name()) > 0)
244
            {
245
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
246
            }
Paul's avatar
Paul committed
247
        }
248

249
        copy_params();
Paul's avatar
Paul committed
250
251
    }

Paul's avatar
Paul committed
252
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
253
    {
254
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
255
        if(offload_copy)
Paul's avatar
Paul committed
256
        {
257
258
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
259
260
            return result;
        }
261
262
263
264

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
265
            return mod->add_parameter(prog_output_names[ins_alias], s);
266
267
268
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
269
            return mod->add_parameter("output", s);
270
271
        }

272
273
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
274
275
    }

Shucai Xiao's avatar
Shucai Xiao committed
276
    void add_convolution_op()
Paul's avatar
Paul committed
277
    {
278
279
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
280

281
            auto conv = miopen_convolution{op, make_conv(op)};
282
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
283

284
285
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
286

Shucai Xiao's avatar
Shucai Xiao committed
287
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
302

Shucai Xiao's avatar
Shucai Xiao committed
303
            return mod->replace_instruction(
304
305
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
306
307
    }

308
309
    template <typename Op>
    void add_gemm_op(const std::string& name)
310
311
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
312
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
313
            if(refs.size() == 2)
314
315
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
316
317
318
319
320
321
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
322
                {
323
324
325
326
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
327
328
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
329
330
331
332
                else
                {
                    refs.push_back(refs.back());
                }
333
            }
Shucai Xiao's avatar
Shucai Xiao committed
334
            return mod->replace_instruction(
335
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format}, refs);
336
337
338
        });
    }

339
340
341
342
343
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
344
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
345

Shucai Xiao's avatar
Shucai Xiao committed
346
            auto args      = ins->inputs();
347
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
348
349
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
350
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
351
352
353
        });
    }

354
355
356
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
357
    {
358
        apply_map.emplace(op_name, [=](instruction_ref ins) {
359
360
361
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
362

Shucai Xiao's avatar
Shucai Xiao committed
363
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
364
        });
Paul's avatar
Paul committed
365
    }
Paul's avatar
Paul committed
366

367
368
369
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
370
    {
371
372
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
373
374
375
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
376

Shucai Xiao's avatar
Shucai Xiao committed
377
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
378
        });
Khalique's avatar
Khalique committed
379
380
    }

Shucai Xiao's avatar
Shucai Xiao committed
381
    void add_batch_norm_inference_op()
382
    {
383
384
385
386
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
401
402
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
403
404
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
405
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
406

Shucai Xiao's avatar
Shucai Xiao committed
407
408
409
410
411
412
413
414
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
415

416
        });
417
    }
Shucai Xiao's avatar
Shucai Xiao committed
418
419
420
421
422
423
424

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
425
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
426
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
427
            return mod->replace_instruction(
428
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
429
430
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
431

Shucai Xiao's avatar
Shucai Xiao committed
432
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
433
434
435
436
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
437
438
439
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
462
463
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
464
465
466
467
468
469
470
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
Paul's avatar
Paul committed
509
510
};

Shucai Xiao's avatar
Shucai Xiao committed
511
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
512

Paul's avatar
Paul committed
513
} // namespace gpu
Paul's avatar
Paul committed
514
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
515
} // namespace migraphx