lowering.cpp 14 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
23
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
24
#include <migraphx/gpu/elu.hpp>
25
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/gpu/gemm.hpp>
27
#include <migraphx/gpu/hip.hpp>
28
#include <migraphx/gpu/int8_conv_pack.hpp>
29
30
31
32
33
34
35
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/pooling.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
36
#include <utility>
37
#include <functional>
Khalique's avatar
Khalique committed
38
#include <algorithm>
Paul's avatar
Paul committed
39

Paul's avatar
Paul committed
40
namespace migraphx {
Paul's avatar
Paul committed
41
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
42
namespace gpu {
Paul's avatar
Paul committed
43
44
45

struct miopen_apply
{
46
47
    program* prog        = nullptr;
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
48
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
49
    instruction_ref last{};
50
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Paul's avatar
Paul committed
51

52
53
54
55
56
57
58
    context& get_context()
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
59
60
61
62
63
64
65
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    void create_output_names()
    {
        this->last = instruction::get_output_alias(std::prev(prog->end()));
        if(this->last->name() == "@return")
        {
            auto& prog_outputs = last->inputs();
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
                prog_output_names[ins] = "#output_" + std::to_string(index++);
            }
        }
    }

87
88
    void init()
    {
89
90
        assert(prog != nullptr);
        assert(pass != nullptr);
91
92

        create_output_names();
Paul's avatar
Paul committed
93

94
95
96
97
98
99
100
101
102
103
104
105
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
106
        add_generic_op("equal");
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
        add_generic_op("log");
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");

Shucai Xiao's avatar
Shucai Xiao committed
130
        add_extend_op("abs");
131
132
133
134
135
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
136
        add_extend_op("elu");
137
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
138
        add_extend_op("leaky_relu");
139
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_extend_op("lrn");
141
142
143
144
145
146
147
148
149
150
151
        add_extend_op("pad");
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
        add_extend_op("softmax");

152
153
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
154
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
155
        add_deconvolution_op();
156
        add_quant_convolution_op();
157
158
        add_pooling_op();
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
159
        add_neg_op();
160
161
    }

162
163
164
165
    void copy_params()
    {
        if(not pass->offload_copy)
            return;
166

167
168
169
170
        for(auto ins : iterator_for(*prog))
        {
            if(ins->name() != "@param")
                continue;
171

172
173
174
175
176
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
            auto c   = prog->insert_instruction(pos, hip_copy_to_gpu{}, ins, a);
            prog->replace_instruction(ins, c);
        }
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

        // return instruction
        auto ret = std::prev(prog->end());
        if(ret->name() == "@return")
        {
            auto& inputs = ret->inputs();

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
            for(auto& in : inputs)
            {
                auto p_output = prog->insert_instruction(ret, hip_copy_from_gpu{}, in);
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
            prog->add_instruction(hip_copy_from_gpu{}, ret);
        }
197
198
    }

Paul's avatar
Paul committed
199
200
    void apply()
    {
201
        init();
Paul's avatar
Paul committed
202
203
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
Paul's avatar
Paul committed
204
            auto s = it->get_shape();
205
            if(apply_map.count(it->name()) > 0)
206
            {
207
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
208
            }
Paul's avatar
Paul committed
209
        }
210

211
        copy_params();
Paul's avatar
Paul committed
212
213
    }

Paul's avatar
Paul committed
214
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
215
    {
216
217
        // Instruction's output is an input of the ret instruction
        if(pass->offload_copy)
Paul's avatar
Paul committed
218
        {
219
            auto result = prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
220
221
            return result;
        }
222
223
224
225
226
227
228
229
230
231
232
233

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
            return prog->add_parameter(prog_output_names[ins_alias], s);
        }
        else if(ins == last and tag.empty())
        {
            return prog->add_parameter("output", s);
        }

        return prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
234
235
    }

Shucai Xiao's avatar
Shucai Xiao committed
236
    void add_convolution_op()
Paul's avatar
Paul committed
237
    {
238
239
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
240

241
            auto conv = miopen_convolution{op, make_conv(op)};
242
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
243

244
245
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
262

263
264
265
            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
266
267
    }

268
269
270
271
272
273
274
    template <class Op>
    void add_gemm_op(std::string name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto beta                         = op.beta;
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
275
            if(refs.size() == 2)
276
277
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
278
279
280
281
282
283
284
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
285
                {
Shucai Xiao's avatar
Shucai Xiao committed
286
                    auto output   = insert_allocation(ins, ins->get_shape());
287
288
289
290
                    auto copy_out = prog->insert_instruction(ins, hip_copy{}, refs.back(), output);
                    refs.back()   = copy_out;
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
291
292
293
294
                else
                {
                    refs.push_back(refs.back());
                }
295
296
297
298
299
300
            }

            return prog->replace_instruction(ins, rocblas_gemm<Op>{Op{op.alpha, beta}}, refs);
        });
    }

301
302
303
304
305
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
306
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
307

Shucai Xiao's avatar
Shucai Xiao committed
308
            auto args      = ins->inputs();
309
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
310
311
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
312
            return prog->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
313
314
315
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
316
    void add_pooling_op()
Paul's avatar
Paul committed
317
    {
318
319
320
321
        apply_map.emplace("pooling", [=](instruction_ref ins) {
            auto&& op   = any_cast<op::pooling>(ins->get_operator());
            auto pd     = make_pooling(op);
            auto output = insert_allocation(ins, ins->get_shape());
322

323
324
325
            return prog->replace_instruction(
                ins, miopen_pooling{op, std::move(pd)}, ins->inputs().at(0), output);
        });
Paul's avatar
Paul committed
326
    }
327

328
329
330
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
331
    {
332
        apply_map.emplace(op_name, [=](instruction_ref ins) {
333
334
335
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
336

337
            return prog->replace_instruction(ins, make_op(gpu_name), refs);
338
        });
Paul's avatar
Paul committed
339
    }
Paul's avatar
Paul committed
340

341
342
343
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
344
    {
345
346
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
347
348
349
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
350

351
            return prog->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
352
        });
Khalique's avatar
Khalique committed
353
354
    }

Shucai Xiao's avatar
Shucai Xiao committed
355
    void add_batch_norm_inference_op()
356
    {
357
358
359
360
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
375
376
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
377
378
379
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
                           [&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
380

381
            return prog->replace_instruction(ins,
Shucai Xiao's avatar
Shucai Xiao committed
382
                                             miopen_batch_norm_inference{op},
Shucai Xiao's avatar
Shucai Xiao committed
383
                                             input,
Shucai Xiao's avatar
Shucai Xiao committed
384
385
386
387
388
                                             reshapes[0],
                                             reshapes[1],
                                             reshapes[2],
                                             reshapes[3],
                                             output);
Shucai Xiao's avatar
Shucai Xiao committed
389

390
        });
391
    }
Shucai Xiao's avatar
Shucai Xiao committed
392
393
394
395
396
397
398
399
400

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
            auto l0     = prog->add_literal(literal(s, zeros));
            auto output = insert_allocation(ins, s);
401
402
            return prog->replace_instruction(
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
403
404
        });
    }
Paul's avatar
Paul committed
405
406
};

407
void lowering::apply(program& p) const { miopen_apply{&p, this}.apply(); }
Paul's avatar
Paul committed
408
} // namespace gpu
Paul's avatar
Paul committed
409
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
410
} // namespace migraphx