lowering.cpp 13.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
23
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
24
#include <migraphx/gpu/elu.hpp>
25
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/gpu/gemm.hpp>
27
#include <migraphx/gpu/hip.hpp>
28
#include <migraphx/gpu/int8_conv_pack.hpp>
29
30
31
32
33
34
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
35
#include <utility>
36
#include <functional>
Khalique's avatar
Khalique committed
37
#include <algorithm>
Paul's avatar
Paul committed
38

Paul's avatar
Paul committed
39
namespace migraphx {
Paul's avatar
Paul committed
40
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
41
namespace gpu {
Paul's avatar
Paul committed
42
43
44

struct miopen_apply
{
45
46
    program* prog        = nullptr;
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
47
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
48
    instruction_ref last{};
49
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Paul's avatar
Paul committed
50

51
    context& get_context() const
52
53
54
55
56
57
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
58
59
60
61
62
63
64
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

65
66
67
68
69
    void create_output_names()
    {
        this->last = instruction::get_output_alias(std::prev(prog->end()));
        if(this->last->name() == "@return")
        {
70
            const auto& prog_outputs = last->inputs();
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
                prog_output_names[ins] = "#output_" + std::to_string(index++);
            }
        }
    }

86
87
    void init()
    {
88
89
        assert(prog != nullptr);
        assert(pass != nullptr);
90
91

        create_output_names();
Paul's avatar
Paul committed
92

93
94
95
96
97
98
99
100
101
102
103
104
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
105
        add_generic_op("equal");
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
        add_generic_op("log");
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");

Shucai Xiao's avatar
Shucai Xiao committed
129
        add_extend_op("abs");
130
131
132
133
134
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
135
        add_extend_op("elu");
136
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
137
        add_extend_op("leaky_relu");
138
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
139
        add_extend_op("lrn");
140
        add_extend_op("pad");
141
        add_extend_op("pooling");
142
143
144
145
146
147
148
149
150
151
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
        add_extend_op("softmax");

152
153
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
154
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
155
        add_deconvolution_op();
156
        add_quant_convolution_op();
157
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
158
        add_neg_op();
159
160
    }

161
162
163
164
    void copy_params()
    {
        if(not pass->offload_copy)
            return;
165

166
167
168
169
        for(auto ins : iterator_for(*prog))
        {
            if(ins->name() != "@param")
                continue;
170

171
172
173
174
175
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
            auto c   = prog->insert_instruction(pos, hip_copy_to_gpu{}, ins, a);
            prog->replace_instruction(ins, c);
        }
176
177
178
179
180

        // return instruction
        auto ret = std::prev(prog->end());
        if(ret->name() == "@return")
        {
181
            const auto& inputs = ret->inputs();
182
183
184

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
185
            for(const auto& in : inputs)
186
187
188
189
190
191
192
193
194
195
            {
                auto p_output = prog->insert_instruction(ret, hip_copy_from_gpu{}, in);
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
            prog->add_instruction(hip_copy_from_gpu{}, ret);
        }
196
197
    }

Paul's avatar
Paul committed
198
199
    void apply()
    {
200
        init();
Paul's avatar
Paul committed
201
202
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
Paul's avatar
Paul committed
203
            auto s = it->get_shape();
204
            if(apply_map.count(it->name()) > 0)
205
            {
206
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
207
            }
Paul's avatar
Paul committed
208
        }
209

210
        copy_params();
Paul's avatar
Paul committed
211
212
    }

Paul's avatar
Paul committed
213
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
214
    {
215
216
        // Instruction's output is an input of the ret instruction
        if(pass->offload_copy)
Paul's avatar
Paul committed
217
        {
218
            auto result = prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
219
220
            return result;
        }
221
222
223
224
225
226
227
228
229
230
231
232

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
            return prog->add_parameter(prog_output_names[ins_alias], s);
        }
        else if(ins == last and tag.empty())
        {
            return prog->add_parameter("output", s);
        }

        return prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
233
234
    }

Shucai Xiao's avatar
Shucai Xiao committed
235
    void add_convolution_op()
Paul's avatar
Paul committed
236
    {
237
238
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
239

240
            auto conv = miopen_convolution{op, make_conv(op)};
241
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
242

243
244
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
261

262
263
264
            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
265
266
    }

267
268
269
270
271
272
273
    template <class Op>
    void add_gemm_op(std::string name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto beta                         = op.beta;
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
274
            if(refs.size() == 2)
275
276
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
284
                {
Shucai Xiao's avatar
Shucai Xiao committed
285
                    auto output   = insert_allocation(ins, ins->get_shape());
286
287
288
289
                    auto copy_out = prog->insert_instruction(ins, hip_copy{}, refs.back(), output);
                    refs.back()   = copy_out;
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
290
291
292
293
                else
                {
                    refs.push_back(refs.back());
                }
294
295
296
297
298
299
            }

            return prog->replace_instruction(ins, rocblas_gemm<Op>{Op{op.alpha, beta}}, refs);
        });
    }

300
301
302
303
304
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
305
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
306

Shucai Xiao's avatar
Shucai Xiao committed
307
            auto args      = ins->inputs();
308
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
309
310
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
311
            return prog->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
312
313
314
        });
    }

315
316
317
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
318
    {
319
        apply_map.emplace(op_name, [=](instruction_ref ins) {
320
321
322
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
323

324
            return prog->replace_instruction(ins, make_op(gpu_name), refs);
325
        });
Paul's avatar
Paul committed
326
    }
Paul's avatar
Paul committed
327

328
329
330
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
331
    {
332
333
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
334
335
336
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
337

338
            return prog->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
339
        });
Khalique's avatar
Khalique committed
340
341
    }

Shucai Xiao's avatar
Shucai Xiao committed
342
    void add_batch_norm_inference_op()
343
    {
344
345
346
347
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
362
363
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
364
365
366
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
                           [&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
367

368
            return prog->replace_instruction(ins,
Shucai Xiao's avatar
Shucai Xiao committed
369
                                             miopen_batch_norm_inference{op},
Shucai Xiao's avatar
Shucai Xiao committed
370
                                             input,
Shucai Xiao's avatar
Shucai Xiao committed
371
372
373
374
375
                                             reshapes[0],
                                             reshapes[1],
                                             reshapes[2],
                                             reshapes[3],
                                             output);
Shucai Xiao's avatar
Shucai Xiao committed
376

377
        });
378
    }
Shucai Xiao's avatar
Shucai Xiao committed
379
380
381
382
383
384
385
386
387

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
            auto l0     = prog->add_literal(literal(s, zeros));
            auto output = insert_allocation(ins, s);
388
389
            return prog->replace_instruction(
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
390
391
        });
    }
Paul's avatar
Paul committed
392
393
};

394
void lowering::apply(program& p) const { miopen_apply{&p, this}.apply(); }
Paul's avatar
Paul committed
395
} // namespace gpu
Paul's avatar
Paul committed
396
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
397
} // namespace migraphx