lowering.cpp 19.7 KB
Newer Older
1
#include <cstring>
Shucai Xiao's avatar
Shucai Xiao committed
2
#include <iterator>
Paul's avatar
Paul committed
3
4
5
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
6
#include <migraphx/make_op.hpp>
7
8
#include <migraphx/operation.hpp>
#include <migraphx/value.hpp>
9
10
11
12
13
14
15

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
16
#include <migraphx/op/if_op.hpp>
17
18
19
20
21
22
23
24
25
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
26
27
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
28
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
29
#include <migraphx/gpu/elu.hpp>
30
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
31
#include <migraphx/gpu/gemm.hpp>
32
#include <migraphx/gpu/greater.hpp>
33
#include <migraphx/gpu/int8_conv_pack.hpp>
34
#include <migraphx/gpu/leaky_relu.hpp>
35
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
37
38
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
39
40
41
42
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
43
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
44
#include <migraphx/gpu/where.hpp>
45
#include <migraphx/iterator_for.hpp>
46
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
47
#include <utility>
48
#include <functional>
Khalique's avatar
Khalique committed
49
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
50
#include <map>
Paul's avatar
Paul committed
51

Paul's avatar
Paul committed
52
namespace migraphx {
Paul's avatar
Paul committed
53
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
54
namespace gpu {
Paul's avatar
Paul committed
55
56
57

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
58
    module* mod          = nullptr;
59
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
60
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
61
    instruction_ref last{};
62
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
63
64
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
65

66
    context& get_context() const
67
68
69
70
71
72
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
73
74
75
76
77
78
79
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

80
81
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
82
        this->last = instruction::get_output_alias(std::prev(mod->end()));
83
84
        if(this->last->name() == "@return")
        {
85
            const auto& prog_outputs = last->inputs();
86
87
88
89
90
91
92
93
94
95
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
96
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
97
98
99
100
            }
        }
    }

101
102
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
103
        assert(mod != nullptr);
104
        assert(pass != nullptr);
105

Shucai Xiao's avatar
Shucai Xiao committed
106
107
108
109
110
111
112
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
113
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
114
        create_output_names();
Paul's avatar
Paul committed
115

116
117
118
119
120
121
122
123
124
125
126
127
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
128
        add_generic_op("equal");
129
130
131
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
132
133
        add_generic_op("greater");
        add_generic_op("less");
134
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
135
136
137
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
138
139
140
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
141
        add_generic_op("not");
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
157
        add_generic_op("where");
158

Shucai Xiao's avatar
Shucai Xiao committed
159
        add_extend_op("abs");
160
161
162
163
164
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
165
        add_extend_op("elu");
166
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
167
        add_extend_op("leaky_relu");
168
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_extend_op("lrn");
170
        add_extend_op("pad");
171
        add_extend_op("pooling");
172
        add_extend_op("prefix_scan_sum");
173
174
175
176
177
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
178
        add_extend_op("reverse");
179
180
181
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
182
        add_extend_op("scatter");
183
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
184
        add_extend_op("topk");
185

186
187
        add_gemm_op("dot");
        add_int8_gemm_op("quant_dot");
188
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
189
        add_deconvolution_op();
190
        add_quant_convolution_op();
191
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
192
        add_neg_op();
Shucai Xiao's avatar
Shucai Xiao committed
193
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
194
        add_loop_op();
195
196
    }

197
198
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
199
        if(not offload_copy)
200
            return;
201

Shucai Xiao's avatar
Shucai Xiao committed
202
        for(auto ins : iterator_for(*mod))
203
204
205
        {
            if(ins->name() != "@param")
                continue;
206

Shucai Xiao's avatar
Shucai Xiao committed
207
208
209
210
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

211
212
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
213
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
214
            mod->replace_instruction(ins, c);
215
        }
216
217

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
218
        auto ret = std::prev(mod->end());
219
220
        if(ret->name() == "@return")
        {
221
            const auto& inputs = ret->inputs();
222
223
224

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
225
            for(const auto& in : inputs)
226
            {
227
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
228
229
230
231
232
233
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
234
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
235
        }
236
237
    }

Paul's avatar
Paul committed
238
239
    void apply()
    {
240
        init();
Shucai Xiao's avatar
Shucai Xiao committed
241
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
242
        {
Paul's avatar
Paul committed
243
            auto s = it->get_shape();
244
            if(apply_map.count(it->name()) > 0)
245
            {
246
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
247
            }
Paul's avatar
Paul committed
248
        }
249

250
        copy_params();
Paul's avatar
Paul committed
251
252
    }

Paul's avatar
Paul committed
253
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
254
    {
255
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
256
        if(offload_copy)
Paul's avatar
Paul committed
257
        {
258
259
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
260
261
            return result;
        }
262
263
264
265

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
266
            return mod->add_parameter(prog_output_names[ins_alias], s);
267
268
269
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
270
            return mod->add_parameter("output", s);
271
272
        }

273
274
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
275
276
    }

Shucai Xiao's avatar
Shucai Xiao committed
277
    void add_convolution_op()
Paul's avatar
Paul committed
278
    {
279
280
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
281

282
            auto conv = miopen_convolution{op, make_conv(op)};
283
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
284

285
286
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
287

Shucai Xiao's avatar
Shucai Xiao committed
288
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
303

Shucai Xiao's avatar
Shucai Xiao committed
304
            return mod->replace_instruction(
305
306
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
307
308
    }

309
    void add_int8_gemm_op(const std::string& name)
310
311
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
312
            auto&& op                         = any_cast<op::quant_dot>(ins->get_operator());
313
            std::vector<instruction_ref> refs = ins->inputs();
314
            auto beta                         = op.beta;
Shucai Xiao's avatar
Shucai Xiao committed
315
            if(refs.size() == 2)
316
317
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
318
319
320
321
322
323
324
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
325
                {
326
327
328
329
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
330
331
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
332
333
334
335
                else
                {
                    refs.push_back(refs.back());
                }
336
337
            }

Shucai Xiao's avatar
Shucai Xiao committed
338
            return mod->replace_instruction(
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
                ins,
                rocblas_gemm<op::quant_dot>{op::quant_dot{op.alpha, beta},
                                            int8_x4_format,
                                            static_cast<float>(op.alpha),
                                            static_cast<float>(beta)},
                refs);
        });
    };

    void add_gemm_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            std::vector<instruction_ref> refs = ins->inputs();
            if(refs.size() == 2)
            {
                auto output = insert_allocation(ins, ins->get_shape());
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
                {
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
                    refs.push_back(copy_out);
                }
                else
                {
                    refs.push_back(refs.back());
                }
            }
            return mod->replace_instruction(
                ins, rocblas_gemm<op::dot>{op::dot{}, int8_x4_format, 1, 0}, refs);
375
376
377
        });
    }

378
379
380
381
382
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
383
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
384

Shucai Xiao's avatar
Shucai Xiao committed
385
            auto args      = ins->inputs();
386
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
387
388
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
389
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
390
391
392
        });
    }

393
394
395
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
396
    {
397
        apply_map.emplace(op_name, [=](instruction_ref ins) {
398
399
400
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
401

Shucai Xiao's avatar
Shucai Xiao committed
402
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
403
        });
Paul's avatar
Paul committed
404
    }
Paul's avatar
Paul committed
405

406
407
408
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
409
    {
410
411
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
412
413
414
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
415

Shucai Xiao's avatar
Shucai Xiao committed
416
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
417
        });
Khalique's avatar
Khalique committed
418
419
    }

Shucai Xiao's avatar
Shucai Xiao committed
420
    void add_batch_norm_inference_op()
421
    {
422
423
424
425
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
440
441
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
442
443
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
444
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
445

Shucai Xiao's avatar
Shucai Xiao committed
446
447
448
449
450
451
452
453
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
454

455
        });
456
    }
Shucai Xiao's avatar
Shucai Xiao committed
457
458
459
460
461
462
463

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
464
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
465
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
466
            return mod->replace_instruction(
467
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
468
469
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
470

Shucai Xiao's avatar
Shucai Xiao committed
471
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
472
473
474
475
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
476
477
478
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
501
502
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
503
504
505
506
507
508
509
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
Paul's avatar
Paul committed
548
549
};

Shucai Xiao's avatar
Shucai Xiao committed
550
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
551

Paul's avatar
Paul committed
552
} // namespace gpu
Paul's avatar
Paul committed
553
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
554
} // namespace migraphx