lowering.cpp 20.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Khalique Ahmed's avatar
Khalique Ahmed committed
63
    bool compute_fp32   = false;
Paul's avatar
Paul committed
64

65
    context& get_context() const
66
67
68
69
70
71
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
72
73
74
75
76
77
78
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

79
80
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
81
        this->last = instruction::get_output_alias(std::prev(mod->end()));
82
83
        if(this->last->name() == "@return")
        {
84
            const auto& prog_outputs = last->inputs();
85
86
87
88
89
90
91
92
93
94
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
95
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
96
97
98
99
            }
        }
    }

Khalique Ahmed's avatar
Khalique Ahmed committed
100
101
102
103
104
105
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

106
107
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
108
        assert(mod != nullptr);
109
        assert(pass != nullptr);
110

Shucai Xiao's avatar
Shucai Xiao committed
111
112
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
Khalique Ahmed's avatar
Khalique Ahmed committed
113
114
        const auto device_name =
            trim(split_string(ctx.get_stream().get_device_name(), ':').front());
Khalique Ahmed's avatar
Khalique Ahmed committed
115
        if(contains(get_rocblas_fp32_archs(), device_name))
Khalique Ahmed's avatar
Khalique Ahmed committed
116
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
117
118
119
120
121
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
122
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
123
        create_output_names();
Paul's avatar
Paul committed
124

125
126
127
128
129
130
131
132
133
134
135
136
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
137
        add_generic_op("equal");
138
139
140
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
141
142
        add_generic_op("greater");
        add_generic_op("less");
143
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
144
145
146
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
147
148
149
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
150
        add_generic_op("not");
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
166
        add_generic_op("where");
167

Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("abs");
169
170
171
172
173
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
174
        add_extend_op("elu");
175
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
176
        add_extend_op("leaky_relu");
177
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
178
        add_extend_op("lrn");
turneram's avatar
turneram committed
179
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
180
        add_extend_op("nonzero");
181
        add_extend_op("pad");
182
        add_extend_op("pooling");
183
        add_extend_op("prefix_scan_sum");
184
185
186
187
188
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
189
        add_extend_op("reverse");
190
191
192
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
193
        add_extend_op("scatter");
194
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_extend_op("topk");
196

197
198
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
199
        add_batch_norm_inference_op();
200
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
201
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
202
203
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
204
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
205
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
206
        add_neg_op();
207
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
208
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
209
        add_roialign();
210
211
    }

212
213
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
214
        if(not offload_copy)
215
            return;
216

Shucai Xiao's avatar
Shucai Xiao committed
217
        for(auto ins : iterator_for(*mod))
218
219
220
        {
            if(ins->name() != "@param")
                continue;
221

Shucai Xiao's avatar
Shucai Xiao committed
222
223
224
225
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

226
227
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
228
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
229
            mod->replace_instruction(ins, c);
230
        }
231
232

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
233
        auto ret = std::prev(mod->end());
234
235
        if(ret->name() == "@return")
        {
236
            const auto& inputs = ret->inputs();
237
238
239

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
240
            for(const auto& in : inputs)
241
            {
242
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
243
244
245
246
247
248
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
249
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
250
        }
251
252
    }

Paul's avatar
Paul committed
253
254
    void apply()
    {
255
        init();
Shucai Xiao's avatar
Shucai Xiao committed
256
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
257
        {
Paul's avatar
Paul committed
258
            auto s = it->get_shape();
259
            if(apply_map.count(it->name()) > 0)
260
            {
261
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
262
            }
Paul's avatar
Paul committed
263
        }
264

265
        copy_params();
Paul's avatar
Paul committed
266
267
    }

Paul's avatar
Paul committed
268
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
269
    {
270
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
271
        if(offload_copy)
Paul's avatar
Paul committed
272
        {
273
274
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
275
276
            return result;
        }
277
278
279
280

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
281
            return mod->add_parameter(prog_output_names[ins_alias], s);
282
283
284
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
285
            return mod->add_parameter("output", s);
286
287
        }

288
289
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
290
291
    }

Shucai Xiao's avatar
Shucai Xiao committed
292
    void add_convolution_op()
Paul's avatar
Paul committed
293
    {
294
295
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
296

297
            auto conv = miopen_convolution{op, make_conv(op)};
298
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
299

300
301
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
302

Shucai Xiao's avatar
Shucai Xiao committed
303
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
318

Shucai Xiao's avatar
Shucai Xiao committed
319
            return mod->replace_instruction(
320
321
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
322
323
    }

324
325
    template <typename Op>
    void add_gemm_op(const std::string& name)
326
327
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
328
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
329
            if(refs.size() == 2)
330
331
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
332
333
334
335
336
337
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
338
                {
339
340
341
342
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
343
344
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
345
346
347
348
                else
                {
                    refs.push_back(refs.back());
                }
349
            }
Shucai Xiao's avatar
Shucai Xiao committed
350
            return mod->replace_instruction(
Khalique Ahmed's avatar
Khalique Ahmed committed
351
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
352
353
354
        });
    }

355
356
357
358
359
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
360
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
361

Shucai Xiao's avatar
Shucai Xiao committed
362
            auto args      = ins->inputs();
363
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
364
365
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
366
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
367
368
369
        });
    }

370
371
372
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
373
    {
374
        apply_map.emplace(op_name, [=](instruction_ref ins) {
375
376
377
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
378

Shucai Xiao's avatar
Shucai Xiao committed
379
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
380
        });
Paul's avatar
Paul committed
381
    }
Paul's avatar
Paul committed
382

383
384
385
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
386
    {
387
388
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
389
390
391
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
392

Shucai Xiao's avatar
Shucai Xiao committed
393
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
394
        });
Khalique's avatar
Khalique committed
395
396
    }

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
412
    void add_batch_norm_inference_op()
413
    {
414
415
416
417
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
432
433
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
434
435
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
436
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
437

Shucai Xiao's avatar
Shucai Xiao committed
438
439
440
441
442
443
444
445
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
446

447
        });
448
    }
Shucai Xiao's avatar
Shucai Xiao committed
449
450
451
452
453
454
455

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
456
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
457
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
458
            return mod->replace_instruction(
459
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
460
461
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
462

Shucai Xiao's avatar
Shucai Xiao committed
463
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
464
465
466
467
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
468
469
470
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
493
494
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
495
496
497
498
499
500
501
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
502

Shucai Xiao's avatar
Shucai Xiao committed
503
504
505
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
506

Shucai Xiao's avatar
Shucai Xiao committed
507
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
508
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
509
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
510
511
512
513
514
515
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
516
517
518
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
576
577
};

Shucai Xiao's avatar
Shucai Xiao committed
578
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
579

Paul's avatar
Paul committed
580
} // namespace gpu
Paul's avatar
Paul committed
581
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
582
} // namespace migraphx