lowering.cpp 17.4 KB
Newer Older
1
#include <rocblas.h>
Paul's avatar
Paul committed
2
3
4
5
6
7
8
9
10
11
12
13
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
14
15
#include <migraphx/gpu/argmax.hpp>
#include <migraphx/gpu/argmin.hpp>
Paul's avatar
Paul committed
16
17
18
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
19
#include <migraphx/gpu/deconvolution.hpp>
20
#include <migraphx/gpu/quant_convolution.hpp>
Paul's avatar
Paul committed
21
22
#include <migraphx/gpu/contiguous.hpp>
#include <migraphx/gpu/relu.hpp>
Khalique's avatar
Khalique committed
23
24
#include <migraphx/gpu/sigmoid.hpp>
#include <migraphx/gpu/abs.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/gpu/leaky_relu.hpp>
Khalique's avatar
Khalique committed
26
#include <migraphx/gpu/elu.hpp>
Paul's avatar
Paul committed
27
#include <migraphx/gpu/softmax.hpp>
28
#include <migraphx/gpu/logsoftmax.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/add.hpp>
30
#include <migraphx/gpu/sub.hpp>
31
#include <migraphx/gpu/div.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
32
#include <migraphx/gpu/exp.hpp>
33
#include <migraphx/gpu/erf.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
#include <migraphx/gpu/log.hpp>
35
#include <migraphx/gpu/sin.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
#include <migraphx/gpu/sign.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
37
38
#include <migraphx/gpu/cos.hpp>
#include <migraphx/gpu/tan.hpp>
39
40
#include <migraphx/gpu/sinh.hpp>
#include <migraphx/gpu/cosh.hpp>
41
#include <migraphx/gpu/tanh.hpp>
42
43
44
#include <migraphx/gpu/asin.hpp>
#include <migraphx/gpu/acos.hpp>
#include <migraphx/gpu/atan.hpp>
45
46
47
#include <migraphx/gpu/asinh.hpp>
#include <migraphx/gpu/acosh.hpp>
#include <migraphx/gpu/atanh.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/gpu/mul.hpp>
Khalique's avatar
Khalique committed
49
50
#include <migraphx/gpu/max.hpp>
#include <migraphx/gpu/min.hpp>
51
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
52
53
54
#include <migraphx/gpu/pooling.hpp>
#include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/concat.hpp>
55
#include <migraphx/gpu/pad.hpp>
56
#include <migraphx/gpu/gather.hpp>
Khalique's avatar
Khalique committed
57
#include <migraphx/gpu/lrn.hpp>
58
#include <migraphx/gpu/convert.hpp>
Khalique's avatar
Khalique committed
59
#include <migraphx/gpu/clip.hpp>
60
#include <migraphx/gpu/round.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
61
62
#include <migraphx/gpu/ceil.hpp>
#include <migraphx/gpu/floor.hpp>
Khalique's avatar
Khalique committed
63
#include <migraphx/gpu/rsqrt.hpp>
64
#include <migraphx/gpu/sqrt.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
65
#include <migraphx/gpu/reduce_max.hpp>
66
#include <migraphx/gpu/reduce_mean.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
67
#include <migraphx/gpu/reduce_min.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
68
69
#include <migraphx/gpu/reduce_prod.hpp>
#include <migraphx/gpu/reduce_sum.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
70
#include <migraphx/gpu/pow.hpp>
Khalique's avatar
Khalique committed
71
#include <migraphx/gpu/sqdiff.hpp>
72
#include <migraphx/gpu/int8_conv_pack.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
73
#include <migraphx/gpu/prelu.hpp>
kahmed10's avatar
kahmed10 committed
74
#include <migraphx/gpu/recip.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
75
#include <migraphx/gpu/rnn_variable_seq_lens.hpp>
Paul's avatar
Paul committed
76
#include <utility>
77
#include <functional>
Khalique's avatar
Khalique committed
78
#include <algorithm>
Paul's avatar
Paul committed
79

Paul's avatar
Paul committed
80
namespace migraphx {
Paul's avatar
Paul committed
81
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
82
namespace gpu {
Paul's avatar
Paul committed
83
84
85

struct miopen_apply
{
86
87
    program* prog        = nullptr;
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
88
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
89
    instruction_ref last{};
90
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Paul's avatar
Paul committed
91

92
93
94
95
96
97
98
    context& get_context()
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
99
100
101
102
103
104
105
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    void create_output_names()
    {
        this->last = instruction::get_output_alias(std::prev(prog->end()));
        if(this->last->name() == "@return")
        {
            auto& prog_outputs = last->inputs();
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
                prog_output_names[ins] = "#output_" + std::to_string(index++);
            }
        }
    }

127
128
    void init()
    {
129
130
        assert(prog != nullptr);
        assert(pass != nullptr);
131
132

        create_output_names();
Paul's avatar
Paul committed
133

134
135
136
137
138
139
        add_miopen_simple_op<miopen_abs>("abs", make_abs);

        add_miopen_extend_op<miopen_leaky_relu, op::leaky_relu>("leaky_relu", make_leaky_relu);
        add_miopen_extend_op<miopen_elu, op::elu>("elu", make_elu);

        add_generic_op<hip_add>("add");
140
        add_generic_op<hip_sub>("sub");
141
        add_generic_op<hip_exp>("exp");
Shucai Xiao's avatar
Shucai Xiao committed
142
        add_generic_op<hip_erf>("erf");
143
        add_generic_op<hip_log>("log");
144
145
146
147
148
        add_generic_op<hip_sin>("sin");
        add_generic_op<hip_cos>("cos");
        add_generic_op<hip_tan>("tan");
        add_generic_op<hip_sinh>("sinh");
        add_generic_op<hip_cosh>("cosh");
149
        add_generic_op<hip_tanh>("tanh");
150
151
152
        add_generic_op<hip_asin>("asin");
        add_generic_op<hip_acos>("acos");
        add_generic_op<hip_atan>("atan");
153
154
155
        add_generic_op<hip_asinh>("asinh");
        add_generic_op<hip_acosh>("acosh");
        add_generic_op<hip_atanh>("atanh");
156
        add_generic_op<hip_sqrt>("sqrt");
157
        add_generic_op<hip_mul>("mul");
158
        add_generic_op<hip_div>("div");
Khalique's avatar
Khalique committed
159
160
        add_generic_op<hip_max>("max");
        add_generic_op<hip_min>("min");
Khalique's avatar
Khalique committed
161
        add_generic_op<hip_rsqrt>("rsqrt");
162
        add_generic_op<hip_round>("round");
163
        add_generic_op<hip_pow>("pow");
Khalique's avatar
Khalique committed
164
        add_generic_op<hip_sqdiff>("sqdiff");
165
        add_generic_op<hip_relu>("relu");
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_generic_op<hip_prelu>("prelu");
Shucai Xiao's avatar
Shucai Xiao committed
167
        add_generic_op<hip_sign>("sign");
168
        add_generic_op<hip_sigmoid>("sigmoid");
Shucai Xiao's avatar
Shucai Xiao committed
169
170
        add_generic_op<hip_ceil>("ceil");
        add_generic_op<hip_floor>("floor");
kahmed10's avatar
kahmed10 committed
171
        add_generic_op<hip_recip>("recip");
172
        add_generic_op<miopen_contiguous>("contiguous");
173
174

        add_extend_op<hip_concat, op::concat>("concat");
Khalique's avatar
Khalique committed
175
        add_extend_op<hip_softmax, op::softmax>("softmax");
176
        add_extend_op<hip_logsoftmax, op::logsoftmax>("logsoftmax");
177
178
        add_extend_op<hip_argmax, op::argmax>("argmax");
        add_extend_op<hip_argmin, op::argmin>("argmin");
Khalique's avatar
Khalique committed
179
        add_extend_op<hip_gather, op::gather>("gather");
180
        add_extend_op<hip_pad, op::pad>("pad");
181
        add_extend_op<hip_convert, op::convert>("convert");
Khalique's avatar
Khalique committed
182
        add_extend_op<hip_clip, op::clip>("clip");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op<hip_reduce_max, op::reduce_max>("reduce_max");
184
        add_extend_op<hip_reduce_mean, op::reduce_mean>("reduce_mean");
Shucai Xiao's avatar
Shucai Xiao committed
185
        add_extend_op<hip_reduce_min, op::reduce_min>("reduce_min");
Shucai Xiao's avatar
Shucai Xiao committed
186
187
        add_extend_op<hip_reduce_prod, op::reduce_prod>("reduce_prod");
        add_extend_op<hip_reduce_sum, op::reduce_sum>("reduce_sum");
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
        add_extend_op<hip_rnn_var_sl_shift_output, op::rnn_var_sl_shift_output>(
            "rnn_var_sl_shift_output");
        add_extend_op<hip_rnn_var_sl_shift_sequence, op::rnn_var_sl_shift_sequence>(
            "rnn_var_sl_shift_sequence");
        add_extend_op<hip_rnn_var_sl_last_output, op::rnn_var_sl_last_output>(
            "rnn_var_sl_last_output");
194
195
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Khalique's avatar
Khalique committed
196
        add_lrn_op();
197
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
198
        add_deconvolution_op();
199
        add_quant_convolution_op();
200
201
        add_pooling_op();
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
202
        add_neg_op();
203
204
    }

205
206
207
208
    void copy_params()
    {
        if(not pass->offload_copy)
            return;
209

210
211
212
213
        for(auto ins : iterator_for(*prog))
        {
            if(ins->name() != "@param")
                continue;
214

215
216
217
218
219
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
            auto c   = prog->insert_instruction(pos, hip_copy_to_gpu{}, ins, a);
            prog->replace_instruction(ins, c);
        }
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

        // return instruction
        auto ret = std::prev(prog->end());
        if(ret->name() == "@return")
        {
            auto& inputs = ret->inputs();

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
            for(auto& in : inputs)
            {
                auto p_output = prog->insert_instruction(ret, hip_copy_from_gpu{}, in);
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
            prog->add_instruction(hip_copy_from_gpu{}, ret);
        }
240
241
    }

Paul's avatar
Paul committed
242
243
    void apply()
    {
244
        init();
Paul's avatar
Paul committed
245
246
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
Paul's avatar
Paul committed
247
            auto s = it->get_shape();
248
            if(apply_map.count(it->name()) > 0)
249
            {
250
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
251
            }
Paul's avatar
Paul committed
252
        }
253

254
        copy_params();
Paul's avatar
Paul committed
255
256
    }

Paul's avatar
Paul committed
257
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
258
    {
259
260
        // Instruction's output is an input of the ret instruction
        if(pass->offload_copy)
Paul's avatar
Paul committed
261
        {
262
            auto result = prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
263
264
            return result;
        }
265
266
267
268
269
270
271
272
273
274
275
276

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
            return prog->add_parameter(prog_output_names[ins_alias], s);
        }
        else if(ins == last and tag.empty())
        {
            return prog->add_parameter("output", s);
        }

        return prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
Paul's avatar
Paul committed
277
278
    }

Shucai Xiao's avatar
Shucai Xiao committed
279
    void add_convolution_op()
Paul's avatar
Paul committed
280
    {
281
282
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
283

284
            auto conv = miopen_convolution{op, make_conv(op)};
285
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
286

287
288
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
305

306
307
308
            return prog->replace_instruction(
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
309
310
    }

311
312
313
314
315
316
317
    template <class Op>
    void add_gemm_op(std::string name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto beta                         = op.beta;
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
318
            if(refs.size() == 2)
319
320
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
321
322
323
324
325
326
327
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
328
                {
Shucai Xiao's avatar
Shucai Xiao committed
329
                    auto output   = insert_allocation(ins, ins->get_shape());
330
331
332
333
                    auto copy_out = prog->insert_instruction(ins, hip_copy{}, refs.back(), output);
                    refs.back()   = copy_out;
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
334
335
336
337
                else
                {
                    refs.push_back(refs.back());
                }
338
339
340
341
342
343
            }

            return prog->replace_instruction(ins, rocblas_gemm<Op>{Op{op.alpha, beta}}, refs);
        });
    }

344
345
346
347
348
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
349
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
350

Shucai Xiao's avatar
Shucai Xiao committed
351
            auto args      = ins->inputs();
352
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
353
354
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
355
            return prog->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
356
357
358
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
359
    void add_pooling_op()
Paul's avatar
Paul committed
360
    {
361
362
363
364
        apply_map.emplace("pooling", [=](instruction_ref ins) {
            auto&& op   = any_cast<op::pooling>(ins->get_operator());
            auto pd     = make_pooling(op);
            auto output = insert_allocation(ins, ins->get_shape());
365

366
367
368
            return prog->replace_instruction(
                ins, miopen_pooling{op, std::move(pd)}, ins->inputs().at(0), output);
        });
Paul's avatar
Paul committed
369
    }
370

Khalique's avatar
Khalique committed
371
    void add_lrn_op()
Khalique's avatar
Khalique committed
372
    {
Khalique's avatar
Khalique committed
373
        apply_map.emplace("lrn", [=](instruction_ref ins) {
Khalique's avatar
Khalique committed
374
375
376
377
378
379
            auto&& op   = any_cast<op::lrn>(ins->get_operator());
            auto ldesc  = make_lrn(op);
            auto output = insert_allocation(ins, ins->get_shape());
            return prog->replace_instruction(
                ins, miopen_lrn{std::move(ldesc)}, ins->inputs().at(0), output);
        });
Khalique's avatar
Khalique committed
380
    }
Paul's avatar
Paul committed
381

Shucai Xiao's avatar
Shucai Xiao committed
382
    template <class T>
383
    void add_generic_op(std::string name)
Paul's avatar
Paul committed
384
    {
385
386
387
388
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
389

390
391
            return prog->replace_instruction(ins, T{}, refs);
        });
Paul's avatar
Paul committed
392
    }
Paul's avatar
Paul committed
393

Shucai Xiao's avatar
Shucai Xiao committed
394
    template <class T, class Op>
395
    void add_extend_op(std::string name)
Khalique's avatar
Khalique committed
396
    {
397
398
399
400
401
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
402

403
404
            return prog->replace_instruction(ins, T{op}, refs);
        });
Khalique's avatar
Khalique committed
405
406
    }

Shucai Xiao's avatar
Shucai Xiao committed
407
    template <class T, class Op, class F>
408
    void add_miopen_extend_op(std::string name, F f)
Paul's avatar
Paul committed
409
    {
Shucai Xiao's avatar
Shucai Xiao committed
410
        apply_map.emplace(name, [=](instruction_ref ins) {
411
412
            auto&& op = any_cast<Op>(ins->get_operator());
            auto ad   = f(op.alpha);
413

414
            auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
415
            return prog->replace_instruction(ins, T{std::move(ad)}, ins->inputs().at(0), output);
416
        });
417
    }
418

Shucai Xiao's avatar
Shucai Xiao committed
419
    template <class T, class F>
420
    void add_miopen_simple_op(std::string name, F f)
421
    {
Shucai Xiao's avatar
Shucai Xiao committed
422
423
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto ad     = f();
424
            auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
425
            return prog->replace_instruction(ins, T{std::move(ad)}, ins->inputs().at(0), output);
426
        });
427
428
    }

Shucai Xiao's avatar
Shucai Xiao committed
429
    void add_batch_norm_inference_op()
430
    {
431
432
433
434
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
449
450
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
451
452
453
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
                           [&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
454

455
            return prog->replace_instruction(ins,
Shucai Xiao's avatar
Shucai Xiao committed
456
                                             miopen_batch_norm_inference{op},
Shucai Xiao's avatar
Shucai Xiao committed
457
                                             input,
Shucai Xiao's avatar
Shucai Xiao committed
458
459
460
461
462
                                             reshapes[0],
                                             reshapes[1],
                                             reshapes[2],
                                             reshapes[3],
                                             output);
Shucai Xiao's avatar
Shucai Xiao committed
463

464
        });
465
    }
Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
471
472
473
474
475
476
477

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
            auto l0     = prog->add_literal(literal(s, zeros));
            auto output = insert_allocation(ins, s);
            return prog->replace_instruction(ins, hip_sub{}, l0, ins->inputs().front(), output);
        });
    }
Paul's avatar
Paul committed
478
479
};

480
void lowering::apply(program& p) const { miopen_apply{&p, this}.apply(); }
Paul's avatar
Paul committed
481
} // namespace gpu
Paul's avatar
Paul committed
482
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
483
} // namespace migraphx