lowering.cpp 20.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <migraphx/gpu/compile_roialign.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
60
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
61
62
    bool offload_copy   = false;
    bool int8_x4_format = true;
Khalique Ahmed's avatar
Khalique Ahmed committed
63
    bool compute_fp32   = false;
Paul's avatar
Paul committed
64

65
    context& get_context() const
66
67
68
69
70
71
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
72
73
74
75
76
77
78
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

79
80
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
81
        this->last = instruction::get_output_alias(std::prev(mod->end()));
82
83
        if(this->last->name() == "@return")
        {
84
            const auto& prog_outputs = last->inputs();
85
86
87
88
89
90
91
92
93
94
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
95
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
96
97
98
99
            }
        }
    }

Khalique Ahmed's avatar
Khalique Ahmed committed
100
101
102
103
104
105
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

106
107
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
108
        assert(mod != nullptr);
109
        assert(pass != nullptr);
110

Shucai Xiao's avatar
Shucai Xiao committed
111
112
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
Khalique Ahmed's avatar
Khalique Ahmed committed
113
114
        const auto device_name = trim(split_string(ctx.get_stream().get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
Khalique Ahmed's avatar
Khalique Ahmed committed
115
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
116
117
118
119
120
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
121
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
122
        create_output_names();
Paul's avatar
Paul committed
123

124
125
126
127
128
129
130
131
132
133
134
135
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
136
        add_generic_op("equal");
137
138
139
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
140
141
        add_generic_op("greater");
        add_generic_op("less");
142
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
143
144
145
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
146
147
148
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
149
        add_generic_op("not");
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
165
        add_generic_op("where");
166

Shucai Xiao's avatar
Shucai Xiao committed
167
        add_extend_op("abs");
168
169
170
171
172
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
173
        add_extend_op("elu");
174
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
175
        add_extend_op("leaky_relu");
176
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_extend_op("lrn");
turneram's avatar
turneram committed
178
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_extend_op("nonzero");
180
        add_extend_op("pad");
181
        add_extend_op("pooling");
182
        add_extend_op("prefix_scan_sum");
183
184
185
186
187
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
188
        add_extend_op("reverse");
189
190
191
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
192
        add_extend_op("scatter");
193
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
194
        add_extend_op("topk");
195

196
197
        add_precompile_op("pointwise");

Shucai Xiao's avatar
Shucai Xiao committed
198
        add_batch_norm_inference_op();
199
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
200
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
201
202
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
203
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
204
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
205
        add_neg_op();
206
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
207
        add_quant_convolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
208
        add_roialign();
209
210
    }

211
212
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
213
        if(not offload_copy)
214
            return;
215

Shucai Xiao's avatar
Shucai Xiao committed
216
        for(auto ins : iterator_for(*mod))
217
218
219
        {
            if(ins->name() != "@param")
                continue;
220

Shucai Xiao's avatar
Shucai Xiao committed
221
222
223
224
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

225
226
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
227
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
228
            mod->replace_instruction(ins, c);
229
        }
230
231

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
232
        auto ret = std::prev(mod->end());
233
234
        if(ret->name() == "@return")
        {
235
            const auto& inputs = ret->inputs();
236
237
238

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
239
            for(const auto& in : inputs)
240
            {
241
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
242
243
244
245
246
247
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
248
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
249
        }
250
251
    }

Paul's avatar
Paul committed
252
253
    void apply()
    {
254
        init();
Shucai Xiao's avatar
Shucai Xiao committed
255
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
256
        {
Paul's avatar
Paul committed
257
            auto s = it->get_shape();
258
            if(apply_map.count(it->name()) > 0)
259
            {
260
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
261
            }
Paul's avatar
Paul committed
262
        }
263

264
        copy_params();
Paul's avatar
Paul committed
265
266
    }

Paul's avatar
Paul committed
267
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
268
    {
269
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
270
        if(offload_copy)
Paul's avatar
Paul committed
271
        {
272
273
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
274
275
            return result;
        }
276
277
278
279

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
280
            return mod->add_parameter(prog_output_names[ins_alias], s);
281
282
283
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
284
            return mod->add_parameter("output", s);
285
286
        }

287
288
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
289
290
    }

Shucai Xiao's avatar
Shucai Xiao committed
291
    void add_convolution_op()
Paul's avatar
Paul committed
292
    {
293
294
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
295

296
            auto conv = miopen_convolution{op, make_conv(op)};
297
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
298

299
300
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
301

Shucai Xiao's avatar
Shucai Xiao committed
302
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
317

Shucai Xiao's avatar
Shucai Xiao committed
318
            return mod->replace_instruction(
319
320
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
321
322
    }

323
324
    template <typename Op>
    void add_gemm_op(const std::string& name)
325
326
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
327
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
328
            if(refs.size() == 2)
329
330
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
331
332
333
334
335
336
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
337
                {
338
339
340
341
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
342
343
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
344
345
346
347
                else
                {
                    refs.push_back(refs.back());
                }
348
            }
Shucai Xiao's avatar
Shucai Xiao committed
349
            return mod->replace_instruction(
Khalique Ahmed's avatar
Khalique Ahmed committed
350
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
351
352
353
        });
    }

354
355
356
357
358
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
359
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
360

Shucai Xiao's avatar
Shucai Xiao committed
361
            auto args      = ins->inputs();
362
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
363
364
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
365
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
366
367
368
        });
    }

369
370
371
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
372
    {
373
        apply_map.emplace(op_name, [=](instruction_ref ins) {
374
375
376
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
377

Shucai Xiao's avatar
Shucai Xiao committed
378
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
379
        });
Paul's avatar
Paul committed
380
    }
Paul's avatar
Paul committed
381

382
383
384
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
385
    {
386
387
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
388
389
390
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
391

Shucai Xiao's avatar
Shucai Xiao committed
392
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
393
        });
Khalique's avatar
Khalique committed
394
395
    }

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    void add_precompile_op(const std::string& name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);

            return mod->replace_instruction(
                ins,
                make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
                refs,
                ins->module_inputs());
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
411
    void add_batch_norm_inference_op()
412
    {
413
414
415
416
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
431
432
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
433
434
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
435
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
436

Shucai Xiao's avatar
Shucai Xiao committed
437
438
439
440
441
442
443
444
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
445

446
        });
447
    }
Shucai Xiao's avatar
Shucai Xiao committed
448
449
450
451
452
453
454

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
455
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
456
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
457
            return mod->replace_instruction(
458
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
459
460
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
461

Shucai Xiao's avatar
Shucai Xiao committed
462
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
463
464
465
466
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
467
468
469
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
492
493
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
497
498
499
500
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
501

Shucai Xiao's avatar
Shucai Xiao committed
502
503
504
    void add_roialign()
    {
        apply_map.emplace("roialign", [=](instruction_ref ins) {
Shucai Xiao's avatar
Shucai Xiao committed
505

Shucai Xiao's avatar
Shucai Xiao committed
506
            auto s      = ins->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
507
            auto op_val = ins->get_operator().to_value();
Shucai Xiao's avatar
Shucai Xiao committed
508
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
509
510
511
512
513
514
            auto args   = ins->inputs();
            args.push_back(output);

            auto io_shapes = to_shapes(args);
            auto co        = compile_roialign(get_context(), io_shapes, op_val);
            return mod->replace_instruction(ins, co, args);
Shucai Xiao's avatar
Shucai Xiao committed
515
516
517
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
575
576
};

Shucai Xiao's avatar
Shucai Xiao committed
577
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
578

Paul's avatar
Paul committed
579
} // namespace gpu
Paul's avatar
Paul committed
580
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
581
} // namespace migraphx