gen_onnx.py 270 KB
Newer Older
1
2
3
#####################################################################################
# The MIT License (MIT)
#
Brian Pickrell's avatar
Brian Pickrell committed
4
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
24
25
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
Brian Pickrell's avatar
Brian Pickrell committed
26
# command: python3 -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
27
28
29
import numpy as np
import onnx
from onnx import helper
30
from onnx import TensorProto
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from onnx.numpy_helper import from_array


def onnx_test(external_data=False):
    def create_onnx_test(op_test):
        def run_test():
            op_info = op_test()
            if len(op_info) > 3:
                graph_def = helper.make_graph(op_info[0],
                                              op_test.__name__,
                                              op_info[1],
                                              op_info[2],
                                              initializer=op_info[3])
            else:
                graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                              op_info[1], op_info[2])
            model_def = helper.make_model(graph_def,
                                          producer_name=op_test.__name__)
            onnx.save_model(model_def,
                            '{}.onnx'.format(op_test.__name__),
                            save_as_external_data=external_data,
                            location='{}.weight'.format(op_test.__name__),
                            size_threshold=0,
                            convert_attribute=True)

        return run_test

    return create_onnx_test


@onnx_test()
Khalique's avatar
Khalique committed
62
63
64
65
66
67
68
69
70
71
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
72
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
73

Khalique's avatar
Khalique committed
74

75
@onnx_test()
76
77
78
79
80
81
82
83
84
85
86
87
88
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


89
@onnx_test()
Khalique's avatar
Khalique committed
90
91
92
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
93
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
94

Khalique's avatar
Khalique committed
95
96
97
98
99
100
101
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
102
103


104
@onnx_test()
Khalique's avatar
Khalique committed
105
106
107
108
109
110
111
112
113
114
115
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
116
    return (
Khalique's avatar
Khalique committed
117
        [node],
Khalique's avatar
Khalique committed
118
        [x, y],
Khalique's avatar
Khalique committed
119
120
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
121
122
123
124
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
125
126


127
@onnx_test()
Khalique's avatar
Khalique committed
128
def add_scalar_test():
129
130
131
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
134
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

135
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
136
137


138
@onnx_test()
Khalique's avatar
Khalique committed
139
140
141
142
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
143
144
145
146
147
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
148

Khalique's avatar
Khalique committed
149
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
150

Khalique's avatar
Khalique committed
151

152
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
153
154
155
156
157
158
159
160
161
162
163
164
165
def argmax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])

    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)

    return ([node], [x], [y])


166
@onnx_test()
Khalique's avatar
Khalique committed
167
168
169
170
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
171
172
173
174
175
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
176

Khalique's avatar
Khalique committed
177
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
178

Khalique's avatar
Khalique committed
179

180
@onnx_test()
Khalique's avatar
Khalique committed
181
182
183
184
185
186
187
188
189
190
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
191
192
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
193

194
@onnx_test()
195
196
197
198
199
200
201
202
203
204
205
206
207
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


208
@onnx_test()
Khalique's avatar
Khalique committed
209
210
211
212
213
214
215
216
217
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
218

Khalique's avatar
Khalique committed
219
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
220

Khalique's avatar
Khalique committed
221

222
@onnx_test()
223
224
225
226
227
228
229
230
231
232
233
234
235
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


236
@onnx_test()
237
238
239
240
241
242
243
244
245
246
247
248
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


249
@onnx_test()
250
251
252
253
254
255
256
257
258
259
260
261
262
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


263
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
264
265
266
267
268
269
270
271
272
def averagepool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
Brian Pickrell's avatar
Brian Pickrell committed
273
274
275
                                 kernel_shape=[3, 3, 3],
                                 strides=[2, 2, 2],
                                 pads=[1, 1, 1, 1, 1, 1])
Charlie Lin's avatar
Charlie Lin committed
276
277
278
    return ([node], [x], [out])


279
@onnx_test()
Brian Pickrell's avatar
Brian Pickrell committed
280
281
282
283
284
def averagepool_dyn_autopad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])
Charlie Lin's avatar
Charlie Lin committed
285
286

    node = onnx.helper.make_node('AveragePool',
Brian Pickrell's avatar
Brian Pickrell committed
287
288
289
290
291
292
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3],
                                 strides=[2, 2, 2],
                                 auto_pad='SAME_UPPER')
    return ([node], [x], [out])
Charlie Lin's avatar
Charlie Lin committed
293
294


295
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def averagepool_dyn_asym_padding_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x], [y])


310
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
311
312
313
314
315
316
317
318
319
320
321
322
323
def averagepool_dyn_cip_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 count_include_pad=1)

    return ([node], [x], [y])


324
@onnx_test()
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


340
@onnx_test()
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


357
@onnx_test()
358
359
360
361
362
363
364
365
366
367
368
369
370
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


371
@onnx_test()
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


386
@onnx_test()
387
388
389
390
391
392
393
394
395
396
397
398
399
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


400
@onnx_test()
401
402
403
404
405
406
407
408
409
410
411
412
413
def batch_norm_flat_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [1])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)
414
415
416
417

    return ([node], [x, scale, bias, mean, var], [out])


418
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def batch_norm_rank_2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [5])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [5])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


436
@onnx_test()
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def batch_norm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


453
@onnx_test()
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def batch_norm_2d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


470
@onnx_test()
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def batch_norm_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16,
                                      [2, 2, 2, 2, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [2])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16, [2])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT16, [2])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16,
                                        [2, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


490
@onnx_test()
491
492
493
494
495
496
497
498
499
500
501
502
def batch_norm_invalid_bias_rank_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3, 1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])
503
504
505
506

    return ([node], [x, scale, bias, mean, var], [out])


507
@onnx_test()
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
def binary_dyn_brcst_prelu_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


524
@onnx_test()
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def binary_dyn_brcst_add_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


541
@onnx_test()
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def binary_dyn_brcst_attr_error_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 outputs=['out'],
                                 broadcast=1,
                                 axis=1)

    return ([node], [arg0, arg1], [arg_out])


558
@onnx_test()
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
def binary_dyn_brcst_mul_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Mul',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


575
@onnx_test()
Khalique's avatar
Khalique committed
576
577
578
579
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
580
581
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
582
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
583

kahmed10's avatar
kahmed10 committed
584

585
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
586
587
588
589
590
591
592
593
594
595
596
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
597

kahmed10's avatar
kahmed10 committed
598

599
@onnx_test()
600
601
602
603
604
605
606
607
608
609
610
611
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)

    return ([node], [x], [y])


612
@onnx_test()
613
614
615
616
617
618
619
620
621
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


622
@onnx_test()
623
624
625
626
627
628
629
630
631
632
633
634
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)

    return ([node], [x], [y])


635
@onnx_test()
636
637
638
639
640
641
642
643
644
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


645
@onnx_test()
646
647
648
649
650
651
652
653
654
655
656
657
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)

    return ([node], [x], [y])


658
@onnx_test()
Khalique's avatar
Khalique committed
659
660
661
662
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
663
664
665
666
667
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
668

Khalique's avatar
Khalique committed
669
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
670

Khalique's avatar
Khalique committed
671

672
@onnx_test()
kahmed10's avatar
kahmed10 committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


687
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
688
689
690
691
692
693
694
695
696
697
698
699
700
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


701
@onnx_test()
kahmed10's avatar
kahmed10 committed
702
703
704
705
706
707
708
709
710
711
712
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


713
@onnx_test()
kahmed10's avatar
kahmed10 committed
714
715
716
717
718
719
720
721
722
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


723
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
728
729
730
731
732
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


733
@onnx_test()
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
@onnx_test()
def clip_dyn_min_max_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


@onnx_test()
def clip_dyn_min_only_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


776
@onnx_test()
Khalique's avatar
Khalique committed
777
778
779
780
781
782
783
784
785
786
787
788
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
789
790
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
@onnx_test()
def concat_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, None, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

    return ([node], [x, y], [z])


808
@onnx_test()
Khalique's avatar
Khalique committed
809
810
811
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
812

Khalique's avatar
Khalique committed
813
814
815
816
817
818
819
820
821
822
823
824
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
825
    return ([node], [], [y])
Khalique's avatar
Khalique committed
826

Khalique's avatar
Khalique committed
827

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
@onnx_test()
def constant_value_float_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_float=[1.0])

    return ([node], [], [])


@onnx_test()
def constant_value_floats_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_floats=[1.0, 2.0, 3.0])

    return ([node], [], [])


@onnx_test()
def constant_value_int_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_int=[1])

    return ([node], [], [])


@onnx_test()
def constant_value_ints_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_ints=[1, 2, 3])

    return ([node], [], [])


@onnx_test()
def constant_no_attributes_test():

    node = onnx.helper.make_node('Constant', inputs=[], outputs=[])

    return ([node], [], [])


@onnx_test()
def constant_multiple_attributes_test():
    x = np.array([0, 1, 2])

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_floats=[1.0, 2.0],
                                 value_ints=[1, 2],
                                 value=onnx.helper.make_tensor(
                                     name='const_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=x.shape,
                                     vals=x.flatten().astype(float)))

    return ([node], [], [])


898
@onnx_test()
Khalique's avatar
Khalique committed
899
def constant_fill_test():
Khalique's avatar
Khalique committed
900
901
902
903
904
905
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
906
907
908
909
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
910
911
    )

Khalique's avatar
Khalique committed
912
    return ([node], [], [value])
Khalique's avatar
Khalique committed
913

Khalique's avatar
Khalique committed
914

915
@onnx_test()
Khalique's avatar
Khalique committed
916
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
917
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
918
919
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
920
921
922
923
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
924
925
926
927
928
929
930
931
932
933
934
935

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
936
937
938
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
939
940
    )

Khalique's avatar
Khalique committed
941
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
942

Khalique's avatar
Khalique committed
943

944
@onnx_test()
Khalique's avatar
Khalique committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
961
    return ([node], [], [y])
Khalique's avatar
Khalique committed
962

Khalique's avatar
Khalique committed
963

964
@onnx_test()
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
def constant_empty_scalar_int64_test():
    x = np.array([]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='one_element_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


984
@onnx_test()
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
def constant_one_val_int64_test():
    x = np.array([1]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='empty_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


1004
@onnx_test()
Khalique's avatar
Khalique committed
1005
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
1006
1007
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
1008
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
1009
    empty_ts = helper.make_tensor(name='empty_tensor',
Charlie Lin's avatar
Charlie Lin committed
1010
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1011
                                  dims=empty_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1012
                                  vals=empty_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
1025
        value=tensor_val,
Khalique's avatar
Khalique committed
1026
1027
    )

Khalique's avatar
Khalique committed
1028
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1029

Khalique's avatar
Khalique committed
1030

1031
@onnx_test()
Khalique's avatar
Khalique committed
1032
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
1033
1034
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
1035
1036

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1037
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1038
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1039
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1040
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1041
1042
1043
1044
1045
1046
1047
1048
1049

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
1050
1051
1052
1053
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
1054

Khalique's avatar
Khalique committed
1055
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1056

Khalique's avatar
Khalique committed
1057

Charlie Lin's avatar
Charlie Lin committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
@onnx_test()
def const_of_shape_default_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT64,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(np.int64))
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'])

    return ([shape_const, node], [], [y])


1080
@onnx_test()
Khalique's avatar
Khalique committed
1081
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
1082
1083
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
1084
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1085
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1086
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1087
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1088
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1089
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
1090
1091
1092
1093
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
1094
    )
Charlie Lin's avatar
Charlie Lin committed
1095
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])
Khalique's avatar
Khalique committed
1096
1097
1098
1099
1100

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
1101

Khalique's avatar
Khalique committed
1102
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1103

Khalique's avatar
Khalique committed
1104

1105
@onnx_test()
Khalique's avatar
Khalique committed
1106
1107
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1108
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1109
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1110
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1111
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1112
1113
1114
1115
1116
1117
1118
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1119

Khalique's avatar
Khalique committed
1120
1121
1122
1123
1124
1125
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1126
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1127

Khalique's avatar
Khalique committed
1128

Charlie Lin's avatar
Charlie Lin committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
@onnx_test()
def const_of_shape_dyn_float_test():
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])

    output_dims = helper.make_tensor_value_info('output_dims',
                                                TensorProto.INT64, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['output_dims'],
                                 outputs=['y'],
                                 value=tensor_val)

    return ([node], [output_dims], [y])


@onnx_test()
def const_of_shape_dyn_int64_test():
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])

    output_dims = helper.make_tensor_value_info('output_dims',
                                                TensorProto.INT64, [3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['output_dims'],
                                 outputs=['y'],
                                 value=tensor_val)

    return ([node], [output_dims], [y])


1163
@onnx_test()
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1174
@onnx_test()
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1186
@onnx_test()
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


1200
@onnx_test()
Khalique's avatar
Khalique committed
1201
1202
1203
1204
1205
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
1215
1216


1217
@onnx_test()
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


1233
@onnx_test()
Khalique's avatar
Khalique committed
1234
1235
1236
1237
1238
1239
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
1240
1241
1242
1243
1244
1245
1246
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
1247
1248


1249
@onnx_test()
Khalique's avatar
Khalique committed
1250
1251
1252
1253
1254
1255
1256
1257
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
1258
1259
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
1260

Khalique's avatar
Khalique committed
1261
1262
1263
1264
1265
1266
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1267

Khalique's avatar
Khalique committed
1268
1269
1270
1271
1272
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
1273

Khalique's avatar
Khalique committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
1283
1284


1285
@onnx_test()
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
def conv_dynamic_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [None, 1, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


Charlie Lin's avatar
Charlie Lin committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
@onnx_test()
def conv_dynamic_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT,
                                        [None, 2, 28, 28])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1314
@onnx_test()
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
def conv_dynamic_img_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1326
@onnx_test()
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
def conv_dynamic_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1338
@onnx_test()
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
def conv_dynamic_img_and_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1351
@onnx_test()
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
def conv_dynamic_batch_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1364
@onnx_test()
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
def conv_dynamic_img_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1379
@onnx_test()
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
def conv_dynamic_kernel_same_lower_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_LOWER')
    return ([node], [x, y], [out])


1393
@onnx_test()
Khalique's avatar
Khalique committed
1394
1395
1396
1397
1398
1399
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
1400
1401
1402
1403
1404
1405
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1406

Khalique's avatar
Khalique committed
1407
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
1408

Khalique's avatar
Khalique committed
1409
1410
1411
1412
1413
1414
1415
1416
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
1417
1418


1419
@onnx_test()
Khalique's avatar
Khalique committed
1420
1421
1422
1423
1424
1425
1426
1427
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
1428
1429
1430
1431
1432
1433
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1434

Khalique's avatar
Khalique committed
1435
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
1436

Khalique's avatar
Khalique committed
1437
1438
1439
1440
1441
1442
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
1443

Khalique's avatar
Khalique committed
1444
1445
1446
1447
1448
1449
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1450

Khalique's avatar
Khalique committed
1451
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
1452

Khalique's avatar
Khalique committed
1453
1454
1455
1456
1457
1458
1459
1460
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
1461
1462


1463
@onnx_test()
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1479
@onnx_test()
Khalique's avatar
Khalique committed
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1490
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1491

Khalique's avatar
Khalique committed
1492

1493
@onnx_test()
Khalique's avatar
Khalique committed
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1504
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1505

Khalique's avatar
Khalique committed
1506

1507
@onnx_test()
1508
def conv_transpose_test():
kahmed10's avatar
kahmed10 committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1521
@onnx_test()
1522
def conv_transpose_bias_test():
kahmed10's avatar
kahmed10 committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


1536
@onnx_test()
1537
def conv_transpose_input_pads_strides_test():
kahmed10's avatar
kahmed10 committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


1551
@onnx_test()
1552
def conv_transpose_input_pads_asymm_test():
kahmed10's avatar
kahmed10 committed
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


1566
@onnx_test()
1567
def conv_transpose_input_pads_asymm_1d_test():
kahmed10's avatar
kahmed10 committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


1582
@onnx_test()
1583
def conv_transpose_output_padding_test():
kahmed10's avatar
kahmed10 committed
1584
1585
1586
1587
1588
1589
1590
1591
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1592
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1593
1594
1595
1596

    return ([node], [x, w], [y])


1597
@onnx_test()
1598
def conv_transpose_output_padding_3d_test():
kahmed10's avatar
kahmed10 committed
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


1612
@onnx_test()
1613
def conv_transpose_output_shape_test():
kahmed10's avatar
kahmed10 committed
1614
1615
1616
1617
1618
1619
1620
1621
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1622
1623
1624
1625
1626
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


1627
@onnx_test()
1628
def conv_transpose_output_shape_3d_test():
kahmed10's avatar
kahmed10 committed
1629
1630
1631
1632
1633
1634
1635
1636
1637
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1638
1639
1640
1641

    return ([node], [x, w], [y])


1642
@onnx_test()
1643
def conv_transpose_stride_test():
kahmed10's avatar
kahmed10 committed
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
@onnx_test()
def conv_transpose_auto_pad_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 3, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 auto_pad='SAME_UPPER')

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_asym_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_img_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [1, 1, None, None])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [1, 1, None, None])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1731
@onnx_test()
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1746
@onnx_test()
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1761
@onnx_test()
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')

    return ([node], [x], [y])


1776
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1790
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1804
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)

    return ([node], [x], [y])


1818
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1832
@onnx_test()
1833
def dequantizelinear_test():
turneram's avatar
turneram committed
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


1847
@onnx_test()
turneram's avatar
turneram committed
1848
def dequantizelinear_zero_point_test():
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


1878
@onnx_test()
1879
1880
1881
1882
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


1883
@onnx_test()
1884
1885
1886
1887
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


1888
@onnx_test()
Khalique's avatar
Khalique committed
1889
def dropout_test():
Khalique's avatar
Khalique committed
1890
1891
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1892

Khalique's avatar
Khalique committed
1893
1894
1895
1896
1897
1898
1899
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1900
1901


1902
@onnx_test()
Khalique's avatar
Khalique committed
1903
1904
1905
1906
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1907
1908
1909
1910
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1911

Khalique's avatar
Khalique committed
1912
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1913

Khalique's avatar
Khalique committed
1914

1915
@onnx_test()
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


1968
@onnx_test()
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


2007
@onnx_test()
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2027
@onnx_test()
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2045
@onnx_test()
Khalique's avatar
Khalique committed
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2056
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2057

Khalique's avatar
Khalique committed
2058

2059
@onnx_test()
Khalique's avatar
Khalique committed
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2070
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2071

Khalique's avatar
Khalique committed
2072

2073
@onnx_test()
Khalique's avatar
Khalique committed
2074
2075
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
2076
2077
2078
2079
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
2080
2081
2082
2083
2084
2085
2086
2087
2088
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
2089
2090
2091
2092
2093
2094
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
2095

2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
@onnx_test(True)
def external_constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])

    tensor = from_array(x)
    tensor.name = 'const_tensor'

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=['0'],
                                 value=tensor)

    return ([node], [], [y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2125
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2138
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2151
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2152
2153
2154
2155
2156
2157
2158
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2159
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2170
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2171
2172
2173
2174
2175
2176
2177
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


2178
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2190
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2191
2192
2193
2194
2195
2196
2197
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2198
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2209
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
    return ([node], [T1], [T2])


2220
@onnx_test()
Khalique's avatar
Khalique committed
2221
2222
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2223
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
2224
2225
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
2226
2227
2228
2229
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
2230

Khalique's avatar
Khalique committed
2231
2232
2233
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
2234

kahmed10's avatar
kahmed10 committed
2235

2236
@onnx_test()
Khalique's avatar
Khalique committed
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


2259
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
def flatten_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 5])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 20])

    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])

    return ([node], [x], [y])


2272
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2284

kahmed10's avatar
kahmed10 committed
2285

2286
@onnx_test()
Khalique's avatar
Khalique committed
2287
2288
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
2289
2290
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2291
2292
2293
2294
2295
2296
2297
2298
2299
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
2300
2301
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
2302

Brian Pickrell's avatar
Brian Pickrell committed
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
@onnx_test()
def gather_scalar_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


@onnx_test()
def gather_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                      [None, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [None, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2337
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


2353
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2369
@onnx_test()
turneram's avatar
turneram committed
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
def gathernd_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


Brian Pickrell's avatar
Brian Pickrell committed
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
@onnx_test()
def gathernd_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


2395
@onnx_test()
turneram's avatar
turneram committed
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
def gathernd_batch_dims_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])

    node = onnx.helper.make_node(
        'GatherND',
        inputs=['data', 'indices'],
        outputs=['y'],
        batch_dims=1,
    )

    return ([node], [x, i], [y])


2411
@onnx_test()
Khalique's avatar
Khalique committed
2412
def gemm_test():
Charlie Lin's avatar
Charlie Lin committed
2413
2414
2415
2416
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2417

Khalique's avatar
Khalique committed
2418
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_no_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 7])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [7, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2438
2439
2440
2441
2442
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

Charlie Lin's avatar
Charlie Lin committed
2443
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2444
2445


2446
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2447
2448
2449
2450
2451
def gemm_brcst_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [5, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2452

Khalique's avatar
Khalique committed
2453
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2454
2455
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2456
2457
2458
2459
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2460
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2461
2462


2463
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2464
2465
2466
2467
2468
def gemm_half_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT16, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT16, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT16, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT16, [6, 7])
Khalique's avatar
Khalique committed
2469

Khalique's avatar
Khalique committed
2470
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2471
2472
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2473
2474
2475
2476
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2477
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2478
2479


2480
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2481
2482
2483
2484
def gemm_dyn_inner_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [None, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [None, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Shucai Xiao's avatar
Shucai Xiao committed
2485
2486

    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 transA=1)

    return ([node], [A, B], [Y])


@onnx_test()
def gemm_dyn_outer_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [A, B], [Y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2512
def gemm_dyn_bias_test():
Charlie Lin's avatar
Charlie Lin committed
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=1.0,
                                 beta=1.0,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_rank_error():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [4, 1, 8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [4, 1, 8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4, 1, 6, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Shucai Xiao's avatar
Shucai Xiao committed
2538
2539
2540
2541
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2542
    return ([node], [A, B, C], [Y])
Shucai Xiao's avatar
Shucai Xiao committed
2543
2544


2545
@onnx_test()
Khalique's avatar
Khalique committed
2546
def globalavgpool_test():
Khalique's avatar
Khalique committed
2547
2548
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2549
2550
2551
2552
2553
2554
2555

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2556
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2557

Khalique's avatar
Khalique committed
2558

2559
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
def globalavgpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2574
@onnx_test()
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
def globallppool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2588
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
def globallppool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2603
@onnx_test()
Khalique's avatar
Khalique committed
2604
def globalmaxpool_test():
Khalique's avatar
Khalique committed
2605
2606
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2607
2608
2609
2610
2611
2612
2613

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2614
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2615

Khalique's avatar
Khalique committed
2616

2617
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
def globalmaxpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2632
@onnx_test()
Khalique's avatar
Khalique committed
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2652
@onnx_test()
Khalique's avatar
Khalique committed
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2670
@onnx_test()
turneram's avatar
turneram committed
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


2686
@onnx_test()
Khalique's avatar
Khalique committed
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2699
2700
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2701

2702
@onnx_test()
turneram's avatar
turneram committed
2703
2704
2705
2706
2707
2708
2709
2710
2711
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2712
@onnx_test()
turneram's avatar
turneram committed
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)

    return ([node], [x], [y])


2726
@onnx_test()
turneram's avatar
turneram committed
2727
2728
2729
2730
2731
2732
2733
2734
2735
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2736
@onnx_test()
turneram's avatar
turneram committed
2737
2738
2739
2740
2741
2742
2743
2744
2745
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2746
@onnx_test()
2747
2748
2749
2750
2751
2752
2753
2754
2755
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2756
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2757
2758
2759
2760
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_else_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

2846
    cond = np.array([0]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
@onnx_test()
def if_then_else_multi_output_shapes_inlined_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

2916
    cond = np.array([1]).astype(bool)
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res1, res2], [cond_tensor, xt_tensor, yt_tensor])


@onnx_test()
def if_then_else_multi_output_shapes_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3, 1).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res1, res2], [xt_tensor, yt_tensor])


3005
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3006
3007
3008
3009
3010
3011
3012
3013
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
3014
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
3028
3029
3030
3031
3032
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
3033

Shucai Xiao's avatar
Shucai Xiao committed
3034
3035
3036
3037
3038
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


3053
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


3105
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


3140
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


3192
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


3260
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_then_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

3351
    cond = np.array([1]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


3367
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])

    one = np.ones([1]).astype(np.float)
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))

    two = np.array([2]).astype(np.float)
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))

    three = np.array([3]).astype(np.float)
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])


3438
@onnx_test()
Khalique's avatar
Khalique committed
3439
def imagescaler_test():
Khalique's avatar
Khalique committed
3440
3441
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
3442

Khalique's avatar
Khalique committed
3443
3444
3445
3446
3447
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
3448

Khalique's avatar
Khalique committed
3449
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3450

Khalique's avatar
Khalique committed
3451

3452
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


3466
@onnx_test()
Khalique's avatar
Khalique committed
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
3478
3479
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
3480

3481
@onnx_test()
Khalique's avatar
Khalique committed
3482
3483
3484
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
3485
3486
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3487
3488
3489
3490
3491
3492
3493

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3494
3495
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3496

3497
@onnx_test()
Khalique's avatar
Khalique committed
3498
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
3499
3500
3501
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
3502
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3503
3504
3505
3506
3507
3508
3509

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3510
3511
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3512

3513
@onnx_test()
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


3533
@onnx_test()
kahmed10's avatar
kahmed10 committed
3534
3535
3536
3537
3538
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
3539
3540
3541
3542
3543
3544
3545
3546

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3547
@onnx_test()
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
def instance_norm_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3561
@onnx_test()
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
def instance_norm_type_mismatch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
@onnx_test()
def instance_norm_dyn_batch_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test()
def instance_norm_dyn_batch_half_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3607
@onnx_test()
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
def instance_norm_invalid_type_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3621
@onnx_test()
3622
3623
3624
3625
3626
def instance_norm_nonbroadcastable_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
kahmed10's avatar
kahmed10 committed
3627
3628
3629
3630
3631
3632
3633
3634

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3635
@onnx_test()
kahmed10's avatar
kahmed10 committed
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3660
3661
3662
3663
3664
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3665
@onnx_test()
kahmed10's avatar
kahmed10 committed
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3690
3691
3692
3693
3694
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3695
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3708
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3721
@onnx_test()
kahmed10's avatar
kahmed10 committed
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


3784
@onnx_test()
Khalique's avatar
Khalique committed
3785
3786
3787
3788
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
3789
3790
3791
3792
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
3793

Khalique's avatar
Khalique committed
3794
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3795

Khalique's avatar
Khalique committed
3796

3797
@onnx_test()
Khalique's avatar
Khalique committed
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


3817
@onnx_test()
Khalique's avatar
Khalique committed
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


3835
@onnx_test()
Khalique's avatar
Khalique committed
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


3851
@onnx_test()
Khalique's avatar
Khalique committed
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3862
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3863

Khalique's avatar
Khalique committed
3864

3865
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3876
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3887
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3898
@onnx_test()
Khalique's avatar
Khalique committed
3899
3900
3901
3902
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
3903
3904
3905
3906
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
3907

Khalique's avatar
Khalique committed
3908
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3909

Khalique's avatar
Khalique committed
3910

3911
@onnx_test()
3912
3913
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
3914
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
3915
3916
3917
3918
3919
3920
3921
3922

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
3923
3924
3925
3926
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
3927

3928
    return ([node0, node1], [x], [y])
3929
3930


3931
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


3968
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


4009
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
    return ([node], [x], [y])


4021
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


4035
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


4049
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
    return ([node], [x], [y])


4061
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
    return ([node], [x], [y])


4073
@onnx_test()
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
def lppool_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=1)
    return ([node], [x], [y])


4086
@onnx_test()
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
def lppool_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=2)
    return ([node], [x], [y])


4099
@onnx_test()
Khalique's avatar
Khalique committed
4100
4101
4102
4103
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
4104
4105
4106
4107
4108
4109
4110
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4111

Khalique's avatar
Khalique committed
4112
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4113

Khalique's avatar
Khalique committed
4114

4115
@onnx_test()
Khalique's avatar
Khalique committed
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4127
4128
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4129

4130
@onnx_test()
Khalique's avatar
Khalique committed
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4142
4143
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4144

4145
@onnx_test()
Khalique's avatar
Khalique committed
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4157
4158
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4159

4160
@onnx_test()
Khalique's avatar
Khalique committed
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4172
4173
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4174

4175
@onnx_test()
Khalique's avatar
Khalique committed
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4187
4188
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4189

4190
@onnx_test()
Khalique's avatar
Khalique committed
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4202
4203
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4204

Charlie Lin's avatar
Charlie Lin committed
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
@onnx_test()
def matmul_dyn_mm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_broadcast_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4280
@onnx_test()
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Charlie Lin's avatar
Charlie Lin committed
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
@onnx_test()
def matmulinteger_dyn_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [None, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [None, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [None, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4310
@onnx_test()
Khalique's avatar
Khalique committed
4311
4312
4313
4314
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4315
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4316
4317
4318
4319
4320
4321
4322

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4323
4324
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4325

4326
@onnx_test()
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


4342
@onnx_test()
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


4356
@onnx_test()
turneram's avatar
turneram committed
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


4375
@onnx_test()
turneram's avatar
turneram committed
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4391
@onnx_test()
turneram's avatar
turneram committed
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4406
@onnx_test()
turneram's avatar
turneram committed
4407
4408
4409
4410
4411
4412
4413
4414
4415
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


4416
@onnx_test()
turneram's avatar
turneram committed
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4430
@onnx_test()
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
def mean_integral_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.INT32, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.INT32, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4444
@onnx_test()
Khalique's avatar
Khalique committed
4445
4446
4447
4448
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4449
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4450
4451
4452
4453
4454
4455
4456

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4457
4458
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4459

4460
@onnx_test()
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
def mod_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT32, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4471
@onnx_test()
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
def mod_test_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4482
@onnx_test()
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
def mod_test_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
    )

    return ([node], [a, b], [y])


4497
@onnx_test()
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
def mod_test_fmod():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4513
@onnx_test()
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
def mod_test_fmod_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 fmod=1)

    return ([node], [a, b], [y])


4527
@onnx_test()
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
def mod_test_fmod_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4543
@onnx_test()
turneram's avatar
turneram committed
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4560
@onnx_test()
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


4575
@onnx_test()
turneram's avatar
turneram committed
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])

    return ([node], [input], [output])


4592
@onnx_test()
turneram's avatar
turneram committed
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4611
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4612
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
4613
4614
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
4615
4616
4617
4618
4619
4620

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4621
@onnx_test()
4622
4623
4624
4625
4626
4627
4628
4629
4630
def neg_dynamic_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [None, 3])

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4631
@onnx_test()
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
Charlie Lin's avatar
Charlie Lin committed
4642
                                        [None, 3])
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)

    return ([node], [b, s, mo, iou, st], [out])


4656
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
def nms_use_dyn_output_false_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 use_dyn_output=0)

    return ([node], [b, s, mo, iou, st], [out])


4681
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
def nms_dynamic_batch_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [None, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [None, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1,
                                 use_dyn_output=1)

    return ([node], [b, s, mo, iou, st], [out])


4708
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
def nms_dynamic_boxes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, None, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, 1, None])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4733
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
def nms_dynamic_classes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, None, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4758
@onnx_test()
4759
4760
4761
4762
4763
4764
4765
4766
4767
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4768
@onnx_test()
4769
4770
4771
4772
4773
4774
4775
4776
4777
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4778
@onnx_test()
Khalique's avatar
Khalique committed
4779
4780
4781
4782
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
4783
4784
4785
4786
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4787

Khalique's avatar
Khalique committed
4788
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4789

Khalique's avatar
Khalique committed
4790

4791
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [x], [y])


4803
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4819
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4835
@onnx_test()
kahmed10's avatar
kahmed10 committed
4836
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
4837
4838
4839
4840
4841
4842
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
4854
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
4855
4856


4857
@onnx_test()
Khalique's avatar
Khalique committed
4858
4859
4860
4861
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
4862
4863
4864
4865
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4866

Khalique's avatar
Khalique committed
4867
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4868

Khalique's avatar
Khalique committed
4869

4870
@onnx_test()
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


4902
@onnx_test()
kahmed10's avatar
kahmed10 committed
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


4925
@onnx_test()
kahmed10's avatar
kahmed10 committed
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Charlie Lin's avatar
Charlie Lin committed
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
@onnx_test()
def pad_attr_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test()
def pad_cnst_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad', inputs=['0', 'arg_pad'], outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test()
def pad_dyn_reflect_error():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0'],
                                 pads=[0, 2, 0, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


4995
@onnx_test()
Khalique's avatar
Khalique committed
4996
4997
4998
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4999
5000
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
5001
5002
5003
5004
5005
5006
5007

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
5008
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
5009

kahmed10's avatar
kahmed10 committed
5010

5011
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5027
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5043
@onnx_test()
turneram's avatar
turneram committed
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


5060
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5076
@onnx_test()
5077
def quantizelinear_test():
turneram's avatar
turneram committed
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5091
@onnx_test()
turneram's avatar
turneram committed
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5106
@onnx_test()
turneram's avatar
turneram committed
5107
def quantizelinear_zero_point_test():
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


5137
@onnx_test()
5138
5139
5140
5141
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


5142
@onnx_test()
5143
5144
5145
5146
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


5147
@onnx_test()
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


5169
@onnx_test()
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


5185
@onnx_test()
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5200
@onnx_test()
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


5214
@onnx_test()
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)

    return ([node], [input], [output])


5236
@onnx_test()
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


5252
@onnx_test()
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


5274
@onnx_test()
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


5290
@onnx_test()
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5305
@onnx_test()
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


5319
@onnx_test()
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)

    return ([node], [input], [output])


5341
@onnx_test()
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


5357
@onnx_test()
kahmed10's avatar
kahmed10 committed
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5400
@onnx_test()
kahmed10's avatar
kahmed10 committed
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5443
@onnx_test()
kahmed10's avatar
kahmed10 committed
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


5457
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Brian Pickrell's avatar
Brian Pickrell committed
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
@onnx_test
def reducel1_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel1_dyn_noaxes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 keepdims=0)

    return ([node], [x], [y])


5500
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5515
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5530
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5545
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5546
5547
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5548
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Brian Pickrell's avatar
Brian Pickrell committed
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564

    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducemax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
5575

5576
@onnx_test()
Khalique's avatar
Khalique committed
5577
5578
5579
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
5580
    axes = [2, 3]
Khalique's avatar
Khalique committed
5581

Khalique's avatar
Khalique committed
5582
5583
5584
5585
5586
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5587

Khalique's avatar
Khalique committed
5588
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5589

kahmed10's avatar
kahmed10 committed
5590

5591
@onnx_test()
Khalique's avatar
Khalique committed
5592
5593
5594
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5595
    axes = [2]
Khalique's avatar
Khalique committed
5596

Khalique's avatar
Khalique committed
5597
5598
5599
5600
5601
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5602

Khalique's avatar
Khalique committed
5603
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5604

kahmed10's avatar
kahmed10 committed
5605

5606
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5619

kahmed10's avatar
kahmed10 committed
5620

5621
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5622
def reduceprod_test():
Khalique's avatar
Khalique committed
5623
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5624
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5625
    axes = [2]
Khalique's avatar
Khalique committed
5626

Shucai Xiao's avatar
Shucai Xiao committed
5627
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
5628
5629
5630
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
5631
                                 keepdims=1)
Khalique's avatar
Khalique committed
5632

Khalique's avatar
Khalique committed
5633
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5634

Khalique's avatar
Khalique committed
5635

5636
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5637
def reducesum_test():
Khalique's avatar
Khalique committed
5638
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5639
5640
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
5641

Khalique's avatar
Khalique committed
5642
5643
5644
5645
5646
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5647

Khalique's avatar
Khalique committed
5648
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5649

Khalique's avatar
Khalique committed
5650

5651
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


5670
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


5689
@onnx_test()
Khalique's avatar
Khalique committed
5690
5691
5692
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
5693
    axes = [2, 3]
Khalique's avatar
Khalique committed
5694

Khalique's avatar
Khalique committed
5695
5696
5697
5698
5699
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5700

Khalique's avatar
Khalique committed
5701
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5702

Khalique's avatar
Khalique committed
5703

5704
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5719
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5734
@onnx_test()
Khalique's avatar
Khalique committed
5735
5736
5737
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
5738
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
5739
5740
5741
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
5742
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5743

Khalique's avatar
Khalique committed
5744
5745
5746
5747
5748
5749
5750
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
5751
5752


5753
@onnx_test()
Khalique's avatar
Khalique committed
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
5765
5766
5767
5768
5769
5770
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
5771
5772


5773
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5774
5775
5776
5777
5778
5779
5780
5781
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
5782
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


5795
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


5816
@onnx_test()
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


5835
@onnx_test()
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


5861
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


5884
@onnx_test()
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


5905
@onnx_test()
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


5924
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


5943
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


5966
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
def reversesequence_4D_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[2, 1],
    )
    return ([node], [x], [y])


5982
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
def reversesequence_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    seq_lens = np.array([1, 2, 3, 4])
    seq_lens_tensor = helper.make_tensor(
        name="sequence_lens",
        data_type=TensorProto.INT64,
        dims=seq_lens.shape,
        vals=seq_lens.astype(np.int64),
    )
    arg_seq_lens = helper.make_node(
        "Constant",
        inputs=[],
        outputs=['arg_seq_lens'],
        value=seq_lens_tensor,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x', 'arg_seq_lens'],
        outputs=['y'],
        time_axis=1,
        batch_axis=0,
    )
    return ([arg_seq_lens, node], [x], [y])


6010
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
def reversesequence_batch_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=2,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


6026
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
def reversesequence_rank_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


6040
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
def reversesequence_sequence_lens_shape_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2],
    )
    return ([node], [x], [y])


6054
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
def reversesequence_same_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=1,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


6070
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
def reversesequence_time_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=3,
        batch_axis=0,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


6086
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
def reversesequence_time_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


6102
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])

    return ([node], [x, roi, bi], [y])


6116
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


6137
@onnx_test()
6138
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
6139
6140
6141
6142
6143
6144
6145
6146
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6157
@onnx_test()
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6177
@onnx_test()
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
6189
6190
6191
6192
6193
6194
6195
6196
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6197
@onnx_test()
turneram's avatar
turneram committed
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")

    return ([node], [data, indices, updates], [output])


6215
@onnx_test()
turneram's avatar
turneram committed
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")

    return ([node], [data, indices, updates], [output])


6233
@onnx_test()
turneram's avatar
turneram committed
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
@onnx_test()
def scatternd_dyn_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                         [None, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [None, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [None, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [None, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


6268
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


6282
@onnx_test()
Khalique's avatar
Khalique committed
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6293
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6294

Khalique's avatar
Khalique committed
6295

6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
@onnx_test()
def shape_dyn_test0():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test1():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], start=2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test3():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=1,
                                 end=2)

    return ([node], [x], [y])


@onnx_test()
def shape_end_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], end=5)

    return ([node], [x], [y])


@onnx_test()
def shape_start_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-6)

    return ([node], [x], [y])


@onnx_test()
def shape_end_less_start_error():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=3,
                                 end=1)

    return ([node], [x], [y])


6391
@onnx_test()
Khalique's avatar
Khalique committed
6392
6393
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
6394
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
6395
6396
6397
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
6398
6399
6400
6401
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
6423
6424
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
6425

6426
@onnx_test()
Khalique's avatar
Khalique committed
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6437
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6438

Khalique's avatar
Khalique committed
6439

6440
@onnx_test()
Khalique's avatar
Khalique committed
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6451
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6452

Khalique's avatar
Khalique committed
6453

6454
@onnx_test()
Khalique's avatar
Khalique committed
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6465
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6466

Khalique's avatar
Khalique committed
6467

6468
@onnx_test()
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
def sinh_dynamic_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


6482
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6494
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6506
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6518
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6530
@onnx_test()
kahmed10's avatar
kahmed10 committed
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
@onnx_test()
def slice_constant_test():
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=[3, 2],
                                  vals=[0, 1, 2, 3, 4, 5])

    x = onnx.helper.make_node('Constant',
                              inputs=[],
                              outputs=['x'],
                              value=x_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['x'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([x, node], [], [y])


Brian Pickrell's avatar
Brian Pickrell committed
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
@onnx_test()
def slice_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0],
                                 starts=[1],
                                 ends=[2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_step_dyn_test():
    # A slice command with non - default steps will have a "Step"
    # instruction added in parsing.
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_reverse_dyn_test():
    # A slice command with negative step on any axis will have
    # a "Reverse" instruction added in parsing.

    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6695
@onnx_test()
kahmed10's avatar
kahmed10 committed
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


6727
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6728
6729
6730
6731
6732
6733
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6780
@onnx_test()
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6781
6782
6783
6784
6785
6786
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

6802
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
6803
6804
6805
6806
6807
6808
6809
6810
6811
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
    start = np.array([-1, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6833
@onnx_test()
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
def slice_5arg_step_test():
    step = np.array([-2, 2])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-5, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6886
@onnx_test()
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
6897

Khalique's avatar
Khalique committed
6898
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6899

Khalique's avatar
Khalique committed
6900

Charlie Lin's avatar
Charlie Lin committed
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
@onnx_test()
def slice_var_input_static0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_static1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


@onnx_test()
def slice_var_input_dyn0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_dyn1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


@onnx_test()
def slice_var_input_steps_error():
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.FLOAT, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.FLOAT, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.FLOAT, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
        outputs=['output'])

    return ([arg_step, node], [data, starts, ends, axes], [output])


6987
@onnx_test()
Khalique's avatar
Khalique committed
6988
6989
6990
6991
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
6992
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
6993

Khalique's avatar
Khalique committed
6994
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6995

Khalique's avatar
Khalique committed
6996

6997
@onnx_test()
6998
6999
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
7000
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

7011
    return ([node0, node1], [x], [y])
7012
7013


7014
@onnx_test()
7015
7016
7017
7018
7019
7020
7021
7022
7023
def softmax_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 4])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 4, 4])

    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


7024
@onnx_test()
turneram's avatar
turneram committed
7025
7026
7027
7028
7029
7030
7031
7032
7033
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
7034
7035
7036
7037
7038
7039
7040
7041
7042
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


7043
@onnx_test()
turneram's avatar
turneram committed
7044
7045
7046
7047
7048
7049
7050
7051
7052
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
7053
7054
7055
7056
7057
7058
7059
7060
7061
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


7062
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


7079
@onnx_test()
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


7095
@onnx_test()
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


7110
@onnx_test()
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
def split_test_no_attribute():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4) * 75
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


7137
@onnx_test()
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
def split_test_no_attribute_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4)
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


7164
@onnx_test()
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
def split_test_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[1, 1, 1])

    return ([node], [x], [y1, y2, y3])


7180
@onnx_test()
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
def split_test_no_attribute_invalid_input_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[])

    return ([node], [x], [y1, y2, y3])


7196
@onnx_test()
Khalique's avatar
Khalique committed
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
7207
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7208

Khalique's avatar
Khalique committed
7209

7210
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


7227
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


7244
@onnx_test()
Khalique's avatar
Khalique committed
7245
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
7246
7247
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
7248
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
7249
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
7250

Khalique's avatar
Khalique committed
7251
7252
7253
7254
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
7255

Khalique's avatar
Khalique committed
7256
7257
7258
7259
7260
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

7261
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
7262
7263


7264
@onnx_test()
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
def squeeze_unsqueeze_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, None, 1, 1, None, 1])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, None, 1, None, 1])

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])

    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [y])


7284
@onnx_test()
Khalique's avatar
Khalique committed
7285
7286
7287
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
7288
7289
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
7290
7291
7292
7293
7294

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
7295
7296
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
7297
7298
    )

Khalique's avatar
Khalique committed
7299
7300
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
7301

7302
@onnx_test()
Khalique's avatar
Khalique committed
7303
7304
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
7305
7306
7307
7308
7309
7310
7311
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
7312
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
7313
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
7328
7329
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
7330

7331
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


7351
@onnx_test()
Khalique's avatar
Khalique committed
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
7364
7365
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
7366

7367
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7368
7369
7370
7371
7372
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
7373
                                vals=valb.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


7461
@onnx_test()
Khalique's avatar
Khalique committed
7462
7463
7464
7465
7466
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
7467
7468
7469
7470
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
7471

Khalique's avatar
Khalique committed
7472
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7473

Khalique's avatar
Khalique committed
7474

7475
@onnx_test()
Khalique's avatar
Khalique committed
7476
7477
7478
7479
7480
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
7481
7482
7483
7484
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
7485

Khalique's avatar
Khalique committed
7486
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7487

Khalique's avatar
Khalique committed
7488

7489
@onnx_test()
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


7501
@onnx_test()
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


7515
@onnx_test()
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


7529
@onnx_test()
kahmed10's avatar
kahmed10 committed
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


7541
@onnx_test()
kahmed10's avatar
kahmed10 committed
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


7553
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
    return ([node], [x], [val, ind])


7567
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
    return ([node], [x], [val, ind], [k_tensor])


7588
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7622
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7637
@onnx_test()
Khalique's avatar
Khalique committed
7638
7639
7640
7641
7642
7643
7644
7645
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Charlie Lin's avatar
Charlie Lin committed
7646
7647
7648
7649
7650
7651
        outputs=['1'],
    )

    return ([node], [x], [y])


7652
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7653
7654
7655
7656
7657
7658
7659
7660
def transpose_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Khalique's avatar
Khalique committed
7661
7662
7663
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
7664
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7665

Khalique's avatar
Khalique committed
7666

Khalique's avatar
Khalique committed
7667
7668
7669
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
7670
7671
7672
7673
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
7674
7675
7676
7677
7678
7679
7680
7681

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
7682
7683
7684
7685
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
7686
7687
7688
7689
7690
7691
7692
7693

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
7694
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
7695

Khalique's avatar
Khalique committed
7696

kahmed10's avatar
kahmed10 committed
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
@onnx_test()
def trilu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test()
def trilu_batch_diff_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    k = np.array([2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('Trilu', inputs=['x'], outputs=['y'], upper=0)
    return ([node], [x], [y])


@onnx_test()
def trilu_neg_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([-1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_out_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_row_one_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    k = np.array([1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


7783
@onnx_test()
7784
7785
7786
7787
7788
7789
7790
7791
7792
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


7793
@onnx_test()
Khalique's avatar
Khalique committed
7794
7795
7796
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
7797
7798
7799

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7800
7801
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7802
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
7803

Khalique's avatar
Khalique committed
7804
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
7805

Khalique's avatar
Khalique committed
7806
    return ([node, node2], [x, y], [a])
7807
7808


7809
@onnx_test()
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


7826
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


7845
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


7866
@onnx_test()
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


7878
@onnx_test()
7879
7880
7881
7882
7883
7884
7885
7886
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
7887
7888


7889
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929


@onnx_test()
def where_dyn_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])


@onnx_test()
def where_mixed_test():
    # mixture of static and dynamic input shapes is not supported
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])