gen_onnx.py 187 KB
Newer Older
1
2
3
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
# command: python -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
6
import numpy as np
import onnx
from onnx import helper
7
from onnx import TensorProto
Khalique's avatar
Khalique committed
8

Khalique's avatar
Khalique committed
9

Khalique's avatar
Khalique committed
10
11
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
12
13
        op_info = op_test()
        if len(op_info) > 3:
turneram's avatar
turneram committed
14
15
16
17
18
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
19
        else:
Khalique's avatar
Khalique committed
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
turneram's avatar
turneram committed
22
23
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
24
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
25

Khalique's avatar
Khalique committed
26
27
    return run_test

Khalique's avatar
Khalique committed
28

Khalique's avatar
Khalique committed
29
@onnx_test
Khalique's avatar
Khalique committed
30
31
32
33
34
35
36
37
38
39
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
40
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
41

Khalique's avatar
Khalique committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
57
@onnx_test
Khalique's avatar
Khalique committed
58
59
60
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
61
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
62

turneram's avatar
turneram committed
63
64
65
66
67
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
68
69

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
70
71


Khalique's avatar
Khalique committed
72
@onnx_test
Khalique's avatar
Khalique committed
73
74
75
76
77
78
79
80
81
82
83
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
84
    return (
Khalique's avatar
Khalique committed
85
        [node],
Khalique's avatar
Khalique committed
86
        [x, y],
Khalique's avatar
Khalique committed
87
88
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
89
90
91
92
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
93
94


Khalique's avatar
Khalique committed
95
@onnx_test
Khalique's avatar
Khalique committed
96
def add_scalar_test():
97
98
99
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
100

Khalique's avatar
Khalique committed
101
102
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

103
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
104
105


Khalique's avatar
Khalique committed
106
@onnx_test
Khalique's avatar
Khalique committed
107
108
109
110
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

turneram's avatar
turneram committed
111
112
113
114
115
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
116

Khalique's avatar
Khalique committed
117
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119

Khalique's avatar
Khalique committed
120
@onnx_test
Khalique's avatar
Khalique committed
121
122
123
124
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

turneram's avatar
turneram committed
125
126
127
128
129
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
130

Khalique's avatar
Khalique committed
131
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133

Khalique's avatar
Khalique committed
134
@onnx_test
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
143
144
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
145
146
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
162
@onnx_test
Khalique's avatar
Khalique committed
163
164
165
166
167
168
169
170
171
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
172

Khalique's avatar
Khalique committed
173
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
174

Khalique's avatar
Khalique committed
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


190
191
192
193
194
@onnx_test
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

turneram's avatar
turneram committed
195
196
197
198
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])
199
200
201
202
203
204
205
206
207
208

    return ([node], [x], [out])


@onnx_test
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

turneram's avatar
turneram committed
209
210
211
212
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])
213
214
215
216

    return ([node], [x], [out])


217
218
219
220
221
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
222
223
224
225
226
227
228
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')
229
230
231
232

    return ([node], [x], [y])


233
234
235
236
237
@onnx_test
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
238
239
240
241
242
243
244
245
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)
246
247
248
249

    return ([node], [x], [y])


250
251
252
253
254
@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
255
256
257
258
259
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')
260
261
262
263

    return ([node], [x], [y])


264
265
266
267
268
@onnx_test
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
269
270
271
272
273
274
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)
275
276
277
278

    return ([node], [x], [y])


279
280
281
282
283
@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
284
285
286
287
288
    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')
289
290
291
292

    return ([node], [x], [y])


293
294
295
296
297
298
299
300
301
@onnx_test
def batchnorm_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 3, 5])

turneram's avatar
turneram committed
302
303
304
305
306
    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    return ([node], [x, scale, bias, mean, var], [out])


@onnx_test
def batchnorm_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('4', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT,
                                        [1, 3, 5, 5, 5])

turneram's avatar
turneram committed
321
322
323
324
325
    node = onnx.helper.make_node('BatchNormalization',
                                 inputs=['0', '1', '2', '3', '4'],
                                 outputs=['5'],
                                 epsilon=1e-6,
                                 momentum=0.9)
326
327
328
329

    return ([node], [x, scale, bias, mean, var], [out])


Khalique's avatar
Khalique committed
330
@onnx_test
Khalique's avatar
Khalique committed
331
332
333
334
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
335
336
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
337
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
338

kahmed10's avatar
kahmed10 committed
339

Shucai Xiao's avatar
Shucai Xiao committed
340
341
342
343
344
345
346
347
348
349
350
351
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
352

kahmed10's avatar
kahmed10 committed
353

354
355
356
357
358
@onnx_test
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
359
360
361
362
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

    return ([node], [x], [y])


@onnx_test
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
382
383
384
385
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    return ([node], [x], [y])


@onnx_test
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
405
406
407
408
    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)
409
410
411
412

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
413
@onnx_test
Khalique's avatar
Khalique committed
414
415
416
417
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
418
419
420
421
422
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
423

Khalique's avatar
Khalique committed
424
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
425

Khalique's avatar
Khalique committed
426

kahmed10's avatar
kahmed10 committed
427
428
429
430
431
432
433
434
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

turneram's avatar
turneram committed
435
436
437
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
438
439
440
441

    return ([node], [x], [y], [min_val, max_val])


Shucai Xiao's avatar
Shucai Xiao committed
442
443
444
445
446
447
448
@onnx_test
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

turneram's avatar
turneram committed
449
450
451
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])
Shucai Xiao's avatar
Shucai Xiao committed
452
453
454
455

    return ([node], [x], [y], [max_val])


kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
478
479
480
481
482
483
484
485
486
487
@onnx_test
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


488
489
490
491
492
493
494
495
496
@onnx_test
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

turneram's avatar
turneram committed
497
498
499
    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])
500
501
502
503

    return ([node], [x], [y], [min_val, max_val])


Khalique's avatar
Khalique committed
504
@onnx_test
Khalique's avatar
Khalique committed
505
506
507
508
509
510
511
512
513
514
515
516
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
517
518
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
519

Khalique's avatar
Khalique committed
520
@onnx_test
Khalique's avatar
Khalique committed
521
522
523
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
524

Khalique's avatar
Khalique committed
525
526
527
528
529
530
531
532
533
534
535
536
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
537
    return ([node], [], [y])
Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539

Khalique's avatar
Khalique committed
540
@onnx_test
Khalique's avatar
Khalique committed
541
def constant_fill_test():
Khalique's avatar
Khalique committed
542
543
544
545
546
547
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
548
549
550
551
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
552
553
    )

Khalique's avatar
Khalique committed
554
    return ([node], [], [value])
Khalique's avatar
Khalique committed
555

Khalique's avatar
Khalique committed
556

Khalique's avatar
Khalique committed
557
@onnx_test
Khalique's avatar
Khalique committed
558
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
559
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
560
561
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
562
563
564
565
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
566
567
568
569
570
571
572
573
574
575
576
577

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
578
579
580
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
581
582
    )

Khalique's avatar
Khalique committed
583
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
584

Khalique's avatar
Khalique committed
585

Khalique's avatar
Khalique committed
586
@onnx_test
Khalique's avatar
Khalique committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
603
    return ([node], [], [y])
Khalique's avatar
Khalique committed
604

Khalique's avatar
Khalique committed
605

Khalique's avatar
Khalique committed
606
@onnx_test
Khalique's avatar
Khalique committed
607
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
608
609
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
610
    empty_val = np.array([]).astype(np.int64)
turneram's avatar
turneram committed
611
612
613
614
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
615
616
617
618
619
620
621
622
623
624
625
626
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
627
        value=tensor_val,
Khalique's avatar
Khalique committed
628
629
    )

Khalique's avatar
Khalique committed
630
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
631

Khalique's avatar
Khalique committed
632

Khalique's avatar
Khalique committed
633
@onnx_test
Khalique's avatar
Khalique committed
634
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
635
636
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
637
638

    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
639
640
641
642
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
643
644
645
646
647
648
649
650
651

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

turneram's avatar
turneram committed
652
653
654
655
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
656

Khalique's avatar
Khalique committed
657
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
658

Khalique's avatar
Khalique committed
659

Khalique's avatar
Khalique committed
660
@onnx_test
Khalique's avatar
Khalique committed
661
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
662
663
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
664
    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
665
666
667
668
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
669
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
670
671
672
673
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
674
675
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
676

turneram's avatar
turneram committed
677
678
679
680
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
681

Khalique's avatar
Khalique committed
682
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
683

Khalique's avatar
Khalique committed
684

Khalique's avatar
Khalique committed
685
@onnx_test
Khalique's avatar
Khalique committed
686
687
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
turneram's avatar
turneram committed
688
689
690
691
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
692
693
694
695
696
697
698
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
699

Khalique's avatar
Khalique committed
700
701
702
703
704
705
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
706
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
707

Khalique's avatar
Khalique committed
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
@onnx_test
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


@onnx_test
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

turneram's avatar
turneram committed
738
739
740
741
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])
742
743
744
745

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
746
@onnx_test
Khalique's avatar
Khalique committed
747
748
749
750
751
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

turneram's avatar
turneram committed
752
753
754
755
756
757
758
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])
Khalique's avatar
Khalique committed
759
760

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
761
762


763
764
765
766
767
768
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

turneram's avatar
turneram committed
769
770
771
772
773
774
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')
775
776
777
778

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
779
@onnx_test
Khalique's avatar
Khalique committed
780
781
782
783
784
785
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

turneram's avatar
turneram committed
786
787
788
789
790
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])
Khalique's avatar
Khalique committed
791
792

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
793
794


Khalique's avatar
Khalique committed
795
@onnx_test
Khalique's avatar
Khalique committed
796
797
798
799
800
801
802
803
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
804
805
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
806

turneram's avatar
turneram committed
807
808
809
810
811
812
813
814
815
816
817
818
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])

    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
819

Khalique's avatar
Khalique committed
820
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
turneram's avatar
turneram committed
821
822
823
824
825
826
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
827
828

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
829
830


Khalique's avatar
Khalique committed
831
@onnx_test
Khalique's avatar
Khalique committed
832
833
834
835
836
837
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

turneram's avatar
turneram committed
838
839
840
841
842
843
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
844

Khalique's avatar
Khalique committed
845
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
846

turneram's avatar
turneram committed
847
848
849
850
851
852
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
853
854

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
855
856


Khalique's avatar
Khalique committed
857
@onnx_test
Khalique's avatar
Khalique committed
858
859
860
861
862
863
864
865
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
866
867
868
869
870
871
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
872

Khalique's avatar
Khalique committed
873
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
874

turneram's avatar
turneram committed
875
876
877
878
879
880
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
881

turneram's avatar
turneram committed
882
883
884
885
886
887
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
888

Khalique's avatar
Khalique committed
889
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
890

turneram's avatar
turneram committed
891
892
893
894
895
896
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
897
898

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
899
900


901
902
903
904
905
906
907
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

turneram's avatar
turneram committed
908
909
910
911
912
    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])
913
914
915
916

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
917
@onnx_test
Khalique's avatar
Khalique committed
918
919
920
921
922
923
924
925
926
927
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
928
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
929

Khalique's avatar
Khalique committed
930

Khalique's avatar
Khalique committed
931
@onnx_test
Khalique's avatar
Khalique committed
932
933
934
935
936
937
938
939
940
941
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
942
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
943

Khalique's avatar
Khalique committed
944

kahmed10's avatar
kahmed10 committed
945
946
947
948
949
950
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
951
952
953
954
    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])
kahmed10's avatar
kahmed10 committed
955
956
957
958
959
960
961
962
963
964
965

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
966
967
968
969
    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])
kahmed10's avatar
kahmed10 committed
970
971
972
973
974
975
976
977
978
979

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

turneram's avatar
turneram committed
980
981
982
983
984
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])
kahmed10's avatar
kahmed10 committed
985
986
987
988
989
990
991
992
993
994

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

turneram's avatar
turneram committed
995
996
997
998
999
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])
kahmed10's avatar
kahmed10 committed
1000
1001
1002
1003
1004

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
1005
1006
1007
1008
1009
def deconv_input_pads_asymm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

turneram's avatar
turneram committed
1010
1011
1012
1013
1014
1015
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])
kahmed10's avatar
kahmed10 committed
1016
1017
1018
1019
1020
1021

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
kahmed10's avatar
kahmed10 committed
1022
1023
1024
1025
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

turneram's avatar
turneram committed
1026
1027
1028
1029
1030
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1031
1032
1033
1034
1035

    return ([node], [x, w], [y])


@onnx_test
kahmed10's avatar
kahmed10 committed
1036
1037
1038
1039
1040
def deconv_output_padding_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

turneram's avatar
turneram committed
1041
1042
1043
1044
1045
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])
kahmed10's avatar
kahmed10 committed
1046
1047
1048
1049
1050
1051

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
kahmed10's avatar
kahmed10 committed
1052
1053
1054
1055
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

turneram's avatar
turneram committed
1056
1057
1058
1059
1060
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])
kahmed10's avatar
kahmed10 committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

turneram's avatar
turneram committed
1071
1072
1073
1074
1075
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

turneram's avatar
turneram committed
1086
1087
1088
1089
    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])
kahmed10's avatar
kahmed10 committed
1090
1091
1092
1093

    return ([node], [x, w], [y])


1094
1095
1096
1097
1098
1099
@onnx_test
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

turneram's avatar
turneram committed
1100
1101
1102
1103
1104
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

    return ([node], [x], [y])


@onnx_test
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

turneram's avatar
turneram committed
1115
1116
1117
1118
1119
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

    return ([node], [x], [y])


@onnx_test
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

turneram's avatar
turneram committed
1130
1131
1132
1133
1134
    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')
1135
1136
1137
1138

    return ([node], [x], [y])


Umang Yadav's avatar
Umang Yadav committed
1139
1140
1141
1142
1143
1144
@onnx_test
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

turneram's avatar
turneram committed
1145
1146
1147
1148
    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

    return ([node], [x], [y])


@onnx_test
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

turneram's avatar
turneram committed
1159
1160
1161
1162
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

    return ([node], [x], [y])


@onnx_test
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

turneram's avatar
turneram committed
1173
1174
1175
1176
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)
Umang Yadav's avatar
Umang Yadav committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

    return ([node], [x], [y])


@onnx_test
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

turneram's avatar
turneram committed
1187
1188
1189
1190
    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)
Umang Yadav's avatar
Umang Yadav committed
1191
1192
1193
1194

    return ([node], [x], [y])


1195
1196
@onnx_test
def dequantizelinear_test():
turneram's avatar
turneram committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def dequantizelinear_zero_point_test():
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

turneram's avatar
turneram committed
1233
1234
1235
1236
    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


@onnx_test
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


Khalique's avatar
Khalique committed
1251
@onnx_test
Khalique's avatar
Khalique committed
1252
def dropout_test():
Khalique's avatar
Khalique committed
1253
1254
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1255

Khalique's avatar
Khalique committed
1256
1257
1258
1259
1260
1261
1262
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1263
1264


Khalique's avatar
Khalique committed
1265
@onnx_test
Khalique's avatar
Khalique committed
1266
1267
1268
1269
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
1270
1271
1272
1273
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1274

Khalique's avatar
Khalique committed
1275
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1276

Khalique's avatar
Khalique committed
1277

1278
1279
1280
1281
1282
1283
@onnx_test
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

turneram's avatar
turneram committed
1284
1285
1286
1287
    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))
1288

turneram's avatar
turneram committed
1289
1290
1291
1292
    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)
1293

turneram's avatar
turneram committed
1294
1295
1296
1297
    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))
1298

turneram's avatar
turneram committed
1299
1300
1301
1302
    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)
1303
1304
1305
1306
1307
1308
1309

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

turneram's avatar
turneram committed
1310
1311
1312
1313
1314
    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')
1315

turneram's avatar
turneram committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


@onnx_test
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

turneram's avatar
turneram committed
1337
1338
1339
1340
    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))
1341

turneram's avatar
turneram committed
1342
1343
1344
1345
    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)
1346

turneram's avatar
turneram committed
1347
1348
1349
1350
    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))
1351

turneram's avatar
turneram committed
1352
1353
1354
1355
    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)
1356
1357
1358
1359
1360

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
1361
1362
1363
1364
1365
    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')
1366
1367
1368
1369

    return ([index, offset, node], [weight], [y])


1370
1371
1372
@onnx_test
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
1373
1374
1375
1376
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


Khalique's avatar
Khalique committed
1408
@onnx_test
Khalique's avatar
Khalique committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1419
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1420

Khalique's avatar
Khalique committed
1421

Khalique's avatar
Khalique committed
1422
@onnx_test
Khalique's avatar
Khalique committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1433
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1434

Khalique's avatar
Khalique committed
1435

Khalique's avatar
Khalique committed
1436
@onnx_test
Khalique's avatar
Khalique committed
1437
1438
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
turneram's avatar
turneram committed
1439
1440
1441
1442
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

turneram's avatar
turneram committed
1452
1453
1454
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])
Khalique's avatar
Khalique committed
1455
1456
1457

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1458

Charlie Lin's avatar
Charlie Lin committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
@onnx_test
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
turneram's avatar
turneram committed
1510
1511
1512
1513
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
Charlie Lin's avatar
Charlie Lin committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    return ([node], [T1], [T2])


@onnx_test
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


@onnx_test
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
turneram's avatar
turneram committed
1549
1550
1551
1552
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
Charlie Lin's avatar
Charlie Lin committed
1553
1554
1555
1556
1557
1558
1559
    return ([node], [T1], [T2])


@onnx_test
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
turneram's avatar
turneram committed
1560
1561
1562
1563
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
Charlie Lin's avatar
Charlie Lin committed
1564
1565
1566
    return ([node], [T1], [T2])


Khalique's avatar
Khalique committed
1567
@onnx_test
Khalique's avatar
Khalique committed
1568
1569
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1570
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
1571
1572
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

turneram's avatar
turneram committed
1573
1574
1575
1576
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1577

Khalique's avatar
Khalique committed
1578
1579
1580
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
1581

kahmed10's avatar
kahmed10 committed
1582

Khalique's avatar
Khalique committed
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
@onnx_test
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

turneram's avatar
turneram committed
1596
1597
1598
1599
    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
1600
1601
1602
1603
1604
1605

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


Shucai Xiao's avatar
Shucai Xiao committed
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1618

kahmed10's avatar
kahmed10 committed
1619

Khalique's avatar
Khalique committed
1620
@onnx_test
Khalique's avatar
Khalique committed
1621
1622
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
1623
1624
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1625
1626
1627
1628
1629
1630
1631
1632
1633
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1634
1635
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
1636

Shucai Xiao's avatar
Shucai Xiao committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
@onnx_test
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


@onnx_test
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
@onnx_test
def gelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [16, 384, 3072])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [16, 384, 3072])

    node = onnx.helper.make_node(
        'Gelu',
        inputs=['x'],
        outputs=['y']
    )

    return ([node], [x], [y])


@onnx_test
def fastgelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [16, 384, 3072])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [16, 384, 3072])

    node = onnx.helper.make_node(
        'FastGelu',
        inputs=['x'],
        outputs=['y']
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1697
@onnx_test
Khalique's avatar
Khalique committed
1698
1699
1700
1701
1702
1703
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

turneram's avatar
turneram committed
1704
1705
1706
1707
1708
1709
1710
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)
Khalique's avatar
Khalique committed
1711
1712

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
1713
1714


Khalique's avatar
Khalique committed
1715
@onnx_test
Khalique's avatar
Khalique committed
1716
def gemm_ex_test():
Shucai Xiao's avatar
Shucai Xiao committed
1717
1718
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 8, 7])
Khalique's avatar
Khalique committed
1719
1720
1721
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

turneram's avatar
turneram committed
1722
1723
1724
1725
1726
1727
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Khalique's avatar
Khalique committed
1728
1729

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1730
1731


Khalique's avatar
Khalique committed
1732
@onnx_test
Khalique's avatar
Khalique committed
1733
1734
1735
1736
1737
1738
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

turneram's avatar
turneram committed
1739
1740
1741
1742
1743
1744
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Khalique's avatar
Khalique committed
1745
1746

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
1747
1748


Shucai Xiao's avatar
Shucai Xiao committed
1749
1750
1751
1752
1753
1754
1755
@onnx_test
def gemm_half_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 1, 8, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 1, 8, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 1, 6, 7])

turneram's avatar
turneram committed
1756
1757
1758
1759
1760
1761
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)
Shucai Xiao's avatar
Shucai Xiao committed
1762
1763
1764
1765

    return ([node], [m1, m2, m3], [y])


Khalique's avatar
Khalique committed
1766
@onnx_test
Khalique's avatar
Khalique committed
1767
def globalavgpool_test():
Khalique's avatar
Khalique committed
1768
1769
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1770
1771
1772
1773
1774
1775
1776

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1777
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1778

Khalique's avatar
Khalique committed
1779

Khalique's avatar
Khalique committed
1780
@onnx_test
Khalique's avatar
Khalique committed
1781
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1782
1783
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1784
1785
1786
1787
1788
1789
1790

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1791
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1792

Khalique's avatar
Khalique committed
1793

Khalique's avatar
Khalique committed
1794
1795
1796
@onnx_test
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
1797
1798
1799
1800
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


turneram's avatar
turneram committed
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
@onnx_test
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
1848
@onnx_test
Khalique's avatar
Khalique committed
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1861
1862
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1863

turneram's avatar
turneram committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
@onnx_test
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

turneram's avatar
turneram committed
1879
1880
1881
1882
1883
    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)
turneram's avatar
turneram committed
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
@onnx_test
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1918
1919
1920
1921
1922
@onnx_test
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
1923
1924
1925
1926
1927
1928
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
1929
1930

    xt = np.ones((2, 3)).astype(np.float)
turneram's avatar
turneram committed
1931
1932
1933
1934
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1935
1936

    yt = np.random.randn(2, 3).astype(np.float)
turneram's avatar
turneram committed
1937
1938
1939
1940
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
1941

turneram's avatar
turneram committed
1942
1943
1944
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1945

turneram's avatar
turneram committed
1946
1947
1948
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
1949
1950
1951
1952
1953
1954
1955
1956

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([0]).astype(np.bool)
turneram's avatar
turneram committed
1957
1958
1959
1960
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
1961
1962
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
1963
1964
1965
1966
1967
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
1968
1969
1970
1971

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
1972
1973
1974
1975
1976
1977
1978
1979
1980
@onnx_test
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1981
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
1995
1996
1997
1998
1999
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
2000

Shucai Xiao's avatar
Shucai Xiao committed
2001
2002
2003
2004
2005
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
2006
2007
2008
2009
2010

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2011
2012
2013
2014
2015
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2016
2017
2018
2019
2020
2021

    return ([node], [cond_input], [ret])


@onnx_test
def if_param_excp_test():
turneram's avatar
turneram committed
2022
2023
2024
2025
2026
2027
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2028
2029
2030
2031
2032
2033
2034

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2035
2036
2037
2038
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2039

turneram's avatar
turneram committed
2040
2041
2042
2043
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2044

turneram's avatar
turneram committed
2045
2046
2047
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2048

turneram's avatar
turneram committed
2049
2050
2051
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2063
2064
2065
2066
2067
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2068
2069
2070
2071
2072
2073

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_param_excp1_test():
turneram's avatar
turneram committed
2074
2075
2076
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2077
2078
2079
2080
2081

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2082
2083
2084
2085
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2086

turneram's avatar
turneram committed
2087
2088
2089
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2090
2091
2092
2093
2094
2095
2096
2097

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2098
2099
2100
2101
2102
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)
Shucai Xiao's avatar
Shucai Xiao committed
2103
2104
2105
2106
2107
2108

    return ([node], [cond_input, x], [ret])


@onnx_test
def if_param_test():
turneram's avatar
turneram committed
2109
2110
2111
2112
2113
2114
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2115
2116
2117
2118
2119
2120
2121

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

turneram's avatar
turneram committed
2122
2123
2124
2125
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2126

turneram's avatar
turneram committed
2127
2128
2129
2130
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2131

turneram's avatar
turneram committed
2132
2133
2134
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2135

turneram's avatar
turneram committed
2136
2137
2138
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2150
2151
2152
2153
2154
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2155
2156
2157
2158
2159
2160
2161
2162

    return ([node], [cond_input, x, y], [ret])


@onnx_test
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
turneram's avatar
turneram committed
2163
2164
2165
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2166
2167
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
turneram's avatar
turneram committed
2168
2169
2170
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2171
2172
2173
2174
2175
2176
2177

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

turneram's avatar
turneram committed
2178
2179
2180
2181
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2182

turneram's avatar
turneram committed
2183
2184
2185
2186
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2187

turneram's avatar
turneram committed
2188
2189
2190
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])
Shucai Xiao's avatar
Shucai Xiao committed
2191

turneram's avatar
turneram committed
2192
2193
2194
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])
Shucai Xiao's avatar
Shucai Xiao committed
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2218
2219
2220
2221
2222
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2223
2224
2225
2226

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2227
2228
2229
2230
2231
@onnx_test
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2232
2233
2234
2235
2236
2237
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
2238
2239

    xt = np.ones((2, 3)).astype(np.float)
turneram's avatar
turneram committed
2240
2241
2242
2243
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2244
2245

    yt = np.random.randn(2, 3).astype(np.float)
turneram's avatar
turneram committed
2246
2247
2248
2249
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2250

turneram's avatar
turneram committed
2251
2252
2253
    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2254

turneram's avatar
turneram committed
2255
2256
2257
    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])
Shucai Xiao's avatar
Shucai Xiao committed
2258
2259
2260
2261
2262
2263
2264
2265

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond = np.array([1]).astype(np.bool)
turneram's avatar
turneram committed
2266
2267
2268
2269
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
2270
2271
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2272
2273
2274
2275
2276
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2277
2278
2279
2280

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
2281
2282
2283
2284
2285
2286
2287
@onnx_test
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

turneram's avatar
turneram committed
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
Shucai Xiao's avatar
Shucai Xiao committed
2300
2301

    one = np.ones([1]).astype(np.float)
turneram's avatar
turneram committed
2302
2303
2304
2305
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2306
2307

    two = np.array([2]).astype(np.float)
turneram's avatar
turneram committed
2308
2309
2310
2311
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
2312
2313

    three = np.array([3]).astype(np.float)
turneram's avatar
turneram committed
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])
Shucai Xiao's avatar
Shucai Xiao committed
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
2342
2343
2344
2345
2346
    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)
Shucai Xiao's avatar
Shucai Xiao committed
2347

turneram's avatar
turneram committed
2348
2349
    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])
Shucai Xiao's avatar
Shucai Xiao committed
2350
2351


Khalique's avatar
Khalique committed
2352
@onnx_test
Khalique's avatar
Khalique committed
2353
def imagescaler_test():
Khalique's avatar
Khalique committed
2354
2355
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
2356

turneram's avatar
turneram committed
2357
2358
2359
2360
2361
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
2362

Khalique's avatar
Khalique committed
2363
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2364

Khalique's avatar
Khalique committed
2365

Shucai Xiao's avatar
Shucai Xiao committed
2366
2367
2368
2369
2370
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

turneram's avatar
turneram committed
2371
2372
2373
2374
2375
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
2376
2377
2378
2379

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2380
@onnx_test
Khalique's avatar
Khalique committed
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2392
2393
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2394

Khalique's avatar
Khalique committed
2395
@onnx_test
Khalique's avatar
Khalique committed
2396
2397
2398
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
2399
2400
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2401
2402
2403
2404
2405
2406
2407

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2408
2409
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2410

Khalique's avatar
Khalique committed
2411
@onnx_test
Khalique's avatar
Khalique committed
2412
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
2413
2414
2415
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
2416
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2417
2418
2419
2420
2421
2422
2423

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2424
2425
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2426

2427
2428
2429
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
turneram's avatar
turneram committed
2430
2431
2432
2433
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
2447
2448
2449
2450
2451
2452
2453
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

turneram's avatar
turneram committed
2454
2455
2456
    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])
kahmed10's avatar
kahmed10 committed
2457
2458
2459
2460
2461
2462

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
turneram's avatar
turneram committed
2463
2464
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
kahmed10's avatar
kahmed10 committed
2465
2466
2467
    scale = np.array([1, 2])
    bias = np.array([0, 1])

turneram's avatar
turneram committed
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2480
2481
2482
2483
2484
2485

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2486
2487
2488
2489
2490
2491
2492
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


@onnx_test
def instance_norm_val_3d_test():
turneram's avatar
turneram committed
2493
2494
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
kahmed10's avatar
kahmed10 committed
2495
2496
2497
    scale = np.array([1, 2])
    bias = np.array([0, 1])

turneram's avatar
turneram committed
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2510
2511
2512
2513
2514
2515

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
2516
2517
2518
2519
2520
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Charlie Lin's avatar
Charlie Lin committed
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
@onnx_test
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


kahmed10's avatar
kahmed10 committed
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
@onnx_test
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

turneram's avatar
turneram committed
2557
2558
2559
2560
    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))
kahmed10's avatar
kahmed10 committed
2561

turneram's avatar
turneram committed
2562
2563
2564
2565
2566
    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))
kahmed10's avatar
kahmed10 committed
2567

turneram's avatar
turneram committed
2568
2569
2570
2571
    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)
kahmed10's avatar
kahmed10 committed
2572

turneram's avatar
turneram committed
2573
2574
2575
    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])
kahmed10's avatar
kahmed10 committed
2576

turneram's avatar
turneram committed
2577
2578
2579
    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])
kahmed10's avatar
kahmed10 committed
2580

turneram's avatar
turneram committed
2581
2582
2583
2584
    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)
kahmed10's avatar
kahmed10 committed
2585

turneram's avatar
turneram committed
2586
2587
2588
    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])
kahmed10's avatar
kahmed10 committed
2589

turneram's avatar
turneram committed
2590
2591
2592
    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])
kahmed10's avatar
kahmed10 committed
2593

turneram's avatar
turneram committed
2594
2595
2596
    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])
kahmed10's avatar
kahmed10 committed
2597

turneram's avatar
turneram committed
2598
2599
2600
    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])
kahmed10's avatar
kahmed10 committed
2601

turneram's avatar
turneram committed
2602
2603
2604
    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])
kahmed10's avatar
kahmed10 committed
2605

turneram's avatar
turneram committed
2606
2607
    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
kahmed10's avatar
kahmed10 committed
2608
2609


turneram's avatar
turneram committed
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
@onnx_test
def layernorm_op_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [3])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [1, 2, 3])

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x', 'w', 'b'],
                                 outputs=["output"],
                                 epsilon=1e-5)

    return ([node], [x, w, b], [output])

turneram's avatar
turneram committed
2625

Khalique's avatar
Khalique committed
2626
@onnx_test
Khalique's avatar
Khalique committed
2627
2628
2629
2630
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

turneram's avatar
turneram committed
2631
2632
2633
2634
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
2635

Khalique's avatar
Khalique committed
2636
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2637

Khalique's avatar
Khalique committed
2638

Khalique's avatar
Khalique committed
2639
2640
2641
@onnx_test
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
turneram's avatar
turneram committed
2642
2643
2644
2645
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))
Khalique's avatar
Khalique committed
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


@onnx_test
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


@onnx_test
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


Khalique's avatar
Khalique committed
2693
@onnx_test
Khalique's avatar
Khalique committed
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2704
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2705

Khalique's avatar
Khalique committed
2706

Shucai Xiao's avatar
Shucai Xiao committed
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
@onnx_test
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


@onnx_test
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


Khalique's avatar
Khalique committed
2740
@onnx_test
Khalique's avatar
Khalique committed
2741
2742
2743
2744
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

turneram's avatar
turneram committed
2745
2746
2747
2748
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
2749

Khalique's avatar
Khalique committed
2750
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2751

Khalique's avatar
Khalique committed
2752

2753
2754
2755
@onnx_test
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
2756
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
2757

turneram's avatar
turneram committed
2758
2759
2760
2761
2762
2763
    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])
2764

turneram's avatar
turneram committed
2765
2766
2767
2768
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
2769

2770
    return ([node0, node1], [x], [y])
2771
2772


Shucai Xiao's avatar
Shucai Xiao committed
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
@onnx_test
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


@onnx_test
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


Charlie Lin's avatar
Charlie Lin committed
2851
2852
2853
2854
2855
@onnx_test
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2856
2857
2858
2859
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
Charlie Lin's avatar
Charlie Lin committed
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
    return ([node], [x], [y])


@onnx_test
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


@onnx_test
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

turneram's avatar
turneram committed
2896
2897
2898
2899
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
Charlie Lin's avatar
Charlie Lin committed
2900
2901
2902
2903
2904
2905
2906
2907
    return ([node], [x], [y])


@onnx_test
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

turneram's avatar
turneram committed
2908
2909
2910
2911
    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
Charlie Lin's avatar
Charlie Lin committed
2912
2913
2914
    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2915
@onnx_test
Khalique's avatar
Khalique committed
2916
2917
2918
2919
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

turneram's avatar
turneram committed
2920
2921
2922
2923
2924
2925
2926
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2927

Khalique's avatar
Khalique committed
2928
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2929

Khalique's avatar
Khalique committed
2930

Khalique's avatar
Khalique committed
2931
@onnx_test
Khalique's avatar
Khalique committed
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2943
2944
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2945

Khalique's avatar
Khalique committed
2946
@onnx_test
Khalique's avatar
Khalique committed
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2958
2959
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2960

Khalique's avatar
Khalique committed
2961
@onnx_test
Khalique's avatar
Khalique committed
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2973
2974
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2975

Khalique's avatar
Khalique committed
2976
@onnx_test
Khalique's avatar
Khalique committed
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2988
2989
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
2990

Khalique's avatar
Khalique committed
2991
@onnx_test
Khalique's avatar
Khalique committed
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3003
3004
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3005

Khalique's avatar
Khalique committed
3006
@onnx_test
Khalique's avatar
Khalique committed
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3018
3019
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
3020

3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
3036
@onnx_test
Khalique's avatar
Khalique committed
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3049
3050
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3051

3052
3053
3054
3055
3056
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

turneram's avatar
turneram committed
3057
3058
3059
3060
3061
3062
3063
    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')
3064
3065
3066
3067
3068
3069
3070
3071
3072

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

turneram's avatar
turneram committed
3073
3074
3075
3076
3077
    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')
3078
3079
3080
3081

    return ([node], [x], [y])


turneram's avatar
turneram committed
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
@onnx_test
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

turneram's avatar
turneram committed
3094
3095
3096
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


@onnx_test
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

turneram's avatar
turneram committed
3110
3111
3112
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

turneram's avatar
turneram committed
3125
3126
3127
    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])
turneram's avatar
turneram committed
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155

    return ([node], [data_0, data_1, data_2], [mean])


@onnx_test
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


@onnx_test
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


Khalique's avatar
Khalique committed
3156
@onnx_test
Khalique's avatar
Khalique committed
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
3169
3170
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
3171

turneram's avatar
turneram committed
3172
3173
3174
3175
3176
3177
3178
3179
@onnx_test
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3180
3181
3182
3183
3184
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])
turneram's avatar
turneram committed
3185
3186
3187
3188

    return ([node], [input], [output])


3189
3190
3191
3192
3193
3194
3195
@onnx_test
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3196
3197
3198
3199
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3200
3201
3202
3203

    return ([node], [input], [output])


turneram's avatar
turneram committed
3204
3205
3206
3207
3208
3209
3210
3211
@onnx_test
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

turneram's avatar
turneram committed
3212
3213
3214
3215
3216
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])
turneram's avatar
turneram committed
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229

    return ([node], [input], [output])


@onnx_test
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

turneram's avatar
turneram committed
3230
3231
3232
3233
3234
3235
    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])
turneram's avatar
turneram committed
3236
3237
3238
3239

    return ([node], [input], [output])


Shucai Xiao's avatar
Shucai Xiao committed
3240
3241
@onnx_test
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
3242
3243
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3244
3245
3246
3247
3248
3249

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
@onnx_test
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [6, 3])

turneram's avatar
turneram committed
3263
3264
3265
3266
3267
3268
3269
3270
    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)
3271
3272
3273
3274

    return ([node], [b, s, mo, iou, st], [out])


3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
@onnx_test
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
3295
@onnx_test
Khalique's avatar
Khalique committed
3296
3297
3298
3299
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

turneram's avatar
turneram committed
3300
3301
3302
3303
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3304

Khalique's avatar
Khalique committed
3305
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3306

Khalique's avatar
Khalique committed
3307

Shucai Xiao's avatar
Shucai Xiao committed
3308
3309
3310
3311
3312
@onnx_test
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

turneram's avatar
turneram committed
3313
3314
3315
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3316
3317
3318
3319

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3320
3321
3322
@onnx_test
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
turneram's avatar
turneram committed
3323
3324
3325
3326
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
Shucai Xiao's avatar
Shucai Xiao committed
3327
3328
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

turneram's avatar
turneram committed
3329
3330
3331
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3332
3333
3334
3335
3336
3337
3338

    return ([node], [], [y], [data])


@onnx_test
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
turneram's avatar
turneram committed
3339
3340
3341
3342
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
Shucai Xiao's avatar
Shucai Xiao committed
3343
3344
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

turneram's avatar
turneram committed
3345
3346
3347
    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])
Shucai Xiao's avatar
Shucai Xiao committed
3348
3349
3350
3351

    return ([node], [], [y], [data])


kahmed10's avatar
kahmed10 committed
3352
3353
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
3354
3355
3356
3357
3358
3359
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
3360

turneram's avatar
turneram committed
3361
3362
3363
3364
    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))
kahmed10's avatar
kahmed10 committed
3365

turneram's avatar
turneram committed
3366
3367
3368
3369
    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)
kahmed10's avatar
kahmed10 committed
3370

Shucai Xiao's avatar
Shucai Xiao committed
3371
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
3372
3373


Khalique's avatar
Khalique committed
3374
@onnx_test
Khalique's avatar
Khalique committed
3375
3376
3377
3378
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

turneram's avatar
turneram committed
3379
3380
3381
3382
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3383

Khalique's avatar
Khalique committed
3384
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3385

Khalique's avatar
Khalique committed
3386

3387
3388
3389
@onnx_test
def pad_3arg_test():
    values = np.array([1])
turneram's avatar
turneram committed
3390
3391
3392
3393
3394
3395
3396
3397
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)
3398
3399

    sizes = np.array([1, 1, 2, 2])
turneram's avatar
turneram committed
3400
3401
3402
3403
3404
3405
3406
3407
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)
3408
3409
3410
3411

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

turneram's avatar
turneram committed
3412
3413
3414
    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])
3415
3416
3417
3418

    return ([arg_val, arg_pad, node], [x], [y])


kahmed10's avatar
kahmed10 committed
3419
3420
3421
3422
3423
3424
@onnx_test
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
turneram's avatar
turneram committed
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447

    return ([arg_pad, node], [x], [y])


@onnx_test
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
turneram's avatar
turneram committed
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3461
3462
3463
3464

    return ([arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
3465
@onnx_test
Khalique's avatar
Khalique committed
3466
3467
3468
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3469
3470
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3471
3472
3473
3474
3475
3476
3477

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3478
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
3479

kahmed10's avatar
kahmed10 committed
3480

Shucai Xiao's avatar
Shucai Xiao committed
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
@onnx_test
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


turneram's avatar
turneram committed
3513
3514
3515
3516
3517
@onnx_test
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
turneram's avatar
turneram committed
3518
3519
3520
3521
3522
3523
3524
3525
3526
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
turneram's avatar
turneram committed
3527
3528
3529
    return ([node], [x], [y], [axis_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


3546
3547
@onnx_test
def quantizelinear_test():
turneram's avatar
turneram committed
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


@onnx_test
def quantizelinear_zero_point_test():
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

turneram's avatar
turneram committed
3599
3600
3601
3602
    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616

    return ([node], [arg0, arg1, arg2], [arg_out])


@onnx_test
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


@onnx_test
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
@onnx_test
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3627
3628
3629
3630
3631
3632
3633
3634
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645

    return ([node], [], [output])


@onnx_test
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3646
3647
3648
3649
3650
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)
3651
3652
3653
3654

    return ([node], [], [output])


3655
3656
3657
3658
3659
3660
3661
@onnx_test
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3662
3663
3664
3665
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3666
3667
3668
3669

    return ([node], [input], [output])


3670
3671
3672
3673
3674
3675
@onnx_test
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3676
3677
3678
3679
    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694

    return ([node], [], [output])


@onnx_test
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3695
3696
3697
3698
3699
3700
3701
    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713

    return ([node], [input], [output])


@onnx_test
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3714
3715
3716
3717
    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731

    return ([node], [input], [output])


@onnx_test
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3732
3733
3734
3735
3736
3737
3738
3739
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750

    return ([node], [], [output])


@onnx_test
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3751
3752
3753
3754
3755
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)
3756
3757
3758
3759

    return ([node], [], [output])


3760
3761
3762
3763
3764
3765
3766
@onnx_test
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

turneram's avatar
turneram committed
3767
3768
3769
3770
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])
3771
3772
3773
3774

    return ([node], [input], [output])


3775
3776
3777
3778
3779
3780
@onnx_test
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3781
3782
3783
3784
    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799

    return ([node], [], [output])


@onnx_test
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3800
3801
3802
3803
3804
3805
3806
    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818

    return ([node], [input], [output])


@onnx_test
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

turneram's avatar
turneram committed
3819
3820
3821
3822
    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)
3823
3824
3825
3826

    return ([node], [input], [output])


kahmed10's avatar
kahmed10 committed
3827
3828
3829
3830
3831
3832
3833
@onnx_test
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

turneram's avatar
turneram committed
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


@onnx_test
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

turneram's avatar
turneram committed
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
3907
3908
3909
3910
3911
3912

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


kahmed10's avatar
kahmed10 committed
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3927
3928
3929
3930
3931
3932
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

turneram's avatar
turneram committed
3933
3934
3935
3936
3937
    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

turneram's avatar
turneram committed
3948
3949
3950
3951
3952
    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

turneram's avatar
turneram committed
3963
3964
3965
3966
3967
    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

turneram's avatar
turneram committed
3978
3979
3980
3981
3982
    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
3983
3984
3985
3986

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
3987
3988
3989
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3990
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
3991
3992
    axes = [2]

turneram's avatar
turneram committed
3993
3994
3995
3996
3997
    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
3998
3999
4000

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
4001

Khalique's avatar
Khalique committed
4002
@onnx_test
Khalique's avatar
Khalique committed
4003
4004
4005
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
4006
    axes = [2, 3]
Khalique's avatar
Khalique committed
4007

turneram's avatar
turneram committed
4008
4009
4010
4011
4012
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
4013

Khalique's avatar
Khalique committed
4014
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4015

kahmed10's avatar
kahmed10 committed
4016

Khalique's avatar
Khalique committed
4017
@onnx_test
Khalique's avatar
Khalique committed
4018
4019
4020
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
4021
    axes = [2]
Khalique's avatar
Khalique committed
4022

turneram's avatar
turneram committed
4023
4024
4025
4026
4027
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4028

Khalique's avatar
Khalique committed
4029
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4030

kahmed10's avatar
kahmed10 committed
4031

Shucai Xiao's avatar
Shucai Xiao committed
4032
4033
4034
4035
4036
4037
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

turneram's avatar
turneram committed
4038
4039
4040
4041
4042
    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Shucai Xiao's avatar
Shucai Xiao committed
4043
4044

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4045

kahmed10's avatar
kahmed10 committed
4046

Khalique's avatar
Khalique committed
4047
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4048
def reduceprod_test():
Khalique's avatar
Khalique committed
4049
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
4050
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
4051
    axes = [2]
Khalique's avatar
Khalique committed
4052

turneram's avatar
turneram committed
4053
4054
4055
4056
4057
    node = onnx.helper.make_node('ReduceProd',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4058

Khalique's avatar
Khalique committed
4059
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4060

Khalique's avatar
Khalique committed
4061

Khalique's avatar
Khalique committed
4062
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4063
def reducesum_test():
Khalique's avatar
Khalique committed
4064
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
4065
4066
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
4067

turneram's avatar
turneram committed
4068
4069
4070
4071
4072
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
4073

Khalique's avatar
Khalique committed
4074
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4075

Khalique's avatar
Khalique committed
4076

Shucai Xiao's avatar
Shucai Xiao committed
4077
4078
4079
4080
4081
@onnx_test
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
4082
4083
4084
4085
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4086

turneram's avatar
turneram committed
4087
4088
4089
4090
4091
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)
Shucai Xiao's avatar
Shucai Xiao committed
4092
4093
4094
4095
4096
4097
4098
4099
4100

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
4101
4102
4103
4104
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4105

turneram's avatar
turneram committed
4106
4107
4108
4109
4110
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)
Shucai Xiao's avatar
Shucai Xiao committed
4111
4112
4113
4114

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
4115
@onnx_test
Khalique's avatar
Khalique committed
4116
4117
4118
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
4119
    axes = [2, 3]
Khalique's avatar
Khalique committed
4120

turneram's avatar
turneram committed
4121
4122
4123
4124
4125
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
4126

Khalique's avatar
Khalique committed
4127
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4128

Khalique's avatar
Khalique committed
4129

Shucai Xiao's avatar
Shucai Xiao committed
4130
4131
4132
4133
4134
4135
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

turneram's avatar
turneram committed
4136
4137
4138
4139
4140
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

turneram's avatar
turneram committed
4151
4152
4153
4154
4155
    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Shucai Xiao's avatar
Shucai Xiao committed
4156
4157
4158
4159

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4160
@onnx_test
Khalique's avatar
Khalique committed
4161
4162
4163
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
4164
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
4165
4166
4167
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
4168
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
4169

turneram's avatar
turneram committed
4170
4171
4172
4173
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])
Khalique's avatar
Khalique committed
4174
4175
4176

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
4177
4178


Khalique's avatar
Khalique committed
4179
@onnx_test
Khalique's avatar
Khalique committed
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

turneram's avatar
turneram committed
4191
4192
4193
4194
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])
Khalique's avatar
Khalique committed
4195
4196

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
4197
4198


Shucai Xiao's avatar
Shucai Xiao committed
4199
4200
4201
@onnx_test
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4202
4203
4204
4205
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4206
4207

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
4208
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


@onnx_test
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4224
4225
4226
4227
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4228
4229
4230
4231

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

turneram's avatar
turneram committed
4232
4233
4234
4235
4236
4237
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')
Shucai Xiao's avatar
Shucai Xiao committed
4238
4239
4240
4241

    return ([node], [X], [Y], [scale_tensor])


4242
4243
4244
@onnx_test
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
turneram's avatar
turneram committed
4245
4246
4247
4248
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
4249
4250
4251
4252

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
4253
4254
4255
4256
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
4257
4258
4259
4260

    return ([node], [X], [Y], [scale_tensor])


4261
4262
4263
@onnx_test
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
turneram's avatar
turneram committed
4264
4265
4266
4267
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
4268
4269
4270
4271

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

turneram's avatar
turneram committed
4272
4273
4274
4275
    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])
4276

turneram's avatar
turneram committed
4277
4278
4279
4280
4281
4282
    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')
4283
4284
4285
4286

    return ([trn, node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4287
4288
4289
@onnx_test
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
turneram's avatar
turneram committed
4290
4291
4292
4293
4294
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


4310
4311
4312
@onnx_test
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
4313
4314
4315
4316
4317
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


@onnx_test
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
4334
4335
4336
4337
4338
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
4339
4340
4341
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
4342
4343
4344
4345
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
4346
4347
4348
4349

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4350
4351
4352
@onnx_test
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
turneram's avatar
turneram committed
4353
4354
4355
4356
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4357
4358
4359
4360

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

turneram's avatar
turneram committed
4361
4362
4363
4364
    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')
Shucai Xiao's avatar
Shucai Xiao committed
4365
4366
4367
4368

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4369
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
4370
4371
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
turneram's avatar
turneram committed
4372
4373
4374
4375
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
4392
4393
4394
4395
4396
4397
4398
@onnx_test
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

turneram's avatar
turneram committed
4399
4400
4401
    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426

    return ([node], [x, roi, bi], [y])


@onnx_test
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4427
@onnx_test
4428
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
4429
4430
4431
4432
4433
4434
4435
4436
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


@onnx_test
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
4479
4480
4481
4482
4483
4484
4485
4486
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


turneram's avatar
turneram committed
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
@onnx_test
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4497
4498
4499
4500
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")
turneram's avatar
turneram committed
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4515
4516
4517
4518
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")
turneram's avatar
turneram committed
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532

    return ([node], [data, indices, updates], [output])


@onnx_test
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

turneram's avatar
turneram committed
4533
4534
4535
    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])
turneram's avatar
turneram committed
4536
4537
4538
4539

    return ([node], [data, indices, updates], [output])


Shucai Xiao's avatar
Shucai Xiao committed
4540
4541
4542
4543
4544
@onnx_test
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

turneram's avatar
turneram committed
4545
4546
4547
4548
4549
    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)
Shucai Xiao's avatar
Shucai Xiao committed
4550
4551
4552
4553

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
4554
@onnx_test
Khalique's avatar
Khalique committed
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4565
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4566

Khalique's avatar
Khalique committed
4567

Khalique's avatar
Khalique committed
4568
@onnx_test
Khalique's avatar
Khalique committed
4569
4570
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
4571
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
4572
4573
4574
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

turneram's avatar
turneram committed
4575
4576
4577
4578
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
4600
4601
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
4602

Khalique's avatar
Khalique committed
4603
@onnx_test
Khalique's avatar
Khalique committed
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4614
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4615

Khalique's avatar
Khalique committed
4616

Khalique's avatar
Khalique committed
4617
@onnx_test
Khalique's avatar
Khalique committed
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4628
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4629

Khalique's avatar
Khalique committed
4630

Khalique's avatar
Khalique committed
4631
@onnx_test
Khalique's avatar
Khalique committed
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4642
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4643

Khalique's avatar
Khalique committed
4644

Charlie Lin's avatar
Charlie Lin committed
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
@onnx_test
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
4693
4694
4695
4696
4697
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

turneram's avatar
turneram committed
4698
4699
4700
4701
4702
4703
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
4704
4705
4706
4707
4708
4709
4710
4711
4712

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
turneram's avatar
turneram committed
4713
4714
4715
4716
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
kahmed10's avatar
kahmed10 committed
4717

turneram's avatar
turneram committed
4718
4719
4720
4721
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
kahmed10's avatar
kahmed10 committed
4722
4723

    end = np.array([2, 5])
turneram's avatar
turneram committed
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])
kahmed10's avatar
kahmed10 committed
4736
4737
4738
4739

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4740
4741
4742
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
turneram's avatar
turneram committed
4743
4744
4745
4746
4747
4748
4749
4750
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4751
4752

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4753
4754
4755
4756
4757
4758
4759
4760
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4761
4762

    end = np.array([-1, -1])
turneram's avatar
turneram committed
4763
4764
4765
4766
4767
4768
4769
4770
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4771
4772

    start = np.array([-5, -3])
turneram's avatar
turneram committed
4773
4774
4775
4776
4777
4778
4779
4780
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
turneram's avatar
turneram committed
4796
4797
4798
4799
4800
4801
4802
4803
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4804
4805

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4806
4807
4808
4809
4810
4811
4812
4813
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4814

4815
    end = np.array([-5, -1])
turneram's avatar
turneram committed
4816
4817
4818
4819
4820
4821
4822
4823
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4824

4825
    start = np.array([-1, -3])
turneram's avatar
turneram committed
4826
4827
4828
4829
4830
4831
4832
4833
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_5arg_step_test():
    step = np.array([-2, 2])
turneram's avatar
turneram committed
4849
4850
4851
4852
4853
4854
4855
4856
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)
4857
4858

    axis = np.array([-1, -2])
turneram's avatar
turneram committed
4859
4860
4861
4862
4863
4864
4865
4866
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)
4867
4868

    end = np.array([-5, -1])
turneram's avatar
turneram committed
4869
4870
4871
4872
4873
4874
4875
4876
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)
4877
4878

    start = np.array([-1, -3])
turneram's avatar
turneram committed
4879
4880
4881
4882
4883
4884
4885
4886
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)
Shucai Xiao's avatar
Shucai Xiao committed
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


4899
4900
4901
4902
4903
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

turneram's avatar
turneram committed
4904
4905
4906
4907
4908
4909
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4910

Khalique's avatar
Khalique committed
4911
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4912

Khalique's avatar
Khalique committed
4913

Khalique's avatar
Khalique committed
4914
@onnx_test
Khalique's avatar
Khalique committed
4915
4916
4917
4918
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
4919
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
4920

Khalique's avatar
Khalique committed
4921
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4922

Khalique's avatar
Khalique committed
4923

4924
4925
4926
@onnx_test
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
4927
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
4928

turneram's avatar
turneram committed
4929
4930
4931
4932
4933
4934
    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])
4935
4936
4937

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

4938
    return ([node0, node1], [x], [y])
4939
4940


turneram's avatar
turneram committed
4941
@onnx_test
turneram's avatar
turneram committed
4942
4943
4944
4945
4946
4947
4948
4949
4950
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


@onnx_test
turneram's avatar
turneram committed
4961
4962
4963
4964
4965
4966
4967
4968
4969
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
4970
4971
4972
4973
4974
4975
4976
4977
4978
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


4996
4997
4998
4999
5000
5001
5002
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

turneram's avatar
turneram committed
5003
5004
5005
5006
5007
    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
5027
@onnx_test
Khalique's avatar
Khalique committed
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
5038
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5039

Khalique's avatar
Khalique committed
5040

Shucai Xiao's avatar
Shucai Xiao committed
5041
5042
5043
5044
5045
@onnx_test
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
turneram's avatar
turneram committed
5046
5047
5048
5049
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5050

turneram's avatar
turneram committed
5051
5052
5053
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
5054
5055
5056
5057
5058
5059
5060
5061
5062

    return ([node], [x], [y], [axes_tensor])


@onnx_test
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
turneram's avatar
turneram committed
5063
5064
5065
5066
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5067

turneram's avatar
turneram committed
5068
5069
5070
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])
Shucai Xiao's avatar
Shucai Xiao committed
5071
5072
5073
5074

    return ([node], [x], [y], [axes_tensor])


Khalique's avatar
Khalique committed
5075
@onnx_test
Khalique's avatar
Khalique committed
5076
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
5077
5078
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
5079
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
5080
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
5081

turneram's avatar
turneram committed
5082
5083
5084
5085
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
5086

turneram's avatar
turneram committed
5087
5088
5089
5090
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])
Khalique's avatar
Khalique committed
5091

5092
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
5093
5094


Khalique's avatar
Khalique committed
5095
@onnx_test
Khalique's avatar
Khalique committed
5096
5097
5098
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
5099
5100
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
5101
5102
5103
5104
5105

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
5106
5107
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
5108
5109
    )

Khalique's avatar
Khalique committed
5110
5111
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
5112

Khalique's avatar
Khalique committed
5113
@onnx_test
Khalique's avatar
Khalique committed
5114
5115
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
5116
5117
5118
5119
5120
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

turneram's avatar
turneram committed
5121
5122
5123
5124
    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.reshape(()).shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
5139
5140
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
5141

Shucai Xiao's avatar
Shucai Xiao committed
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
@onnx_test
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


Khalique's avatar
Khalique committed
5162
@onnx_test
Khalique's avatar
Khalique committed
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
5175
5176
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
5177

Shucai Xiao's avatar
Shucai Xiao committed
5178
5179
5180
@onnx_test
def sum_type_test():
    valb = np.array([1, 0])
turneram's avatar
turneram committed
5181
5182
5183
5184
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
                                vals=valb.astype(np.bool))
Shucai Xiao's avatar
Shucai Xiao committed
5185
5186

    val = np.array([1, 1])
turneram's avatar
turneram committed
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))
Shucai Xiao's avatar
Shucai Xiao committed
5216
5217

    valr = np.array([1.5, 2.0])
turneram's avatar
turneram committed
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)
Shucai Xiao's avatar
Shucai Xiao committed
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

turneram's avatar
turneram committed
5265
5266
5267
5268
5269
    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])
Shucai Xiao's avatar
Shucai Xiao committed
5270
5271


Khalique's avatar
Khalique committed
5272
@onnx_test
Khalique's avatar
Khalique committed
5273
5274
5275
5276
5277
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5278
5279
5280
5281
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5282

Khalique's avatar
Khalique committed
5283
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5284

Khalique's avatar
Khalique committed
5285

Khalique's avatar
Khalique committed
5286
@onnx_test
Khalique's avatar
Khalique committed
5287
5288
5289
5290
5291
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
5292
5293
5294
5295
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
5296

Khalique's avatar
Khalique committed
5297
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5298

Khalique's avatar
Khalique committed
5299

5300
5301
5302
5303
5304
@onnx_test
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

turneram's avatar
turneram committed
5305
5306
5307
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

turneram's avatar
turneram committed
5318
5319
5320
5321
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331

    return ([node], [x], [y])


@onnx_test
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

turneram's avatar
turneram committed
5332
5333
5334
5335
    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)
5336
5337
5338
5339

    return ([node], [x], [y])


kahmed10's avatar
kahmed10 committed
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Shucai Xiao's avatar
Shucai Xiao committed
5364
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
5365
5366
5367
5368
5369
5370
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

turneram's avatar
turneram committed
5371
5372
5373
5374
    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
Shucai Xiao's avatar
Shucai Xiao committed
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
    return ([node], [x], [val, ind])


@onnx_test
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

turneram's avatar
turneram committed
5386
5387
5388
5389
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5390

turneram's avatar
turneram committed
5391
5392
5393
5394
5395
    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
Shucai Xiao's avatar
Shucai Xiao committed
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
    return ([node], [x], [val, ind], [k_tensor])


@onnx_test
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

turneram's avatar
turneram committed
5407
5408
5409
5410
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
Shucai Xiao's avatar
Shucai Xiao committed
5411

turneram's avatar
turneram committed
5412
5413
5414
5415
5416
    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
Shucai Xiao's avatar
Shucai Xiao committed
5417
5418
5419
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


@onnx_test
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5448
@onnx_test
Khalique's avatar
Khalique committed
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
5460
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5461

Khalique's avatar
Khalique committed
5462

Khalique's avatar
Khalique committed
5463
5464
5465
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
5466
5467
5468
5469
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
5470
5471
5472
5473
5474
5475
5476
5477

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

turneram's avatar
turneram committed
5478
5479
5480
5481
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
5482
5483
5484
5485
5486
5487
5488
5489

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
5490
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
5491

Khalique's avatar
Khalique committed
5492

5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
5503
@onnx_test
Khalique's avatar
Khalique committed
5504
5505
5506
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
5507
5508
5509

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5510
5511
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
5512
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5513

Khalique's avatar
Khalique committed
5514
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
5515

Khalique's avatar
Khalique committed
5516
    return ([node, node2], [x, y], [a])
5517
5518


5519
5520
5521
5522
5523
5524
5525
5526
5527
@onnx_test
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

turneram's avatar
turneram committed
5528
5529
5530
5531
    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')
5532
5533
5534
5535

    return ([node], [x, y], [a])


Shucai Xiao's avatar
Shucai Xiao committed
5536
5537
5538
@onnx_test
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
turneram's avatar
turneram committed
5539
5540
5541
5542
5543
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5544
5545
5546
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

turneram's avatar
turneram committed
5547
5548
5549
5550
    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')
Shucai Xiao's avatar
Shucai Xiao committed
5551
5552
5553
5554

    return ([node], [X], [Y], [scales_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
5555
5556
5557
@onnx_test
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
turneram's avatar
turneram committed
5558
5559
5560
5561
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))
Shucai Xiao's avatar
Shucai Xiao committed
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
5597
5598
5599
5600
5601
5602
5603
5604
5605


@onnx_test
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
turneram's avatar
turneram committed
5606
5607
5608
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])
Shucai Xiao's avatar
Shucai Xiao committed
5609
5610

    return ([node], [c, x, y], [z])