task.py 48.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    get_aggregation,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
38
39
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
41
    AGGREGATION_REGISTRY,
)
42

43
44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
47
    "generate_until",
48
49
]

50
51
52

@dataclass
class TaskConfig(dict):
53
    # task naming/registry
54
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
55
    task_alias: str = None
56
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
57
    group_alias: Union[str, list] = None
58
59
60
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
61
62
    dataset_path: str = None
    dataset_name: str = None
63
    dataset_kwargs: dict = None
64
65
66
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
67
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
68
69
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
70
    process_docs: Callable = None
71
72
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
73
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
74
    process_results: Union[Callable, str] = None
75
    use_prompt: str = None
76
    description: str = ""
77
78
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
79
    fewshot_config: dict = None
80
    # runtime configuration options
81
    num_fewshot: int = 0
82
    # scoring options
83
    metric_list: list = None
84
    output_type: str = "generate_until"
85
    generation_kwargs: dict = None
86
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
87
    filter_list: Union[str, list] = None
88
89
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
90

lintangsutawika's avatar
lintangsutawika committed
91
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
92

Ethan Smith's avatar
Ethan Smith committed
93
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
94
        if self.dataset_path and ("." in self.dataset_path):
lintangsutawika's avatar
lintangsutawika committed
95
96
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
97

lintangsutawika's avatar
lintangsutawika committed
98
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
99

Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
                )
105
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
112

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
118
                    "until": None
119
120
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
121
122
                    "do_sample": False,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self):
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
        return cfg_dict
151

152
153
154
155
156
157
158
159
160
161
162
163

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
164

165
166
167
168
169
170
171
172
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
173

174
175
176
177
178
179
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
180
    ) -> None:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
207
        self._config = TaskConfig({**config}) if config else TaskConfig()
208

lintangsutawika's avatar
lintangsutawika committed
209
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
210

Ethan Smith's avatar
Ethan Smith committed
211
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
236
237
238
239
240
241
242
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
243

244
245
246
247
248
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

285
286
287
288
289
290
291
292
293
294
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
295
            eval_logger.warning(
296
                "has_training_docs and has_validation_docs are False"
297
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
298
            )
299
300
            return self.test_docs()

301
302
303
304
305
306
307
308
309
310
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
311

312
313
314
315
316
317
318
319
320
321
322
323
324
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
325
    def doc_to_decontamination_query(self, doc) -> None:
326
327
328
329
330
331
332
333
334
335
336
337
338
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
339
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
340
341
342
343
344
345
346
347
348
349
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

350
        eval_logger.info(f"Building contexts for task on rank {rank}...")
351

352
        instances = []
353
354
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
355
        ):
356
            # sample fewshot context #TODO: need to offset doc_id by rank now!
357
            fewshot_ctx = self.fewshot_context(
358
                doc,
359
                self.config.num_fewshot,
360
            )
361

362
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
363
364
365
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
366
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
367
            )
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
393
            The number of times each instance in a dataset is inferred on. Defaults to 1,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
429
430
431
432
433
434
435
436
437
438
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

439
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
440
    def fewshot_context(
441
442
443
444
445
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
446
    ):
447
448
449
450
451
452
453
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
458
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
459
460
461
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

466
        description = description if description else ""
467
468

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
469
            labeled_examples = ""
470
        else:
lintangsutawika's avatar
lintangsutawika committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
495
            )
496
497

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
498
        return description + labeled_examples + example
499
500

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
501
502
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
503
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
504
505
506
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
507

baberabb's avatar
baberabb committed
508
    def dump_config(self) -> dict:
509
        """Returns a dictionary representing the task's config.
510
511
512
513
514

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
515
        # (num_fewshot)
516
        return self.config.to_dict()
517

518
519

class ConfigurableTask(Task):
520
    VERSION = "Yaml"
521
    OUTPUT_TYPE = None
522
    CONFIG = None
523
524
525

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
526
    ) -> None:  # TODO no super() call here
527
        # Get pre-configured attributes
528
        self._config = self.CONFIG
529

530
        # Use new configurations if there was no preconfiguration
531
        if self.config is None:
532
            self._config = TaskConfig(**config)
533
534
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
535
            if config is not None:
536
                self._config.__dict__.update(config)
537

538
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
539
540
541
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
542

543
544
545
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
546

547
548
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
549

550
551
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
552

553
554
555
556
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
557

558
        if self.config.metric_list is None:
559
            # TODO: handle this in TaskConfig.__post_init__ ?
560
561
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

562
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
563
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
564
                self._metric_fn_kwargs[metric_name] = {}
565
566
567
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
568
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
569
        else:
570
            for metric_config in self.config.metric_list:
571
572
573
574
575
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
576
577
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
578
                }
Chris's avatar
Chris committed
579
580
581
582
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
583

584
                if self.config.process_results is not None:
585
586
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
587
588
589
590
591
592
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
593
594
595
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
596
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
597

598
                if "aggregation" in metric_config:
599
                    agg_name = metric_config["aggregation"]
600
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
601
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
602
603
604
605
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
606
                else:
607
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
608
                    metric_agg = get_metric_aggregation(metric_name)
609
                    eval_logger.warning(
baberabb's avatar
baberabb committed
610
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
611
612
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
613
                    )
614
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
615

616
617
618
619
620
621
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
622
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
623
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
624
                        f"higher_is_better={is_higher_better(metric_name)}"
625
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
626
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
627

628
        self.download(self.config.dataset_kwargs)
629
630
631
        self._training_docs = None
        self._fewshot_docs = None

632
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
633
            self._filters = []
634
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
635
636
637
638
639
640
641
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
642
643
644
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
645
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
646
        else:
647
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
648

649
650
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
651
            self.prompt = get_prompt(
652
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
653
            )
654
655
656
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
657
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
658
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
659
660
661
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
662
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
663

664
        if self.has_test_docs():
665
            self.task_docs = self.test_docs()
666
        elif self.has_validation_docs():
667
            self.task_docs = self.validation_docs()
668
669
670
671
672
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

673
        # Test One Doc
674
        self.features = list(self.task_docs.features.keys())
675
676
        self.multiple_input = 0
        self.multiple_target = 0
677
        test_doc = self.task_docs[0]
678
        test_text = self.doc_to_text(test_doc)
679
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
680

681
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
682
683
684
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
685
686
            else:
                num_choice = len(test_choice)
687

688
689
            if type(test_text) is int:
                self.multiple_input = num_choice
690
691
        else:
            test_choice = None
692

693
        if type(test_target) is list:
694
            self.multiple_target = len(test_target)
695
        else:
lintangsutawika's avatar
lintangsutawika committed
696
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
697
                test_target = test_choice[test_target]
698
            else:
lintangsutawika's avatar
lintangsutawika committed
699
                test_target = str(test_target)
700

701
702
703
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
704
            check_choices = [test_target]
705
706
707
708
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
709
710
                    True
                    if self.config.target_delimiter.rstrip()
711
                    != self.config.target_delimiter
712
                    else False
713
                )
714

715
716
717
718
719
720
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
721
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
722
723
                    )

Ethan Smith's avatar
Ethan Smith committed
724
    def download(self, dataset_kwargs=None) -> None:
725
726
727
728
729
730
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
731
    def has_training_docs(self) -> bool:
732
        if self.config.training_split is not None:
733
734
735
736
            return True
        else:
            return False

baberabb's avatar
baberabb committed
737
    def has_validation_docs(self) -> bool:
738
        if self.config.validation_split is not None:
739
740
741
742
            return True
        else:
            return False

baberabb's avatar
baberabb committed
743
    def has_test_docs(self) -> bool:
744
        if self.config.test_split is not None:
745
746
747
748
            return True
        else:
            return False

baberabb's avatar
baberabb committed
749
    def training_docs(self) -> datasets.Dataset:
750
        if self.has_training_docs():
751
752
753
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
754
                )
755
            return self.dataset[self.config.training_split]
756

baberabb's avatar
baberabb committed
757
    def validation_docs(self) -> datasets.Dataset:
758
        if self.has_validation_docs():
759
760
761
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
762
                )
763
            return self.dataset[self.config.validation_split]
764

baberabb's avatar
baberabb committed
765
    def test_docs(self) -> datasets.Dataset:
766
        if self.has_test_docs():
767
768
769
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
770

771
    def fewshot_docs(self):
772
773
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
774
        else:
775
            if self.config.num_fewshot > 0:
776
                eval_logger.warning(
777
                    f"Task '{self.config.task}': "
778
779
780
781
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
782

lintangsutawika's avatar
lintangsutawika committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

816
817
818
819
820
821
822
823
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

824
    def should_decontaminate(self):
825
        return self.config.should_decontaminate
826
827

    def doc_to_decontamination_query(self, doc):
828
829
830
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
831
832
            else:
                return ast.literal_eval(
833
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
834
                )
835

836
837
838
839
840
841
842
843
844
845
846
847
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
848
849
        if self.prompt is not None:
            doc_to_text = self.prompt
850
        else:
851
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
852

853
854
855
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
856
            if doc_to_text in self.features:
857
                # if self.config.doc_to_choice is not None:
858
859
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
860
861
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
862
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
863
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
864
865
866
                    return ast.literal_eval(text_string)
                else:
                    return text_string
867
        elif callable(doc_to_text):
868
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
869
        # Used when applying a Promptsource template
870
        elif hasattr(doc_to_text, "apply"):
871
872
873
874
875
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
876
                return self.config.fewshot_delimiter
877
        else:
878
            print(type(doc_to_text))
879
            raise TypeError
880

881
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
882
883
        if self.prompt is not None:
            doc_to_target = self.prompt
884
        else:
885
            doc_to_target = self.config.doc_to_target
886

887
888
889
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
890
            if doc_to_target in self.features:
891
                # if self.config.doc_to_choice is not None:
892
893
894
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
895
            else:
lintangsutawika's avatar
lintangsutawika committed
896
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
897
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
898
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
899
900
901
902
903
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
904
905
906
907
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
908
909
                else:
                    return target_string
910
911
        elif type(doc_to_target) == list:
            return doc_to_target
912
        elif callable(doc_to_target):
913
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
914
        # Used when applying a Promptsource template
915
        elif hasattr(doc_to_target, "apply"):
916
            applied_prompt = doc_to_target.apply(doc)
917
918
919
920
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
921
                return self.config.fewshot_delimiter
922
923
        else:
            raise TypeError
924

baberabb's avatar
baberabb committed
925
    def doc_to_choice(self, doc: Any) -> List[str]:
926
927
        if self.prompt is not None:
            doc_to_choice = self.prompt
928
        elif self.config.doc_to_choice is None:
929
930
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
931
            doc_to_choice = self.config.doc_to_choice
932
933
934
935
936
937
938
939
940
941
942
943
944

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
945

baberabb's avatar
baberabb committed
946
947
948
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
949
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
950
            arguments = (ctx, self.doc_to_target(doc))
951
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
952
            arguments = (self.doc_to_target(doc),)
953
        elif self.OUTPUT_TYPE == "multiple_choice":
954
            choices = self.doc_to_choice(doc)
955
            target_delimiter = self.config.target_delimiter
956
957
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
958
                cont = self.doc_to_target(doc)
959
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
960
            else:
961
                # Otherwise they are placed in the continuation
962
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
963

964
            request_list = [
965
966
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
967
                    doc=doc,
968
                    arguments=arg,
969
                    idx=i,
970
971
                    **kwargs,
                )
972
                for i, arg in enumerate(arguments)
973
            ]
974
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
975
            if "acc_mutual_info" in self._metric_fn_list.keys():
976
977
978
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
979
                # here mutual info refers to calculating
980
981
982
983
984
985
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
986
                            doc=doc,
987
                            arguments=("", "{}".format(choice)),
988
989
990
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
991
                        for i, choice in enumerate(choices)
992
993
994
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
995

996
        elif self.OUTPUT_TYPE == "generate_until":
997
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
998
999

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1000
1001
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1002
1003

    def process_results(self, doc, results):
1004
1005
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1006

1007
        result_dict = {}
1008
        use_metric = list(self._metric_fn_list.keys())
1009
1010
1011
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1012
1013
1014
1015
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1016
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1017
            (loglikelihood,) = results
1018
1019
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1020
            return {
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
            }
1037
        elif self.OUTPUT_TYPE == "multiple_choice":
1038
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1039

1040
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1041
            choices = self.doc_to_choice(doc)
1042
1043
            completion_len = np.array([float(len(i)) for i in choices])

1044
1045
            if (
                2 * len(choices) == len(lls)
1046
                and "acc_mutual_info" in self._metric_fn_list.keys()
1047
1048
1049
1050
1051
1052
1053
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1054

1055
1056
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1057

1058
1059
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1060
            else:
1061
                gold = self.doc_to_target(doc)
1062
1063
1064

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1065
1066
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1067
1068
1069
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1070
                    gold = gold if gold < len(choices) else -100
1071
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1072
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1073

Lintang Sutawika's avatar
Lintang Sutawika committed
1074
                if gold == -100:
1075
1076
1077
1078
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1079
                    f"Label index was not in within range of available choices,"
1080
1081
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1082

1083
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1084
1085
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1086
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1087
1088
1089
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1090
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1091
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1092
1093

            result_dict = {
1094
                **({"acc": acc} if "acc" in use_metric else {}),
1095
1096
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1097
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1098
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1099
1100
            }

1101
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1102
1103
1104
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1105
1106
1107
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1108
        elif self.OUTPUT_TYPE == "generate_until":
1109
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1110
            result = results[0]
1111
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1112
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1113
                # it assumes that doc_to_target returns a number.
1114
1115
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1116
1117
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1118
                gold = list(gold)
Chris's avatar
Chris committed
1119
1120
1121
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1122

lintangsutawika's avatar
lintangsutawika committed
1123
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1124
1125
1126
1127
1128
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1129
1130
1131
1132
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1133
                    for gold_option in gold:
1134
                        try:
1135
                            result_score = self._metric_fn_list[metric](
1136
1137
                                references=[gold_option],
                                predictions=[result],
1138
                                **self._metric_fn_kwargs[metric],
1139
                            )
baberabb's avatar
baberabb committed
1140
1141
1142
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1143
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1144
1145
1146
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1147
                            # TODO: this handles the case where HF evaluate returns a dict.
1148
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1149
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1150
                    if any(scores):
1151
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1152
                    else:
1153
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1154
                else:
1155
                    try:
1156
                        result_score = self._metric_fn_list[metric](
1157
1158
                            references=[gold],
                            predictions=[result],
1159
                            **self._metric_fn_kwargs[metric],
1160
                        )
baberabb's avatar
baberabb committed
1161
1162
1163
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1164
                        result_score = self._metric_fn_list[metric]([gold, result])
1165
1166
1167
1168
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1169
        else:
lintangsutawika's avatar
lintangsutawika committed
1170
1171
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1172
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1173
            )
1174
1175
1176
1177
1178
1179
1180

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1181
        return self._higher_is_better
1182
1183
1184
1185
1186


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1187
    def doc_to_target(self, doc: dict) -> str:
1188
1189
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1190
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1191
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1192
1193
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1194
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1195
                doc=doc,
1196
                arguments=(ctx, " {}".format(choice)),
1197
                idx=i,
1198
1199
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1200
1201
            for i, choice in enumerate(doc["choices"])
        ]
1202

baberabb's avatar
baberabb committed
1203
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1204
1205
1206
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1218
    def higher_is_better(self) -> dict:
1219
1220
1221
1222
1223
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1224
    def aggregation(self) -> dict:
1225
1226
1227
1228
1229
1230
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1231
class PerplexityTask(Task):
1232
1233
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1234
    def has_training_docs(self) -> bool:
1235
1236
        return False

baberabb's avatar
baberabb committed
1237
    def fewshot_examples(self, k: int, rnd) -> List:
1238
1239
1240
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1241
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1242
1243
1244
1245
1246
1247
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1248
    def higher_is_better(self) -> dict:
1249
1250
1251
1252
1253
1254
1255
1256
1257
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1258
    def doc_to_text(self, doc) -> str:
1259
1260
1261
1262
1263
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1264
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1265
1266
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1267
1268
1269
1270
1271
1272
1273
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1274

baberabb's avatar
baberabb committed
1275
    def process_results(self, doc: dict, results: float) -> dict:
1276
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1277
1278
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1279
1280
1281
1282
1283
1284
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1285
    def aggregation(self) -> dict:
1286
1287
1288
1289
1290
1291
1292
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1293
    def count_bytes(cls, doc) -> int:
1294
1295
1296
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1297
    def count_words(cls, doc) -> int:
1298
1299
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))