trainer.py 132 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 馃 Transformers from scratch or finetune it on a new task.
"""

19
import collections
20
import inspect
21
import math
Julien Chaumond's avatar
Julien Chaumond committed
22
import os
23
import random
Julien Chaumond's avatar
Julien Chaumond committed
24
25
import re
import shutil
26
import sys
27
import time
28
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
29
from pathlib import Path
30
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
31

32
33
from tqdm.auto import tqdm

Julien Chaumond's avatar
Julien Chaumond committed
34

35
36
# Integrations must be imported before ML frameworks:
from .integrations import (  # isort: split
37
    default_hp_search_backend,
38
    get_reporting_integration_callbacks,
39
    hp_params,
40
    is_fairscale_available,
41
    is_optuna_available,
42
    is_ray_tune_available,
43
    is_sigopt_available,
44
45
    run_hp_search_optuna,
    run_hp_search_ray,
46
    run_hp_search_sigopt,
47
)
48
49
50
51
52

import numpy as np
import torch
from packaging import version
from torch import nn
53
from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler
54
55
from torch.utils.data.distributed import DistributedSampler

56
57
from huggingface_hub import Repository

58
59
from . import __version__
from .configuration_utils import PretrainedConfig
60
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
61
from .debug_utils import DebugOption, DebugUnderflowOverflow
62
from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
63
from .dependency_versions_check import dep_version_check
Sylvain Gugger's avatar
Sylvain Gugger committed
64
from .file_utils import (
65
    CONFIG_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
66
    WEIGHTS_NAME,
67
    get_full_repo_name,
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
    is_apex_available,
    is_datasets_available,
    is_in_notebook,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
74
    is_torch_tpu_available,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
75
from .modelcard import TrainingSummary
76
from .modeling_utils import PreTrainedModel, unwrap_model
77
from .models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
Sylvain Gugger's avatar
Sylvain Gugger committed
78
from .optimization import Adafactor, AdamW, get_scheduler
79
from .tokenization_utils_base import PreTrainedTokenizerBase
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
86
87
88
89
from .trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from .trainer_pt_utils import (
90
    DistributedLengthGroupedSampler,
91
    DistributedSamplerWithLoop,
92
    DistributedTensorGatherer,
93
    IterableDatasetShard,
Sylvain Gugger's avatar
Sylvain Gugger committed
94
    LabelSmoother,
95
    LengthGroupedSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
96
    SequentialDistributedSampler,
97
    ShardSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
    distributed_broadcast_scalars,
    distributed_concat,
100
    find_batch_size,
101
    get_parameter_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
    nested_concat,
    nested_detach,
    nested_numpify,
105
    nested_truncate,
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
)
109
110
111
from .trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
112
    EvalLoopOutput,
113
114
    EvalPrediction,
    HPSearchBackend,
115
116
    HubStrategy,
    IntervalStrategy,
117
    PredictionOutput,
118
    ShardedDDPOption,
119
    TrainerMemoryTracker,
120
121
122
    TrainOutput,
    default_compute_objective,
    default_hp_space,
123
    denumpify_detensorize,
124
    get_last_checkpoint,
125
    number_of_arguments,
126
    set_seed,
127
    speed_metrics,
128
)
129
from .training_args import ParallelMode, TrainingArguments
Lysandre Debut's avatar
Lysandre Debut committed
130
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
131
132


133
_is_torch_generator_available = False
134
_is_native_amp_available = False
135

Sylvain Gugger's avatar
Sylvain Gugger committed
136
DEFAULT_CALLBACKS = [DefaultFlowCallback]
137
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
Sylvain Gugger's avatar
Sylvain Gugger committed
138

139
140
141
142
if is_in_notebook():
    from .utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
143

144
145
if is_apex_available():
    from apex import amp
146

147
if version.parse(torch.__version__) >= version.parse("1.6"):
148
    _is_torch_generator_available = True
149
    _is_native_amp_available = True
150
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
151

152
153
if is_datasets_available():
    import datasets
Julien Chaumond's avatar
Julien Chaumond committed
154

155
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
156
157
158
159
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

160
if is_fairscale_available():
161
    dep_version_check("fairscale")
162
    import fairscale
163
    from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
164
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
165
    from fairscale.nn.wrap import auto_wrap
166
167
168
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler

Sylvain Gugger's avatar
Sylvain Gugger committed
169
if is_sagemaker_dp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
    import smdistributed.dataparallel.torch.distributed as dist
    from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
    import torch.distributed as dist
174

Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
179
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat

180

181
182
183
if TYPE_CHECKING:
    import optuna

Lysandre Debut's avatar
Lysandre Debut committed
184
logger = logging.get_logger(__name__)
Julien Chaumond's avatar
Julien Chaumond committed
185
186


187
188
189
190
191
192
193
194
# Name of the files used for checkpointing
TRAINING_ARGS_NAME = "training_args.bin"
TRAINER_STATE_NAME = "trainer_state.json"
OPTIMIZER_NAME = "optimizer.pt"
SCHEDULER_NAME = "scheduler.pt"
SCALER_NAME = "scaler.pt"


Julien Chaumond's avatar
Julien Chaumond committed
195
196
class Trainer:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
197
    Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 馃 Transformers.
198
199

    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
200
        model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`):
201
            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
206
207

            .. note::

                :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel`
                provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as
                they work the same way as the 馃 Transformers models.
208
        args (:class:`~transformers.TrainingArguments`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
209
210
211
            The arguments to tweak for training. Will default to a basic instance of
            :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in
            the current directory if not provided.
212
        data_collator (:obj:`DataCollator`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
            The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
            Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
            :func:`~transformers.DataCollatorWithPadding` otherwise.
216
        train_dataset (:obj:`torch.utils.data.Dataset` or :obj:`torch.utils.data.IterableDataset`, `optional`):
217
            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
218
            ``model.forward()`` method are automatically removed.
219

220
221
222
223
224
225
            Note that if it's a :obj:`torch.utils.data.IterableDataset` with some randomization and you are training in
            a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that
            is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer
            will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that
            internally sets the seed of the RNGs used.
        eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
226
             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
Sylvain Gugger's avatar
Sylvain Gugger committed
227
             ``model.forward()`` method are automatically removed.
228
229
230
231
        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
            interrupted training or reuse the fine-tuned model.
232
233
234
        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
            A function that instantiates the model to be used. If provided, each call to
            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
235

236
237
238
            The function may have zero argument, or a single one containing the optuna/Ray Tune/SigOpt trial object, to
            be able to choose different architectures according to hyper parameters (such as layer count, sizes of
            inner layers, dropout probabilities etc).
Sylvain Gugger's avatar
Sylvain Gugger committed
239
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
240
            The function that will be used to compute metrics at evaluation. Must take a
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243
244
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
            A list of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in :doc:`here <callback>`.
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246

            If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method.
247
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, `optional`): A tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
248
            containing the optimizer and the scheduler to use. Will default to an instance of
249
            :class:`~transformers.AdamW` on your model and a scheduler given by
Sylvain Gugger's avatar
Sylvain Gugger committed
250
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
251

252
253
254
255
256
257
258
259
260
261
    Important attributes:

        - **model** -- Always points to the core model. If using a transformers model, it will be a
          :class:`~transformers.PreTrainedModel` subclass.
        - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
          original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``,
          the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the
          inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``.
        - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
          data parallelism, this means some of the model layers are split on different GPUs).
262
263
264
        - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
          to :obj:`False` if model parallel or deepspeed is used, or if the default
          ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` .
265
266
        - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called
          while in ``train``)
267

Julien Chaumond's avatar
Julien Chaumond committed
268
269
    """

270
    from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
271

Julien Chaumond's avatar
Julien Chaumond committed
272
273
    def __init__(
        self,
274
        model: Union[PreTrainedModel, nn.Module] = None,
275
        args: TrainingArguments = None,
Julien Chaumond's avatar
Julien Chaumond committed
276
277
278
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
279
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
280
        model_init: Callable[[], PreTrainedModel] = None,
Julien Chaumond's avatar
Julien Chaumond committed
281
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
282
        callbacks: Optional[List[TrainerCallback]] = None,
283
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
284
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
285
        if args is None:
286
287
288
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
292
        self.hp_name = None
293
        self.deepspeed = None
294
        self.is_in_train = False
295

296
297
298
299
        # memory metrics - must set up as early as possible
        self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
        self._memory_tracker.start()

300
        # set the correct log level depending on the node
301
        log_level = args.get_process_log_level()
302
303
        logging.set_verbosity(log_level)

304
305
306
        # force device and distributed setup init explicitly
        args._setup_devices

307
308
309
310
311
312
313
314
315
316
317
318
319
320
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                warnings.warn(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. "
                    "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.",
                    FutureWarning,
                )
            self.model_init = model_init
321

322
323
324
325
326
        if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
            self.is_model_parallel = True
        else:
            self.is_model_parallel = False

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        # Setup Sharded DDP training
        self.sharded_ddp = None
        if len(args.sharded_ddp) > 0:
            if args.deepspeed:
                raise ValueError(
                    "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
                )

            if args.local_rank == -1:
                raise ValueError("Using sharded DDP only works in distributed training.")
            elif not is_fairscale_available():
                raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
            elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
                raise ImportError(
                    "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
                    f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
                )
            elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.SIMPLE
            elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
            elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_3

351
        # one place to sort out whether to place the model on device or not
352
353
354
355
356
357
        # postpone switching model to cuda when:
        # 1. MP - since we are trying to fit a much bigger than 1 gpu model
        # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
        #    and we only use deepspeed for training at the moment
        # 3. full fp16 eval - since the model needs to be half'ed first
        # 4. Sharded DDP - same as MP
358
        self.place_model_on_device = args.place_model_on_device
359
360
        if (
            self.is_model_parallel
361
            or args.deepspeed
362
363
364
            or (args.fp16_full_eval and not args.do_train)
            or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
        ):
365
366
            self.place_model_on_device = False

367
368
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
Julien Chaumond's avatar
Julien Chaumond committed
369
370
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
371
        self.tokenizer = tokenizer
372

373
        if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
374
            self._move_model_to_device(model, args.device)
Stas Bekman's avatar
Stas Bekman committed
375
376
377

        # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
        if self.is_model_parallel:
378
            self.args._n_gpu = 1
379
380
381
382
383

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model_wrapped = model
        self.model = model

Julien Chaumond's avatar
Julien Chaumond committed
384
        self.compute_metrics = compute_metrics
385
        self.optimizer, self.lr_scheduler = optimizers
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
388
                "Passing a `model_init` is incompatible with providing the `optimizers` argument. "
Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
391
392
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
393
394
395
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
396
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
Sylvain Gugger's avatar
Sylvain Gugger committed
397

398
399
400
        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

401
402
403
        # Create clone of distant repo and output directory if needed
        if self.args.push_to_hub:
            self.init_git_repo()
404
405
406
407
408
409
            # In case of pull, we need to make sure every process has the latest.
            if is_torch_tpu_available():
                xm.rendezvous("init git repo")
            elif args.local_rank != -1:
                dist.barrier()

410
        if self.args.should_save:
Julien Chaumond's avatar
Julien Chaumond committed
411
            os.makedirs(self.args.output_dir, exist_ok=True)
412

413
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
Sylvain Gugger's avatar
Sylvain Gugger committed
414
            raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
415

416
417
418
419
420
421
        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0:
            raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")

422
        self._signature_columns = None
423

424
425
426
        # Mixed precision setup
        self.use_apex = False
        self.use_amp = False
427
428
        self.fp16_backend = None

429
430
        if args.fp16:
            if args.fp16_backend == "auto":
431
                self.fp16_backend = "amp" if _is_native_amp_available else "apex"
432
            else:
433
434
                self.fp16_backend = args.fp16_backend
            logger.info(f"Using {self.fp16_backend} fp16 backend")
435

436
437
        if args.fp16 and not args.deepspeed:  # deepspeed manages its own fp16
            if self.fp16_backend == "amp":
438
                self.use_amp = True
439
440
441
442
443
444
                if is_sagemaker_mp_enabled():
                    self.scaler = smp.amp.GradScaler()
                elif self.sharded_ddp is not None:
                    self.scaler = ShardedGradScaler()
                else:
                    self.scaler = torch.cuda.amp.GradScaler()
445
446
447
448
449
450
451
            else:
                if not is_apex_available():
                    raise ImportError(
                        "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex."
                    )
                self.use_apex = True

452
453
454
455
456
457
458
        # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
        if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0:
            raise ValueError(
                "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
                "along 'max_grad_norm': 0 in your hyperparameters."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462
463
464
        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

465
        self.state = TrainerState()
Sylvain Gugger's avatar
Sylvain Gugger committed
466
        self.control = TrainerControl()
467
468
469
        # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
        # returned to 0 every time flos need to be logged
        self.current_flos = 0
470
        self.hp_search_backend = None
471
        self.use_tune_checkpoints = False
472
        default_label_names = (
473
            ["start_positions", "end_positions"]
474
            if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values()
475
476
477
            else ["labels"]
        )
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
478
479
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)

480
481
482
        # very last
        self._memory_tracker.stop_and_update_metrics()

Sylvain Gugger's avatar
Sylvain Gugger committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def add_callback(self, callback):
        """
        Add a callback to the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it.

        If the callback is not found, returns :obj:`None` (and no error is raised).

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            :class:`~transformer.TrainerCallback`: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)
Julien Chaumond's avatar
Julien Chaumond committed
520

Sylvain Gugger's avatar
Sylvain Gugger committed
521
522
523
524
525
526
    def _move_model_to_device(self, model, device):
        model = model.to(device)
        # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
        if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
            model.tie_weights()

527
    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
528
        if not self.args.remove_unused_columns:
529
            return dataset
530
531
532
533
534
535
536
537
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            signature = inspect.signature(self.model.forward)
            self._signature_columns = list(signature.parameters.keys())
            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += ["label", "label_ids"]
        columns = [k for k in self._signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
538
539
540
541
542
543
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set "
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
            )
544

545
546
547
548
549
550
551
        if version.parse(datasets.__version__) < version.parse("1.4.0"):
            dataset.set_format(
                type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
            )
            return dataset
        else:
            return dataset.remove_columns(ignored_columns)
552

553
    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
554
        if not isinstance(self.train_dataset, collections.abc.Sized):
555
            return None
556

557
558
559
560
561
        generator = None
        if self.args.world_size <= 1 and _is_torch_generator_available:
            generator = torch.Generator()
            generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))

562
563
        # Build the sampler.
        if self.args.group_by_length:
564
565
566
567
568
569
570
571
            if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
                lengths = (
                    self.train_dataset[self.args.length_column_name]
                    if self.args.length_column_name in self.train_dataset.column_names
                    else None
                )
            else:
                lengths = None
572
            model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
573
            if self.args.world_size <= 1:
574
                return LengthGroupedSampler(
575
                    self.args.train_batch_size,
576
                    dataset=self.train_dataset,
577
578
579
                    lengths=lengths,
                    model_input_name=model_input_name,
                    generator=generator,
580
                )
581
582
            else:
                return DistributedLengthGroupedSampler(
583
                    self.args.train_batch_size,
584
                    dataset=self.train_dataset,
585
586
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
587
                    lengths=lengths,
588
                    model_input_name=model_input_name,
589
                    seed=self.args.seed,
590
591
592
                )

        else:
593
            if self.args.world_size <= 1:
594
595
                if _is_torch_generator_available:
                    return RandomSampler(self.train_dataset, generator=generator)
596
                return RandomSampler(self.train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
599
600
            elif (
                self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
                and not self.args.dataloader_drop_last
            ):
601
602
603
604
605
606
                # Use a loop for TPUs when drop_last is False to have all batches have the same size.
                return DistributedSamplerWithLoop(
                    self.train_dataset,
                    batch_size=self.args.per_device_train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
607
                    seed=self.args.seed,
608
                )
609
            else:
610
                return DistributedSampler(
611
612
613
614
                    self.train_dataset,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                    seed=self.args.seed,
615
                )
616
617
618
619
620

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

Sylvain Gugger's avatar
Sylvain Gugger committed
621
622
        Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
        to distributed training if necessary) otherwise.
623
624
625
626
627

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
628

629
630
631
632
        train_dataset = self.train_dataset
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")

633
        if isinstance(train_dataset, torch.utils.data.IterableDataset):
634
635
            if self.args.world_size > 1:
                train_dataset = IterableDatasetShard(
636
                    train_dataset,
637
638
639
640
641
                    batch_size=self.args.train_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
642

643
644
645
646
647
648
649
650
            return DataLoader(
                train_dataset,
                batch_size=self.args.train_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

651
652
653
        train_sampler = self._get_train_sampler()

        return DataLoader(
654
            train_dataset,
Julien Chaumond's avatar
Julien Chaumond committed
655
656
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
657
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
658
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
659
            num_workers=self.args.dataloader_num_workers,
660
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
661
662
        )

663
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        # Deprecated code
        if self.args.use_legacy_prediction_loop:
            if is_torch_tpu_available():
                return SequentialDistributedSampler(
                    eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
                )
            elif is_sagemaker_mp_enabled():
                return SequentialDistributedSampler(
                    eval_dataset,
                    num_replicas=smp.dp_size(),
                    rank=smp.dp_rank(),
                    batch_size=self.args.per_device_eval_batch_size,
                )
            elif self.args.local_rank != -1:
                return SequentialDistributedSampler(eval_dataset)
            else:
                return SequentialSampler(eval_dataset)

        if self.args.world_size <= 1:
            return SequentialSampler(eval_dataset)
        else:
            return ShardSampler(
Sylvain Gugger's avatar
Sylvain Gugger committed
686
687
                eval_dataset,
                batch_size=self.args.per_device_eval_batch_size,
688
689
                num_processes=self.args.world_size,
                process_index=self.args.process_index,
Sylvain Gugger's avatar
Sylvain Gugger committed
690
            )
Lysandre Debut's avatar
Lysandre Debut committed
691

Julien Chaumond's avatar
Julien Chaumond committed
692
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
693
694
695
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

696
697
        Subclass and override this method if you want to inject some custom behavior.

698
        Args:
699
            eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
700
                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
701
                accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
702
        """
Julien Chaumond's avatar
Julien Chaumond committed
703
704
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
705
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
706

707
708
709
        if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
            eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")

710
        if isinstance(eval_dataset, torch.utils.data.IterableDataset):
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            if self.args.world_size > 1:
                eval_dataset = IterableDatasetShard(
                    eval_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                eval_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

727
        eval_sampler = self._get_eval_sampler(eval_dataset)
728

729
        return DataLoader(
730
            eval_dataset,
731
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
732
            batch_size=self.args.eval_batch_size,
733
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
734
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
735
            num_workers=self.args.dataloader_num_workers,
736
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
737
738
739
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
740
741
742
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

743
744
        Subclass and override this method if you want to inject some custom behavior.

745
        Args:
746
            test_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
747
                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
748
                ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
749
        """
750
        if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
751
            test_dataset = self._remove_unused_columns(test_dataset, description="test")
752

753
        if isinstance(test_dataset, torch.utils.data.IterableDataset):
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
            if self.args.world_size > 1:
                test_dataset = IterableDatasetShard(
                    test_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                test_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

770
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
771

772
773
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
774
            test_dataset,
775
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
776
            batch_size=self.args.eval_batch_size,
777
            collate_fn=self.data_collator,
778
            drop_last=self.args.dataloader_drop_last,
779
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
780
        )
Lysandre Debut's avatar
Lysandre Debut committed
781

782
    def create_optimizer_and_scheduler(self, num_training_steps: int):
783
784
785
        """
        Setup the optimizer and the learning rate scheduler.

786
787
788
789
790
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer`
        and/or :obj:`create_scheduler`) in a subclass.
        """
        self.create_optimizer()
791
        self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
792
793
794
795
796

    def create_optimizer(self):
        """
        Setup the optimizer.

797
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
798
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
799
        """
800
        if self.optimizer is None:
801
            decay_parameters = get_parameter_names(self.model, [nn.LayerNorm])
802
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
803
804
            optimizer_grouped_parameters = [
                {
805
                    "params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
806
807
808
                    "weight_decay": self.args.weight_decay,
                },
                {
809
                    "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
810
811
812
                    "weight_decay": 0.0,
                },
            ]
Sylvain Gugger's avatar
Sylvain Gugger committed
813
814
815
816
817
818
819
820
821
822
823
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
            if self.args.adafactor:
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
            else:
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
824
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
825
826
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
                    optim=optimizer_cls,
                    **optimizer_kwargs,
829
830
                )
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
831
832
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

Sylvain Gugger's avatar
Sylvain Gugger committed
833
834
835
        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(self.optimizer)

836
837
838
        return self.optimizer

    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
839
        """
840
841
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.
842
843
844
845

        Args:
            num_training_steps (int): The number of training steps to do.
        """
846
        if self.lr_scheduler is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
847
848
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
849
                optimizer=self.optimizer if optimizer is None else optimizer,
850
                num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
Sylvain Gugger's avatar
Sylvain Gugger committed
851
                num_training_steps=num_training_steps,
852
            )
853
        return self.lr_scheduler
Julien Chaumond's avatar
Julien Chaumond committed
854

855
    def num_examples(self, dataloader: DataLoader) -> int:
856
        """
857
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
858

859
        Will raise an exception if the underlying dataset does not implement method :obj:`__len__`
860
        """
861
        return len(dataloader.dataset)
862

863
    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
Patrick von Platen's avatar
Patrick von Platen committed
864
        """HP search setup code"""
865
866
        self._trial = trial

867
868
        if self.hp_search_backend is None or trial is None:
            return
869
870
871
872
873
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            params = self.hp_space(trial)
        elif self.hp_search_backend == HPSearchBackend.RAY:
            params = trial
            params.pop("wandb", None)
874
875
        elif self.hp_search_backend == HPSearchBackend.SIGOPT:
            params = {k: int(v) if isinstance(v, str) else v for k, v in trial.assignments.items()}
876

877
878
        for key, value in params.items():
            if not hasattr(self.args, key):
879
                logger.warn(
880
881
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
882
                continue
883
884
885
886
887
888
889
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)
890
891
        if self.hp_search_backend == HPSearchBackend.SIGOPT:
            logger.info(f"SigOpt Assignments: {trial.assignments}")
892
893
        if self.args.deepspeed:
            # Rebuild the deepspeed config to reflect the updated training parameters
894
            from transformers.deepspeed import HfDeepSpeedConfig
895

896
            self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args)
897
898
899
900
901
902

    def _report_to_hp_search(
        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
    ):
        if self.hp_search_backend is None or trial is None:
            return
903
        self.objective = self.compute_objective(metrics.copy())
904
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
905
906
            import optuna

907
908
909
910
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
911
912
            from ray import tune

913
            if self.control.should_save:
914
                self._tune_save_checkpoint()
915
916
            tune.report(objective=self.objective, **metrics)

917
    def _tune_save_checkpoint(self):
918
919
        from ray import tune

920
921
        if not self.use_tune_checkpoints:
            return
922
        with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
923
            output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
924
            self.save_model(output_dir)
925
            if self.args.should_save:
926
927
928
                self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
929

930
    def call_model_init(self, trial=None):
931
        model_init_argcount = number_of_arguments(self.model_init)
932
933
934
935
936
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(trial)
        else:
937
938
939
940
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")
941
942
943

        return model

944
    def _wrap_model(self, model, training=True):
Sylvain Gugger's avatar
Sylvain Gugger committed
945
946
947
948
949
950
        if is_sagemaker_mp_enabled():
            # Wrapping the base model twice in a DistributedModel will raise an error.
            if isinstance(self.model_wrapped, smp.model.DistributedModel):
                return self.model_wrapped
            return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)

951
952
        # already initialized its own DDP and AMP
        if self.deepspeed:
953
            return self.deepspeed
954

955
956
957
958
        # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
        if unwrap_model(model) is not model:
            return model

959
960
961
962
963
964
        # Mixed precision training with apex (torch < 1.6)
        if self.use_apex and training:
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
965
            model = nn.DataParallel(model)
966
967
968
969
970
971
972

        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
        if not training:
            return model

        # Distributed training (should be after apex fp16 initialization)
973
974
975
976
977
978
979
980
981
        if self.sharded_ddp is not None:
            # Sharded DDP!
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
                model = ShardedDDP(model, self.optimizer)
            else:
                mixed_precision = self.args.fp16
                cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
                zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
                # XXX: Breaking the self.model convention but I see no way around it for now.
982
983
                if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
                    model = auto_wrap(model)
984
                self.model = model = FullyShardedDDP(
985
986
987
988
                    model,
                    mixed_precision=mixed_precision,
                    reshard_after_forward=zero_3,
                    cpu_offload=cpu_offload,
989
990
                ).to(self.args.device)

Sylvain Gugger's avatar
Sylvain Gugger committed
991
        elif is_sagemaker_dp_enabled():
992
993
994
995
996
997
998
            model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
        elif self.args.local_rank != -1:
            if self.args.ddp_find_unused_parameters is not None:
                find_unused_parameters = self.args.ddp_find_unused_parameters
            elif isinstance(model, PreTrainedModel):
                # find_unused_parameters breaks checkpointing as per
                # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
999
                find_unused_parameters = not model.is_gradient_checkpointing
1000
1001
            else:
                find_unused_parameters = True
1002
            model = nn.parallel.DistributedDataParallel(
1003
                model,
1004
1005
                device_ids=[self.args.local_rank] if self.args._n_gpu != 0 else None,
                output_device=self.args.local_rank if self.args._n_gpu != 0 else None,
1006
1007
1008
1009
1010
                find_unused_parameters=find_unused_parameters,
            )

        return model

1011
1012
    def train(
        self,
1013
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
1014
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
1015
        ignore_keys_for_eval: Optional[List[str]] = None,
1016
        **kwargs,
1017
    ):
Julien Chaumond's avatar
Julien Chaumond committed
1018
1019
1020
1021
        """
        Main training entry point.

        Args:
1022
1023
1024
1025
1026
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
1027
1028
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
1029
1030
1031
            ignore_keys_for_eval (:obj:`List[str]`, `optional`)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
1032
1033
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
Julien Chaumond's avatar
Julien Chaumond committed
1034
        """
1035
        resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint
1036
1037
1038
1039

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1040
1041
        args = self.args

1042
1043
        self.is_in_train = True

1044
1045
1046
        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if args.fp16_full_eval and not args.do_train:
Sylvain Gugger's avatar
Sylvain Gugger committed
1047
            self._move_model_to_device(self.model, args.device)
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1058
1059
1060
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

1061
        # Model re-init
1062
        model_reloaded = False
1063
        if self.model_init is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1064
            # Seed must be set before instantiating the model when using model_init.
1065
            set_seed(args.seed)
1066
1067
            self.model = self.call_model_init(trial)
            model_reloaded = True
Sylvain Gugger's avatar
Sylvain Gugger committed
1068
1069
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None
1070

1071
        # Load potential model checkpoint
1072
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
1073
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
1074
            if resume_from_checkpoint is None:
1075
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
1076

1077
1078
1079
1080
        if resume_from_checkpoint is not None:
            if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
                raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

1081
            logger.info(f"Loading model from {resume_from_checkpoint}).")
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
                config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
                checkpoint_version = config.transformers_version
                if checkpoint_version is not None and checkpoint_version != __version__:
                    logger.warn(
                        f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
                        f"Transformers but your current version is {__version__}. This is not recommended and could "
                        "yield to errors or unwanted behaviors."
                    )

1093
            if args.deepspeed:
1094
                # will be resumed in deepspeed_init
1095
                pass
1096
            else:
1097
1098
1099
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
                # If the model is on the GPU, it still works!
1100
                self._load_state_dict_in_model(state_dict)
1101

1102
1103
1104
                # release memory
                del state_dict

1105
1106
        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
1107
            if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
1108
                self._move_model_to_device(self.model, args.device)
1109
1110
            self.model_wrapped = self.model

1111
1112
1113
        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

1114
        # Data loader and number of training steps
Julien Chaumond's avatar
Julien Chaumond committed
1115
        train_dataloader = self.get_train_dataloader()
1116
1117
1118
1119
1120

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
1121
        total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
1122
        if train_dataset_is_sized:
1123
            num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
1124
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
1125
1126
1127
1128
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
1129
                )
1130
1131
1132
                # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
1133
            else:
1134
1135
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
1136
                num_train_samples = len(self.train_dataset) * args.num_train_epochs
Julien Chaumond's avatar
Julien Chaumond committed
1137
        else:
1138
            # see __init__. max_steps is set when the dataset has no __len__
1139
            max_steps = args.max_steps
1140
1141
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
1142
            num_update_steps_per_epoch = max_steps
1143
            num_train_samples = args.max_steps * total_train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1144

1145
        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
1146
1147
1148
1149
1150
1151
1152
1153
            if self.args.n_gpu > 1:
                # nn.DataParallel(model) replicates the model, creating new variables and module
                # references registered here no longer work on other gpus, breaking the module
                raise ValueError(
                    "Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)."
                )
            else:
                debug_overflow = DebugUnderflowOverflow(self.model)  # noqa
1154

1155
        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
1156
        if args.deepspeed:
1157
            deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
1158
1159
                self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
            )
1160
1161
1162
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
1163
1164
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
1165
        elif not delay_optimizer_creation:
1166
1167
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1168
        self.state = TrainerState()
1169
        self.state.is_hyper_param_search = trial is not None
Julien Chaumond's avatar
Julien Chaumond committed
1170

1171
1172
1173
1174
        # Activate gradient checkpointing if needed
        if args.gradient_checkpointing:
            self.model.gradient_checkpointing_enable()

1175
        model = self._wrap_model(self.model_wrapped)
Julien Chaumond's avatar
Julien Chaumond committed
1176

1177
1178
1179
1180
        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

1181
1182
1183
        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1184
1185
1186
        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

1187
1188
        # important: at this point:
        # self.model         is the Transformers Model
1189
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
1190

Julien Chaumond's avatar
Julien Chaumond committed
1191
        # Train!
1192
        num_examples = (
1193
            self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps
1194
1195
        )

Julien Chaumond's avatar
Julien Chaumond committed
1196
        logger.info("***** Running training *****")
1197
1198
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
1199
        logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
1200
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
1201
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
1202
        logger.info(f"  Total optimization steps = {max_steps}")
Julien Chaumond's avatar
Julien Chaumond committed
1203

1204
        self.state.epoch = 0
1205
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
1206
1207
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
1208
        steps_trained_progress_bar = None
1209

Julien Chaumond's avatar
Julien Chaumond committed
1210
        # Check if continuing training from a checkpoint
1211
        if resume_from_checkpoint is not None and os.path.isfile(
1212
            os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
1213
        ):
1214
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
1215
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
1216
            if not args.ignore_data_skip:
1217
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
1218
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
1219
1220
            else:
                steps_trained_in_current_epoch = 0
1221
1222

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
1223
1224
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
1225
            if not args.ignore_data_skip:
1226
1227
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
1228
1229
                    "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` "
                    "flag to your launch command, but you will resume the training on data already seen by your model."
1230
                )
1231
1232
1233
                if self.is_local_process_zero() and not args.disable_tqdm:
                    steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
                    steps_trained_progress_bar.set_description("Skipping the first batches")
1234

Sylvain Gugger's avatar
Sylvain Gugger committed
1235
1236
1237
1238
1239
        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
1240
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
1241
1242
1243
1244
1245
        if trial is not None:
            assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
            self.state.trial_params = hp_params(assignments)
        else:
            self.state.trial_params = None
1246
1247
1248
1249
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
Sylvain Gugger's avatar
Sylvain Gugger committed
1250
1251
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
1252

1253
        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
1254
        tr_loss = torch.tensor(0.0).to(args.device)
1255
1256
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
1257
        self._globalstep_last_logged = self.state.global_step
Julien Chaumond's avatar
Julien Chaumond committed
1258
        model.zero_grad()
Sylvain Gugger's avatar
Sylvain Gugger committed
1259

1260
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1261

1262
        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
1263
        if not args.ignore_data_skip:
1264
1265
1266
1267
1268
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break

1269
        for epoch in range(epochs_trained, num_train_epochs):
1270
1271
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)
1272
1273
            elif isinstance(train_dataloader.dataset, IterableDatasetShard):
                train_dataloader.dataset.set_epoch(epoch)
1274

1275
            if is_torch_tpu_available():
1276
                parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
1277
                epoch_iterator = parallel_loader
1278
            else:
1279
                epoch_iterator = train_dataloader
1280

1281
            # Reset the past mems state at the beginning of each epoch if necessary.
1282
            if args.past_index >= 0:
1283
1284
                self._past = None

1285
            steps_in_epoch = (
1286
                len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps
1287
            )
1288
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1289

1290
            step = -1
Julien Chaumond's avatar
Julien Chaumond committed
1291
1292
1293
1294
1295
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
1296
1297
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
1298
1299
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
Julien Chaumond's avatar
Julien Chaumond committed
1300
                    continue
1301
1302
1303
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None
Julien Chaumond's avatar
Julien Chaumond committed
1304

1305
1306
                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1307

1308
                if (
1309
1310
1311
                    ((step + 1) % args.gradient_accumulation_steps != 0)
                    and args.local_rank != -1
                    and args._no_sync_in_gradient_accumulation
1312
                ):
1313
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
1314
                    with model.no_sync():
1315
                        tr_loss_step = self.training_step(model, inputs)
1316
                else:
1317
1318
                    tr_loss_step = self.training_step(model, inputs)

1319
1320
1321
1322
1323
1324
1325
                if (
                    args.logging_nan_inf_filter
                    and not is_torch_tpu_available()
                    and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
                ):
                    # if loss is nan or inf simply add the average of previous logged losses
                    tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
1326
1327
1328
                else:
                    tr_loss += tr_loss_step

1329
                self.current_flos += float(self.floating_point_ops(inputs))
Julien Chaumond's avatar
Julien Chaumond committed
1330

1331
1332
1333
1334
                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

1335
                if (step + 1) % args.gradient_accumulation_steps == 0 or (
Julien Chaumond's avatar
Julien Chaumond committed
1336
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
1337
                    steps_in_epoch <= args.gradient_accumulation_steps
1338
                    and (step + 1) == steps_in_epoch
Julien Chaumond's avatar
Julien Chaumond committed
1339
                ):
1340
                    # Gradient clipping
1341
                    if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
1342
1343
                        # deepspeed does its own clipping

1344
1345
1346
1347
1348
1349
                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
1350
                            self.optimizer.clip_grad_norm(args.max_grad_norm)
1351
1352
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
1353
                            model.clip_grad_norm_(args.max_grad_norm)
1354
1355
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
1356
                            nn.utils.clip_grad_norm_(
1357
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
1358
                                args.max_grad_norm,
1359
1360
1361
                            )

                    # Optimizer step
1362
                    optimizer_was_run = True
Stas Bekman's avatar
Stas Bekman committed
1363
                    if self.deepspeed:
1364
                        pass  # called outside the loop
Stas Bekman's avatar
Stas Bekman committed
1365
                    elif is_torch_tpu_available():
1366
                        xm.optimizer_step(self.optimizer)
1367
                    elif self.use_amp:
1368
                        scale_before = self.scaler.get_scale()
1369
                        self.scaler.step(self.optimizer)
1370
                        self.scaler.update()
1371
1372
                        scale_after = self.scaler.get_scale()
                        optimizer_was_run = scale_before <= scale_after
Lysandre Debut's avatar
Lysandre Debut committed
1373
                    else:
1374
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
1375

1376
                    if optimizer_was_run and not self.deepspeed:
1377
1378
                        self.lr_scheduler.step()

Julien Chaumond's avatar
Julien Chaumond committed
1379
                    model.zero_grad()
1380
                    self.state.global_step += 1
1381
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
1382
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1383

1384
                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
wulu473's avatar
wulu473 committed
1385
1386
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
1387

Sylvain Gugger's avatar
Sylvain Gugger committed
1388
                if self.control.should_epoch_stop or self.control.should_training_stop:
Julien Chaumond's avatar
Julien Chaumond committed
1389
                    break
1390
1391
1392
1393
1394
1395
1396
            if step < 0:
                logger.warning(
                    f"There seems to be not a single sample in your epoch_iterator, stopping training at step"
                    f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
                    f" num_steps ({max_steps}) higher than the number of available samples."
                )
                self.control.should_training_stop = True
1397

1398
            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
1399
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
1400

1401
            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
1402
1403
1404
1405
1406
1407
1408
1409
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1410
            if self.control.should_training_stop:
1411
                break
Julien Chaumond's avatar
Julien Chaumond committed
1412

1413
        if args.past_index and hasattr(self, "_past"):
1414
1415
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1416
1417

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
1418
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
1419
1420
1421
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
1422
            elif args.local_rank != -1:
1423
1424
                dist.barrier()

1425
1426
1427
            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

            best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
            if os.path.exists(best_model_path):
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(best_model_path, map_location="cpu")
                # If the model is on the GPU, it still works!
                self._load_state_dict_in_model(state_dict)
            else:
                logger.warn(
                    f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
                    "on multiple nodes, you should activate `--save_on_each_node`."
                )
1440

1441
1442
1443
1444
1445
            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

1446
1447
1448
1449
        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

1450
        metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
1451
1452
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
1453
        metrics["train_loss"] = train_loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1454

1455
        self.is_in_train = False
1456

1457
1458
        self._memory_tracker.stop_and_update_metrics(metrics)

1459
1460
1461
1462
1463
        self.log(metrics)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        return TrainOutput(self.state.global_step, train_loss, metrics)
1464

1465
1466
1467
1468
    def _load_state_dict_in_model(self, state_dict):
        load_result = self.model.load_state_dict(state_dict, strict=False)

        if len(load_result.missing_keys) != 0:
1469
1470
1471
            if self.model._keys_to_ignore_on_save is not None and set(load_result.missing_keys) == set(
                self.model._keys_to_ignore_on_save
            ):
1472
1473
1474
1475
1476
1477
                self.model.tie_weights()
            else:
                logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
        if len(load_result.unexpected_keys) != 0:
            logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.")

1478
    def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
Sylvain Gugger's avatar
Sylvain Gugger committed
1479
1480
        if self.control.should_log:
            logs: Dict[str, float] = {}
1481
1482
1483
1484

            # all_gather + mean() to get average loss over all processes
            tr_loss_scalar = self._nested_gather(tr_loss).mean().item()

1485
1486
1487
            # reset tr_loss to zero
            tr_loss -= tr_loss

1488
            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
1489
            logs["learning_rate"] = self._get_learning_rate()
1490

1491
            self._total_loss_scalar += tr_loss_scalar
1492
            self._globalstep_last_logged = self.state.global_step
Teven's avatar
Teven committed
1493
            self.store_flos()
Sylvain Gugger's avatar
Sylvain Gugger committed
1494
1495
1496
1497
1498

            self.log(logs)

        metrics = None
        if self.control.should_evaluate:
1499
            metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
Sylvain Gugger's avatar
Sylvain Gugger committed
1500
            self._report_to_hp_search(trial, epoch, metrics)
1501

Sylvain Gugger's avatar
Sylvain Gugger committed
1502
1503
1504
1505
        if self.control.should_save:
            self._save_checkpoint(model, trial, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
    def _load_rng_state(self, checkpoint):
        # Load RNG states from `checkpoint`
        if checkpoint is None:
            return

        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank != -1:
            rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that "
                    "wasn't launched in a distributed fashion, reproducibility is not guaranteed."
                )
                return
        else:
            rng_file = os.path.join(checkpoint, "rng_state.pth")
1522
            if not os.path.isfile(rng_file):
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
                logger.info(
                    "Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
                    "fashion, reproducibility is not guaranteed."
                )
                return

        checkpoint_rng_state = torch.load(rng_file)
        random.setstate(checkpoint_rng_state["python"])
        np.random.set_state(checkpoint_rng_state["numpy"])
        torch.random.set_rng_state(checkpoint_rng_state["cpu"])
        if torch.cuda.is_available():
            if self.args.local_rank != -1:
                torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
            else:
                torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
        if is_torch_tpu_available():
            xm.set_rng_state(checkpoint_rng_state["xla"])

Sylvain Gugger's avatar
Sylvain Gugger committed
1541
    def _save_checkpoint(self, model, trial, metrics=None):
1542
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
1543
        # want to save except FullyShardedDDP.
1544
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
1545

1546
        # Save model checkpoint
1547
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
1548

1549
        if self.hp_search_backend is not None and trial is not None:
1550
1551
            if self.hp_search_backend == HPSearchBackend.OPTUNA:
                run_id = trial.number
1552
            elif self.hp_search_backend == HPSearchBackend.RAY:
1553
1554
1555
                from ray import tune

                run_id = tune.get_trial_id()
1556
1557
            elif self.hp_search_backend == HPSearchBackend.SIGOPT:
                run_id = trial.id
1558
            run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
1559
            run_dir = os.path.join(self.args.output_dir, run_name)
1560
        else:
1561
            run_dir = self.args.output_dir
1562
            self.store_flos()
1563

1564
        output_dir = os.path.join(run_dir, checkpoint_folder)
1565
        self.save_model(output_dir)
1566
        if self.deepspeed:
1567
1568
            # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
            # config `stage3_gather_fp16_weights_on_model_save` is True
1569
            self.deepspeed.save_checkpoint(output_dir)
1570
1571

        # Save optimizer and scheduler
1572
        if self.sharded_ddp == ShardedDDPOption.SIMPLE:
1573
            self.optimizer.consolidate_state_dict()
1574

1575
1576
        if is_torch_tpu_available():
            xm.rendezvous("saving_optimizer_states")
1577
            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
1578
            with warnings.catch_warnings(record=True) as caught_warnings:
1579
                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1580
                reissue_pt_warnings(caught_warnings)
Sylvain Gugger's avatar
Sylvain Gugger committed
1581
        elif is_sagemaker_mp_enabled():
1582
1583
1584
1585
            if smp.dp_rank() == 0:
                # Consolidate the state dict on all processed of dp_rank 0
                opt_state_dict = self.optimizer.state_dict()
                # Save it and the scheduler on the main process
1586
                if self.args.should_save:
1587
                    torch.save(opt_state_dict, os.path.join(output_dir, OPTIMIZER_NAME))
1588
                    with warnings.catch_warnings(record=True) as caught_warnings:
1589
                        torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1590
                    reissue_pt_warnings(caught_warnings)
1591
                    if self.use_amp:
1592
                        torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
1593
        elif self.args.should_save and not self.deepspeed:
1594
            # deepspeed.save_checkpoint above saves model/optim/sched
1595
            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
1596
            with warnings.catch_warnings(record=True) as caught_warnings:
1597
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1598
            reissue_pt_warnings(caught_warnings)
1599
            if self.use_amp:
1600
                torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
1601
1602

        # Determine the new best metric / best model checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
1603
        if metrics is not None and self.args.metric_for_best_model is not None:
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
1619
        if self.args.should_save:
1620
            self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
1621

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        # Save RNG state in non-distributed training
        rng_states = {
            "python": random.getstate(),
            "numpy": np.random.get_state(),
            "cpu": torch.random.get_rng_state(),
        }
        if torch.cuda.is_available():
            if self.args.local_rank == -1:
                # In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
                rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
            else:
                rng_states["cuda"] = torch.cuda.random.get_rng_state()

        if is_torch_tpu_available():
            rng_states["xla"] = xm.get_rng_state()

1638
1639
1640
        # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
        # not yet exist.
        os.makedirs(output_dir, exist_ok=True)
1641
1642
1643
1644
1645
1646
        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank == -1:
            torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
        else:
            torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth"))

1647
1648
1649
        if self.args.push_to_hub:
            self._push_from_checkpoint(output_dir)

1650
        # Maybe delete some older checkpoints.
1651
        if self.args.should_save:
1652
1653
            self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)

1654
    def _load_optimizer_and_scheduler(self, checkpoint):
Sylvain Gugger's avatar
Sylvain Gugger committed
1655
        """If optimizer and scheduler states exist, load them."""
1656
        if checkpoint is None:
1657
1658
            return

1659
        if self.deepspeed:
1660
            # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
1661
1662
            return

1663
1664
        if os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME)) and os.path.isfile(
            os.path.join(checkpoint, SCHEDULER_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
1665
1666
1667
1668
        ):
            # Load in optimizer and scheduler states
            if is_torch_tpu_available():
                # On TPU we have to take some extra precautions to properly load the states on the right device.
1669
                optimizer_state = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1670
                with warnings.catch_warnings(record=True) as caught_warnings:
1671
                    lr_scheduler_state = torch.load(os.path.join(checkpoint, SCHEDULER_NAME), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1672
1673
1674
1675
1676
1677
1678
1679
                reissue_pt_warnings(caught_warnings)

                xm.send_cpu_data_to_device(optimizer_state, self.args.device)
                xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)

                self.optimizer.load_state_dict(optimizer_state)
                self.lr_scheduler.load_state_dict(lr_scheduler_state)
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1680
                map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device
Sylvain Gugger's avatar
Sylvain Gugger committed
1681
                self.optimizer.load_state_dict(
1682
                    torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
1683
1684
                )
                with warnings.catch_warnings(record=True) as caught_warnings:
1685
                    self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, SCHEDULER_NAME)))
Sylvain Gugger's avatar
Sylvain Gugger committed
1686
                reissue_pt_warnings(caught_warnings)
1687
1688
                if self.use_amp and os.path.isfile(os.path.join(checkpoint, SCALER_NAME)):
                    self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, SCALER_NAME)))
Sylvain Gugger's avatar
Sylvain Gugger committed
1689

1690
1691
1692
1693
1694
1695
1696
    def hyperparameter_search(
        self,
        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
        n_trials: int = 20,
        direction: str = "minimize",
        backend: Optional[Union["str", HPSearchBackend]] = None,
1697
        hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
1698
        **kwargs,
1699
1700
    ) -> BestRun:
        """
1701
1702
1703
        Launch an hyperparameter search using ``optuna`` or ``Ray Tune`` or ``SigOpt``. The optimized quantity is
        determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no
        metric is provided, the sum of all metrics otherwise.
1704

Sylvain Gugger's avatar
Sylvain Gugger committed
1705
1706
1707
1708
1709
1710
1711
        .. warning::

            To use this method, you need to have provided a ``model_init`` when initializing your
            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.

1712
1713
1714
1715
        Args:
            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
                A function that defines the hyperparameter search space. Will default to
                :func:`~transformers.trainer_utils.default_hp_space_optuna` or
1716
1717
                :func:`~transformers.trainer_utils.default_hp_space_ray` or
                :func:`~transformers.trainer_utils.default_hp_space_sigopt` depending on your backend.
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
                A function computing the objective to minimize or maximize from the metrics returned by the
                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
            n_trials (:obj:`int`, `optional`, defaults to 100):
                The number of trial runs to test.
            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
                several metrics.
            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
1728
1729
                The backend to use for hyperparameter search. Will default to optuna or Ray Tune or SigOpt, depending
                on which one is installed. If all are installed, will default to optuna.
1730
1731
1732
1733
            kwargs:
                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
                more information see:

Sylvain Gugger's avatar
Sylvain Gugger committed
1734
                - the documentation of `optuna.create_study
1735
                  <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
1736
1737
                - the documentation of `tune.run
                  <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
1738
                - the documentation of `sigopt <https://app.sigopt.com/docs/endpoints/experiments/create>`__
1739
1740

        Returns:
Tiger's avatar
Tiger committed
1741
            :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
1742
1743
1744
1745
1746
1747
        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
1748
1749
                    "To install optuna run `pip install optuna`. "
                    "To install ray run `pip install ray[tune]`. "
1750
                    "To install sigopt run `pip install sigopt`."
1751
1752
1753
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
1754
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
1755
        if backend == HPSearchBackend.RAY and not is_ray_tune_available():
1756
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1757
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
1758
            )
1759
1760
        if backend == HPSearchBackend.SIGOPT and not is_sigopt_available():
            raise RuntimeError("You picked the sigopt backend, but it is not installed. Use `pip install sigopt`.")
1761
        self.hp_search_backend = backend
Sylvain Gugger's avatar
Sylvain Gugger committed
1762
1763
1764
1765
1766
        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

1767
        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
1768
        self.hp_name = hp_name
1769
1770
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

1771
1772
1773
1774
1775
1776
        backend_dict = {
            HPSearchBackend.OPTUNA: run_hp_search_optuna,
            HPSearchBackend.RAY: run_hp_search_ray,
            HPSearchBackend.SIGOPT: run_hp_search_sigopt,
        }
        best_run = backend_dict[backend](self, n_trials, direction, **kwargs)
1777
1778
1779
1780

        self.hp_search_backend = None
        return best_run

Sylvain Gugger's avatar
Sylvain Gugger committed
1781
    def log(self, logs: Dict[str, float]) -> None:
1782
1783
1784
1785
1786
1787
1788
1789
1790
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
        """
1791
        if self.state.epoch is not None:
1792
            logs["epoch"] = round(self.state.epoch, 2)
1793

1794
1795
        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
1796
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
Julien Chaumond's avatar
Julien Chaumond committed
1797

1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
    def _prepare_input(self, data: Union[torch.Tensor, Any]) -> Union[torch.Tensor, Any]:
        """
        Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
        """
        if isinstance(data, dict):
            return type(data)(**{k: self._prepare_input(v) for k, v in data.items()})
        elif isinstance(data, (tuple, list)):
            return type(data)(self._prepare_input(v) for v in data)
        elif isinstance(data, torch.Tensor):
            kwargs = dict(device=self.args.device)
            if self.deepspeed and data.dtype != torch.int64:
                # NLP models inputs are int64 and those get adjusted to the right dtype of the
                # embedding. Other models such as wav2vec2's inputs are already float and thus
                # may need special handling to match the dtypes of the model
                kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype()))
            return data.to(**kwargs)
        return data

sgugger's avatar
Fix CI  
sgugger committed
1816
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
1817
1818
1819
1820
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
1821
        inputs = self._prepare_input(inputs)
1822
1823
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
1824

1825
1826
        return inputs

1827
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1828
        """
1829
        Perform a training step on a batch of inputs.
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
1843
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
1844
1845
        """
        model.train()
1846
        inputs = self._prepare_inputs(inputs)
1847

Sylvain Gugger's avatar
Sylvain Gugger committed
1848
        if is_sagemaker_mp_enabled():
1849
1850
            scaler = self.scaler if self.use_amp else None
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler)
Sylvain Gugger's avatar
Sylvain Gugger committed
1851
1852
            return loss_mb.reduce_mean().detach().to(self.args.device)

1853
        if self.use_amp:
1854
            with autocast():
Sylvain Gugger's avatar
Sylvain Gugger committed
1855
                loss = self.compute_loss(model, inputs)
1856
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1857
            loss = self.compute_loss(model, inputs)
1858

Julien Chaumond's avatar
Julien Chaumond committed
1859
1860
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
1861

1862
1863
        if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
Julien Chaumond's avatar
Julien Chaumond committed
1864
1865
            loss = loss / self.args.gradient_accumulation_steps

1866
        if self.use_amp:
1867
            self.scaler.scale(loss).backward()
1868
        elif self.use_apex:
1869
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
1870
                scaled_loss.backward()
1871
        elif self.deepspeed:
1872
1873
            # loss gets scaled under gradient_accumulation_steps in deepspeed
            loss = self.deepspeed.backward(loss)
Julien Chaumond's avatar
Julien Chaumond committed
1874
1875
1876
        else:
            loss.backward()

1877
        return loss.detach()
Julien Chaumond's avatar
Julien Chaumond committed
1878

1879
    def compute_loss(self, model, inputs, return_outputs=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
1880
1881
1882
1883
1884
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
1885
1886
1887
1888
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1889
1890
        outputs = model(**inputs)
        # Save past state if it exists
1891
        # TODO: this needs to be fixed and made cleaner later.
Sylvain Gugger's avatar
Sylvain Gugger committed
1892
1893
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]
Sylvain Gugger's avatar
Sylvain Gugger committed
1894

1895
        if labels is not None:
1896
            loss = self.label_smoother(outputs, labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1897
1898
        else:
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
1899
1900
1901
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1902

1903
1904
    def is_local_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1905
1906
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
1907
        """
1908
        return self.args.local_process_index == 0
Lysandre Debut's avatar
Lysandre Debut committed
1909

1910
1911
    def is_world_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1912
1913
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
1914
        """
1915
1916
1917
        # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
        # process index.
        if is_sagemaker_mp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
1918
            return smp.rank() == 0
Lysandre Debut's avatar
Lysandre Debut committed
1919
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1920
            return self.args.process_index == 0
Julien Chaumond's avatar
Julien Chaumond committed
1921
1922
1923

    def save_model(self, output_dir: Optional[str] = None):
        """
1924
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
1925

1926
        Will only save from the main process.
Julien Chaumond's avatar
Julien Chaumond committed
1927
        """
1928
1929
1930
1931

        if output_dir is None:
            output_dir = self.args.output_dir

1932
        if is_torch_tpu_available():
1933
            self._save_tpu(output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
1934
1935
1936
        elif is_sagemaker_mp_enabled():
            # Calling the state_dict needs to be done on the wrapped model and on all processes.
            state_dict = self.model_wrapped.state_dict()
1937
            if self.args.should_save:
Sylvain Gugger's avatar
Sylvain Gugger committed
1938
                self._save(output_dir, state_dict=state_dict)
1939
1940
1941
1942
        elif (
            ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
        ):
            state_dict = self.model.state_dict()
1943

1944
            if self.args.should_save:
1945
                self._save(output_dir, state_dict=state_dict)
1946
1947
1948
        elif self.deepspeed:

            # this takes care of everything as long as we aren't under zero3
1949
            if self.args.should_save:
1950
1951
1952
1953
1954
1955
1956
                self._save(output_dir)

            if is_deepspeed_zero3_enabled():
                # It's too complicated to try to override different places where the weights dump gets
                # saved, so since under zero3 the file is bogus, simply delete it. The user should
                # either user deepspeed checkpoint to resume or to recover full weights use
                # zero_to_fp32.py stored in the checkpoint.
1957
                if self.args.should_save:
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
                    file = os.path.join(output_dir, WEIGHTS_NAME)
                    if os.path.isfile(file):
                        # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
                        os.remove(file)

                # now save the real model if stage3_gather_fp16_weights_on_model_save=True
                # if false it will not be saved.
                # This must be called on all ranks
                self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME)

1968
        elif self.args.should_save:
1969
            self._save(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1970

1971
1972
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
1973
        logger.info(f"Saving model checkpoint to {output_dir}")
1974
1975
1976

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
1977
            torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
1978
1979
1980
1981

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        xm.rendezvous("saving_checkpoint")
1982
        if not isinstance(self.model, PreTrainedModel):
1983
1984
1985
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                unwrap_model(self.model).save_pretrained(
                    output_dir,
1986
                    save_config=self.args.should_save,
1987
1988
1989
                    state_dict=self.model.state_dict(),
                    save_function=xm.save,
                )
1990
1991
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1992
1993
                state_dict = self.model.state_dict()
                xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1994
        else:
1995
1996
            self.model.save_pretrained(output_dir, save_config=self.args.should_save, save_function=xm.save)
        if self.tokenizer is not None and self.args.should_save:
1997
            self.tokenizer.save_pretrained(output_dir)
1998

1999
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
2000
        # If we are executing this function, we are the process zero, so we don't check for that.
Julien Chaumond's avatar
Julien Chaumond committed
2001
2002
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
2003
        logger.info(f"Saving model checkpoint to {output_dir}")
Julien Chaumond's avatar
Julien Chaumond committed
2004
2005
2006
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
2007
            if isinstance(unwrap_model(self.model), PreTrainedModel):
2008
2009
2010
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
2011
2012
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
2013
2014
                if state_dict is None:
                    state_dict = self.model.state_dict()
2015
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
2016
        else:
2017
            self.model.save_pretrained(output_dir, state_dict=state_dict)
2018
        if self.tokenizer is not None:
2019
            self.tokenizer.save_pretrained(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
2020
2021

        # Good practice: save your training arguments together with the trained model
2022
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
2023

2024
    def store_flos(self):
2025
        # Storing the number of floating-point operations that went into the model
2026
        if self.args.local_rank != -1:
2027
2028
2029
            self.state.total_flos += (
                distributed_broadcast_scalars([self.current_flos], device=self.args.device).sum().item()
            )
2030
2031
            self.current_flos = 0
        else:
Teven's avatar
Teven committed
2032
            self.state.total_flos += self.current_flos
2033
            self.current_flos = 0
Julien Chaumond's avatar
Julien Chaumond committed
2034

2035
2036
2037
    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
Julien Chaumond's avatar
Julien Chaumond committed
2038
2039
        ordering_and_checkpoint_path = []

2040
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
2041
2042
2043
2044
2045

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
2046
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
2047
                if regex_match is not None and regex_match.groups() is not None:
Julien Chaumond's avatar
Julien Chaumond committed
2048
2049
2050
2051
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
2052
2053
        # Make sure we don't delete the best model.
        if self.state.best_model_checkpoint is not None:
2054
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
2055
2056
            for i in range(best_model_index, len(checkpoints_sorted) - 2):
                checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
Julien Chaumond's avatar
Julien Chaumond committed
2057
2058
        return checkpoints_sorted

2059
    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
2060
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
2061
2062
2063
            return

        # Check if we should delete older checkpoint(s)
2064
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
2065
2066
2067
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

2068
        # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
        # we don't do to allow resuming.
        save_total_limit = self.args.save_total_limit
        if (
            self.state.best_model_checkpoint is not None
            and self.args.save_total_limit == 1
            and checkpoints_sorted[-1] != self.state.best_model_checkpoint
        ):
            save_total_limit = 2

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
Julien Chaumond's avatar
Julien Chaumond committed
2079
2080
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
2081
            logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
Julien Chaumond's avatar
Julien Chaumond committed
2082
2083
            shutil.rmtree(checkpoint)

2084
    def evaluate(
2085
2086
2087
2088
        self,
        eval_dataset: Optional[Dataset] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
2089
    ) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
2090
        """
2091
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2092

Sylvain Gugger's avatar
Sylvain Gugger committed
2093
2094
        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
2095

2096
2097
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
2098
        Args:
2099
            eval_dataset (:obj:`Dataset`, `optional`):
2100
                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
Sylvain Gugger's avatar
Sylvain Gugger committed
2101
2102
                columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
                :obj:`__len__` method.
2103
2104
2105
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2106
2107
2108
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
2109

Julien Chaumond's avatar
Julien Chaumond committed
2110
        Returns:
2111
2112
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
Julien Chaumond's avatar
Julien Chaumond committed
2113
        """
2114
2115
2116
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2117
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
2118
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
2119

2120
2121
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2122
2123
2124
2125
2126
            eval_dataloader,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
2127
            ignore_keys=ignore_keys,
2128
            metric_key_prefix=metric_key_prefix,
2129
        )
Lysandre Debut's avatar
Lysandre Debut committed
2130

2131
2132
2133
2134
2135
2136
2137
2138
2139
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2140

2141
        self.log(output.metrics)
2142

2143
        if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
2144
2145
2146
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Sylvain Gugger's avatar
Sylvain Gugger committed
2147
        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
2148
2149
2150

        self._memory_tracker.stop_and_update_metrics(output.metrics)

Julien Chaumond's avatar
Julien Chaumond committed
2151
2152
        return output.metrics

2153
    def predict(
Bhadresh Savani's avatar
Bhadresh Savani committed
2154
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
2155
    ) -> PredictionOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2156
        """
2157
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2158

Sylvain Gugger's avatar
Sylvain Gugger committed
2159
2160
        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in :obj:`evaluate()`.
2161
2162
2163

        Args:
            test_dataset (:obj:`Dataset`):
2164
                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
2165
                ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__`
2166
2167
2168
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
Bhadresh Savani's avatar
Bhadresh Savani committed
2169
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`):
2170
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
Bhadresh Savani's avatar
Bhadresh Savani committed
2171
                "test_bleu" if the prefix is "test" (default)
2172

2173
2174
2175
2176
2177
2178
        .. note::

            If your predictions or labels have different sequence length (for instance because you're doing dynamic
            padding in a token classification task) the predictions will be padded (on the right) to allow for
            concatenation into one array. The padding index is -100.

Sylvain Gugger's avatar
Sylvain Gugger committed
2179
2180
2181
2182
2183
2184
        Returns: `NamedTuple` A namedtuple with the following keys:

            - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
            - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
            - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
              contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
2185
        """
2186
2187
2188
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2189
        test_dataloader = self.get_test_dataloader(test_dataset)
2190
        start_time = time.time()
2191

2192
2193
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2194
2195
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
2196
2197
2198
2199
2200
2201
2202
2203
2204
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2205
2206
2207

        self._memory_tracker.stop_and_update_metrics(output.metrics)

2208
        return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
Julien Chaumond's avatar
Julien Chaumond committed
2209

2210
    def evaluation_loop(
2211
2212
2213
2214
2215
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
2216
        metric_key_prefix: str = "eval",
2217
    ) -> EvalLoopOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2218
        """
2219
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
2220
2221
2222

        Works both with or without labels.
        """
2223
2224
2225
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )
Julien Chaumond's avatar
Julien Chaumond committed
2226

2227
2228
2229
2230
2231
        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
2232
2233
2234
            deepspeed_engine, _, _ = deepspeed_init(
                self, num_training_steps=0, resume_from_checkpoint=None, inference=True
            )
2235
2236
2237
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
2238

2239
        model = self._wrap_model(self.model, training=False)
Julien Chaumond's avatar
Julien Chaumond committed
2240

2241
        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2242
        # ``train`` is running, halve it first and then put on device
2243
2244
2245
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

2246
        batch_size = dataloader.batch_size
2247

2248
        logger.info(f"***** Running {description} *****")
2249
2250
2251
2252
        if isinstance(dataloader.dataset, collections.abc.Sized):
            logger.info(f"  Num examples = {self.num_examples(dataloader)}")
        else:
            logger.info("  Num examples: Unknown")
2253
        logger.info(f"  Batch size = {batch_size}")
2254

Julien Chaumond's avatar
Julien Chaumond committed
2255
2256
        model.eval()

2257
2258
2259
2260
        self.callback_handler.eval_dataloader = dataloader
        # Do this before wrapping.
        eval_dataset = dataloader.dataset

2261
        if is_torch_tpu_available():
2262
2263
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

2264
        if self.args.past_index >= 0:
2265
            self._past = None
2266

2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
        # Initialize containers
        # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
        losses_host = None
        preds_host = None
        labels_host = None
        # losses/preds/labels on CPU (final containers)
        all_losses = None
        all_preds = None
        all_labels = None
        # Will be useful when we have an iterable dataset so don't know its length.

        observed_num_examples = 0
        # Main evaluation loop
2280
        for step, inputs in enumerate(dataloader):
2281
2282
2283
2284
            # Update the observed num examples
            observed_batch_size = find_batch_size(inputs)
            if observed_batch_size is not None:
                observed_num_examples += observed_batch_size
2285
2286
2287
                # For batch samplers, batch_size is not known by the dataloader in advance.
                if batch_size is None:
                    batch_size = observed_batch_size
2288
2289

            # Prediction step
2290
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
2291
2292

            # Update containers on host
2293
            if loss is not None:
2294
                losses = self._nested_gather(loss.repeat(batch_size))
2295
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
2296
            if logits is not None:
2297
2298
                logits = self._pad_across_processes(logits)
                logits = self._nested_gather(logits)
2299
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
2300
            if labels is not None:
2301
2302
                labels = self._pad_across_processes(labels)
                labels = self._nested_gather(labels)
2303
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
Sylvain Gugger's avatar
Sylvain Gugger committed
2304
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
2305

2306
2307
            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
                if losses_host is not None:
                    losses = nested_numpify(losses_host)
                    all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
                if preds_host is not None:
                    logits = nested_numpify(preds_host)
                    all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
                if labels_host is not None:
                    labels = nested_numpify(labels_host)
                    all_labels = (
                        labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                    )
2319
2320
2321
2322

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

2323
2324
2325
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
2326

2327
        # Gather all remaining tensors and put them back on the CPU
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
        if losses_host is not None:
            losses = nested_numpify(losses_host)
            all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
        if preds_host is not None:
            logits = nested_numpify(preds_host)
            all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
        if labels_host is not None:
            labels = nested_numpify(labels_host)
            all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

        # Number of samples
        if not isinstance(eval_dataset, IterableDataset):
            num_samples = len(eval_dataset)
2341
2342
2343
        # The instance check is weird and does not actually check for the type, but whether the dataset has the right
        # methods. Therefore we need to make sure it also has the attribute.
        elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"):
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
            num_samples = eval_dataset.num_examples
        else:
            num_samples = observed_num_examples

        # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
        # samplers has been rounded to a multiple of batch_size, so we truncate.
        if all_losses is not None:
            all_losses = all_losses[:num_samples]
        if all_preds is not None:
            all_preds = nested_truncate(all_preds, num_samples)
        if all_labels is not None:
            all_labels = nested_truncate(all_labels, num_samples)

        # Metrics!
        if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
Julien Chaumond's avatar
Julien Chaumond committed
2360
2361
        else:
            metrics = {}
2362

2363
2364
2365
        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

2366
2367
        if all_losses is not None:
            metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
2368

2369
        # Prefix all keys with metric_key_prefix + '_'
2370
        for key in list(metrics.keys()):
2371
2372
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
2373

2374
        return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
2375

2376
    def _nested_gather(self, tensors, name=None):
2377
2378
2379
2380
2381
2382
2383
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
2384
2385
            if name is None:
                name = "nested_gather"
2386
            tensors = nested_xla_mesh_reduce(tensors, name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2387
2388
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
2389
2390
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)
2391
        return tensors
2392

2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
    # Copied from Accelerate.
    def _pad_across_processes(self, tensor, pad_index=-100):
        """
        Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
        they can safely be gathered.
        """
        if isinstance(tensor, (list, tuple)):
            return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
        elif isinstance(tensor, dict):
            return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
        elif not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
            )

        if len(tensor.shape) < 2:
            return tensor
        # Gather all sizes
        size = torch.tensor(tensor.shape, device=tensor.device)[None]
        sizes = self._nested_gather(size).cpu()

        max_size = max(s[1] for s in sizes)
        if tensor.shape[1] == max_size:
            return tensor

        # Then pad to the maximum size
        old_size = tensor.shape
        new_size = list(old_size)
        new_size[1] = max_size
        new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
        new_tensor[:, : old_size[1]] = tensor
        return new_tensor
2425

2426
    def prediction_step(
2427
2428
2429
2430
2431
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
2432
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.
2448
2449
2450
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2451
2452

        Return:
2453
2454
            Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
2455
        """
2456
        has_labels = all(inputs.get(k) is not None for k in self.label_names)
2457
        inputs = self._prepare_inputs(inputs)
2458
2459
2460
2461
2462
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []
2463

2464
2465
2466
2467
2468
2469
2470
2471
        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels:
            labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

2472
        with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
            if is_sagemaker_mp_enabled():
                raw_outputs = smp_forward_only(model, inputs)
                if has_labels:
                    if isinstance(raw_outputs, dict):
                        loss_mb = raw_outputs["loss"]
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        loss_mb = raw_outputs[0]
                        logits_mb = raw_outputs[1:]

                    loss = loss_mb.reduce_mean().detach().cpu()
                    logits = smp_nested_concat(logits_mb)
2485
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2486
2487
2488
2489
2490
2491
                    loss = None
                    if isinstance(raw_outputs, dict):
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
                    else:
                        logits_mb = raw_outputs
                    logits = smp_nested_concat(logits_mb)
2492
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2493
                if has_labels:
2494
2495
2496
2497
2498
                    if self.use_amp:
                        with autocast():
                            loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
                    else:
                        loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
2499
2500
2501
2502
2503
                    loss = loss.mean().detach()
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        logits = outputs[1:]
2504
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
                    loss = None
                    if self.use_amp:
                        with autocast():
                            outputs = model(**inputs)
                    else:
                        outputs = model(**inputs)
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
                    else:
                        logits = outputs
                    # TODO: this needs to be fixed and made cleaner later.
                    if self.args.past_index >= 0:
                        self._past = outputs[self.args.past_index - 1]
2518
2519
2520
2521

        if prediction_loss_only:
            return (loss, None, None)

2522
        logits = nested_detach(logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
2523
2524
2525
2526
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
2527
2528
2529

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2530
2531
2532
        For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of
        floating point operations for every backward + forward pass. If using another model, either implement such a
        method in the model or subclass and override this method.
2533
2534
2535
2536
2537
2538
2539
2540

        Args:
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """
2541
2542
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
2543
2544
        else:
            return 0
2545

2546
2547
    def init_git_repo(self):
        """
2548
        Initializes a git repo in :obj:`self.args.hub_model_id`.
2549
        """
2550
        if not self.is_world_process_zero():
2551
            return
2552
2553
        use_auth_token = True if self.args.hub_token is None else self.args.hub_token
        if self.args.hub_model_id is None:
2554
            repo_name = Path(self.args.output_dir).absolute().name
2555
2556
        else:
            repo_name = self.args.hub_model_id
2557
2558
        if "/" not in repo_name:
            repo_name = get_full_repo_name(repo_name, token=self.args.hub_token)
2559

2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
        try:
            self.repo = Repository(
                self.args.output_dir,
                clone_from=repo_name,
                use_auth_token=use_auth_token,
            )
        except EnvironmentError:
            if self.args.overwrite_output_dir:
                # Try again after wiping output_dir
                shutil.rmtree(self.args.output_dir)
                self.repo = Repository(
                    self.args.output_dir,
                    clone_from=repo_name,
                    use_auth_token=use_auth_token,
                )
            else:
                raise

        self.repo.git_pull()
2579
2580

        # By default, ignore the checkpoint folders
2581
2582
2583
2584
        if (
            not os.path.exists(os.path.join(self.args.output_dir, ".gitignore"))
            and self.args.hub_strategy != HubStrategy.ALL_CHECKPOINTS
        ):
2585
2586
2587
            with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
                writer.writelines(["checkpoint-*/"])

2588
2589
        self.push_in_progress = None

Sylvain Gugger's avatar
Sylvain Gugger committed
2590
2591
2592
2593
2594
2595
2596
    def create_model_card(
        self,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        model_name: Optional[str] = None,
        finetuned_from: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2597
        tasks: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
        training_summary = TrainingSummary.from_trainer(
            self,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
Sylvain Gugger's avatar
Sylvain Gugger committed
2609
            tasks=tasks,
Sylvain Gugger's avatar
Sylvain Gugger committed
2610
2611
2612
2613
2614
2615
2616
2617
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
            f.write(model_card)

2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
    def _push_from_checkpoint(self, checkpoint_folder):
        # Only push from one node.
        if not self.is_world_process_zero() or self.args.hub_strategy == HubStrategy.END:
            return
        # If we haven't finished the last push, we don't do this one.
        if self.push_in_progress is not None and not self.push_in_progress.is_done:
            return

        output_dir = self.args.output_dir
        # To avoid a new synchronization of all model weights, we just copy the file from the checkpoint folder
        modeling_files = [CONFIG_NAME, WEIGHTS_NAME]
        for modeling_file in modeling_files:
            if os.path.isfile(os.path.join(checkpoint_folder, modeling_file)):
                shutil.copy(os.path.join(checkpoint_folder, modeling_file), os.path.join(output_dir, modeling_file))
        # Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)
        # Same for the training arguments
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

        try:
            if self.args.hub_strategy == HubStrategy.CHECKPOINT:
                # Temporarily move the checkpoint just saved for the push
                tmp_checkpoint = os.path.join(output_dir, "last-checkpoint")
                # We have to remove the "last-checkpoint" dir if it exists, otherwise the checkpoint is moved as a
                # subfolder.
                if os.path.isdir(tmp_checkpoint):
                    shutil.rmtree(tmp_checkpoint)
                shutil.move(checkpoint_folder, tmp_checkpoint)

            if self.args.save_strategy == IntervalStrategy.STEPS:
                commit_message = f"Training in progress, step {self.state.global_step}"
            else:
                commit_message = f"Training in progress, epoch {int(self.state.epoch)}"
2652
2653
2654
            _, self.push_in_progress = self.repo.push_to_hub(
                commit_message=commit_message, blocking=False, auto_lfs_prune=True
            )
2655
2656
2657
2658
2659
2660
        finally:
            if self.args.hub_strategy == HubStrategy.CHECKPOINT:
                # Move back the checkpoint to its place
                shutil.move(tmp_checkpoint, checkpoint_folder)

    def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
Sylvain Gugger's avatar
Sylvain Gugger committed
2661
        """
2662
        Upload `self.model` and `self.tokenizer` to the 馃 model hub on the repo `self.args.hub_model_id`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2663
2664

        Parameters:
2665
            commit_message (:obj:`str`, `optional`, defaults to :obj:`"End of training"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2666
                Message to commit while pushing.
2667
2668
            blocking (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether the function should return only when the :obj:`git push` has finished.
Sylvain Gugger's avatar
Sylvain Gugger committed
2669
2670
            kwargs:
                Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2671
2672

        Returns:
2673
2674
            The url of the commit of your model in the given repository if :obj:`blocking=False`, a tuple with the url
            of the commit and an object to track the progress of the commit if :obj:`blocking=True`
Sylvain Gugger's avatar
Sylvain Gugger committed
2675
2676
        """

2677
        if self.args.should_save:
2678
2679
2680
2681
            if self.args.hub_model_id is None:
                model_name = Path(self.args.output_dir).name
            else:
                model_name = self.args.hub_model_id.split("/")[-1]
2682
2683
        # Needs to be executed on all processes for TPU training, but will only save on the processed determined by
        # self.args.should_save.
2684
        self.save_model()
2685
2686
2687
2688
2689

        # Only push from one node.
        if not self.is_world_process_zero():
            return

2690
2691
2692
        git_head_commit_url = self.repo.push_to_hub(
            commit_message=commit_message, blocking=blocking, auto_lfs_prune=True
        )
2693
2694
2695
2696
        # push separately the model card to be independant from the rest of the model
        if self.args.should_save:
            self.create_model_card(model_name=model_name, **kwargs)
            try:
2697
2698
2699
                self.repo.push_to_hub(
                    commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True
                )
2700
2701
2702
2703
            except EnvironmentError as exc:
                logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")

        return git_head_commit_url
Sylvain Gugger's avatar
Sylvain Gugger committed
2704

2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
    #
    # Deprecated code
    #

    def prediction_loop(
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.

        Works both with or without labels.
        """
        if not isinstance(dataloader.dataset, collections.abc.Sized):
            raise ValueError("dataset must implement __len__")
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )

        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None

        model = self._wrap_model(self.model, training=False)

        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2746
        # ``train`` is running, halve it first and then put on device
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

        batch_size = dataloader.batch_size
        num_examples = self.num_examples(dataloader)
        logger.info(f"***** Running {description} *****")
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Batch size = {batch_size}")
        losses_host: torch.Tensor = None
        preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
        labels_host: Union[torch.Tensor, List[torch.Tensor]] = None

        world_size = max(1, self.args.world_size)

        eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
        if not prediction_loss_only:
            # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
            # a batch size to the sampler)
            make_multiple_of = None
            if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
                make_multiple_of = dataloader.sampler.batch_size
            preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
            labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)

        model.eval()

        if is_torch_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

        if self.args.past_index >= 0:
            self._past = None

        self.callback_handler.eval_dataloader = dataloader

        for step, inputs in enumerate(dataloader):
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
            if loss is not None:
                losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
            if logits is not None:
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
            if labels is not None:
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)

            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
                eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
                if not prediction_loss_only:
                    preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
                    labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")

        # Gather all remaining tensors and put them back on the CPU
        eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
        if not prediction_loss_only:
            preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
            labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

        eval_loss = eval_losses_gatherer.finalize()
        preds = preds_gatherer.finalize() if not prediction_loss_only else None
        label_ids = labels_gatherer.finalize() if not prediction_loss_only else None

        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}

        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

        if eval_loss is not None:
            metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)

    def _gather_and_numpify(self, tensors, name):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
            tensors = nested_xla_mesh_reduce(tensors, name)
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)

        return nested_numpify(tensors)