trainer.py 47.1 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
import logging
2
import math
Julien Chaumond's avatar
Julien Chaumond committed
3
4
5
import os
import re
import shutil
6
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
7
8
from contextlib import contextmanager
from pathlib import Path
9
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
10
11
12

import numpy as np
import torch
13
from packaging import version
Julien Chaumond's avatar
Julien Chaumond committed
14
15
16
17
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
18
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
19
from tqdm.auto import tqdm, trange
Julien Chaumond's avatar
Julien Chaumond committed
20

21
from .data.data_collator import DataCollator, default_data_collator
22
from .file_utils import is_torch_tpu_available
23
from .integrations import is_comet_available, is_tensorboard_available, is_wandb_available
Julien Chaumond's avatar
Julien Chaumond committed
24
25
from .modeling_utils import PreTrainedModel
from .optimization import AdamW, get_linear_schedule_with_warmup
26
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, TrainOutput, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
27
from .training_args import TrainingArguments
Julien Chaumond's avatar
Julien Chaumond committed
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
_use_native_amp = False
_use_apex = False

# Check if Pytorch version >= 1.6 to switch between Native AMP and Apex
if version.parse(torch.__version__) < version.parse("1.6"):
    from transformers.file_utils import is_apex_available

    if is_apex_available():
        from apex import amp
    _use_apex = True
else:
    _use_native_amp = True
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
43
44


45
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
46
47
48
49
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

50
if is_tensorboard_available():
Julien Chaumond's avatar
Julien Chaumond committed
51
    try:
52
        from torch.utils.tensorboard import SummaryWriter
Julien Chaumond's avatar
Julien Chaumond committed
53
    except ImportError:
54
        from tensorboardX import SummaryWriter
Julien Chaumond's avatar
Julien Chaumond committed
55

56
if is_wandb_available():
57
58
    import wandb

59
60
if is_comet_available():
    import comet_ml
61

Julien Chaumond's avatar
Julien Chaumond committed
62
63
64
65
66
67
logger = logging.getLogger(__name__)


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
68
    Decorator to make all processes in distributed training wait for each local_master to do something.
69
70
71

    Args:
        local_rank (:obj:`int`): The rank of the local process.
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
class SequentialDistributedSampler(Sampler):
    """
    Distributed Sampler that subsamples indicies sequentially,
    making it easier to collate all results at the end.

    Even though we only use this sampler for eval and predict (no training),
    which means that the model params won't have to be synced (i.e. will not hang
    for synchronization even if varied number of forward passes), we still add extra
    samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
    to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
    """

    def __init__(self, dataset, num_replicas=None, rank=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
Teven's avatar
Teven committed
112
113
114
        assert (
            len(indices) == self.total_size
        ), f"Indices length {len(indices)} and total size {self.total_size} mismatched"
115
116
117

        # subsample
        indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
Teven's avatar
Teven committed
118
119
120
        assert (
            len(indices) == self.num_samples
        ), f"Indices length {len(indices)} and and sample number {self.num_samples} mismatched"
121
122
123
124
125
126
127

        return iter(indices)

    def __len__(self):
        return self.num_samples


Lysandre Debut's avatar
Lysandre Debut committed
128
129
130
131
132
133
def get_tpu_sampler(dataset: Dataset):
    if xm.xrt_world_size() <= 1:
        return RandomSampler(dataset)
    return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())


Julien Chaumond's avatar
Julien Chaumond committed
134
135
136
class Trainer:
    """
    Trainer is a simple but feature-complete training and eval loop for PyTorch,
137
138
139
140
141
142
143
144
145
146
    optimized for 馃 Transformers.

    Args:
        model (:class:`~transformers.PreTrainedModel`):
            The model to train, evaluate or use for predictions.
        args (:class:`~transformers.TrainingArguments`):
            The arguments to tweak training.
        data_collator (:obj:`DataCollator`, `optional`, defaults to :func:`~transformers.default_data_collator`):
            The function to use to from a batch from a list of elements of :obj:`train_dataset` or
            :obj:`eval_dataset`.
Sylvain Gugger's avatar
Sylvain Gugger committed
147
        train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
148
            The dataset to use for training.
Sylvain Gugger's avatar
Sylvain Gugger committed
149
        eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
150
151
152
153
154
155
156
157
158
159
160
161
            The dataset to use for evaluation.
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
            The function that will be used to compute metrics at evaluation. Must take a
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
            When performing evaluation and predictions, only returns the loss.
        tb_writer (:obj:`SummaryWriter`, `optional`):
            Object to write to TensorBoard.
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of
            :class:`~transformers.AdamW` on your model and a scheduler given by
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
Julien Chaumond's avatar
Julien Chaumond committed
162
163
164
165
166
167
168
169
170
171
172
    """

    def __init__(
        self,
        model: PreTrainedModel,
        args: TrainingArguments,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
        prediction_loss_only=False,
173
        tb_writer: Optional["SummaryWriter"] = None,
174
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
175
    ):
176
        self.model = model.to(args.device)
Julien Chaumond's avatar
Julien Chaumond committed
177
        self.args = args
178
        self.data_collator = data_collator if data_collator is not None else default_data_collator
Julien Chaumond's avatar
Julien Chaumond committed
179
180
181
182
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
        self.compute_metrics = compute_metrics
        self.prediction_loss_only = prediction_loss_only
183
184
185
        self.optimizer, self.lr_scheduler = optimizers
        self.tb_writer = tb_writer
        if tb_writer is None and is_tensorboard_available() and self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
189
190
            self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
        if not is_tensorboard_available():
            logger.warning(
                "You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
            )
191
        if is_wandb_available():
192
            self.setup_wandb()
193
        elif os.environ.get("WANDB_DISABLED") != "true":
194
            logger.info(
195
196
                "You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
                "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
197
            )
198
199
200
201
202
203
204
        if is_comet_available():
            self.setup_comet()
        elif os.environ.get("COMET_MODE") != "DISABLED":
            logger.info(
                "To use comet_ml logging, run `pip/conda install comet_ml` "
                "see https://www.comet.ml/docs/python-sdk/huggingface/"
            )
Julien Chaumond's avatar
Julien Chaumond committed
205
206
        set_seed(self.args.seed)
        # Create output directory if needed
207
        if self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
208
            os.makedirs(self.args.output_dir, exist_ok=True)
209
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
210
211
212
            # Set an xla_device flag on the model's config.
            # We'll find a more elegant and not need to do this in the future.
            self.model.config.xla_device = True
213
214
215
216
217
218
219
220
221
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
            self.data_collator = self.data_collator.collate_batch
            warnings.warn(
                (
                    "The `data_collator` should now be a simple callable (function, class with `__call__`), classes "
                    + "with a `collate_batch` are deprecated and won't be supported in a future version."
                ),
                FutureWarning,
            )
222
223
        self.global_step = None
        self.epoch = None
224
225
        if self.args.fp16 and _use_native_amp:
            self.scaler = torch.cuda.amp.GradScaler()
Julien Chaumond's avatar
Julien Chaumond committed
226

227
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
228
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
229
            return None
230
        elif is_torch_tpu_available():
231
            return get_tpu_sampler(self.train_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
232
        else:
233
            return (
Lysandre Debut's avatar
Lysandre Debut committed
234
235
236
237
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

        Will use no sampler if :obj:`self.train_dataset` is a :obj:`torch.utils.data.IterableDataset`, a random sampler
        (adapted to distributed training if necessary) otherwise.

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
        train_sampler = self._get_train_sampler()

        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
253
254
255
            self.train_dataset,
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
256
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
257
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
258
259
        )

260
261
262
263
264
265
266
267
268
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(eval_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
        elif self.args.local_rank != -1:
            return SequentialDistributedSampler(eval_dataset)
        else:
            return SequentialSampler(eval_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
269

Julien Chaumond's avatar
Julien Chaumond committed
270
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
271
272
273
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

274
275
276
277
278
        Will use no sampler if :obj:`self.eval_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential
        sampler (adapted to distributed training if necessary) otherwise.

        Subclass and override this method if you want to inject some custom behavior.

279
        Args:
280
281
            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
                If provided, will override :obj:`self.eval_dataset`.
282
        """
Julien Chaumond's avatar
Julien Chaumond committed
283
284
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
Lysandre Debut's avatar
Lysandre Debut committed
285

286
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
287
        eval_sampler = self._get_eval_sampler(eval_dataset)
288

289
        return DataLoader(
290
            eval_dataset,
291
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
292
            batch_size=self.args.eval_batch_size,
293
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
294
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
295
296
297
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
298
299
300
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

301
302
303
304
305
        Will use no sampler if :obj:`test_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential
        sampler (adapted to distributed training if necessary) otherwise.

        Subclass and override this method if you want to inject some custom behavior.

306
        Args:
307
308
            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
                The test dataset to use.
309
        """
310
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
311

312
313
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
314
            test_dataset,
315
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
316
            batch_size=self.args.eval_batch_size,
317
            collate_fn=self.data_collator,
318
            drop_last=self.args.dataloader_drop_last,
Julien Chaumond's avatar
Julien Chaumond committed
319
        )
Lysandre Debut's avatar
Lysandre Debut committed
320

321
    def create_optimizer_and_scheduler(self, num_training_steps: int):
322
323
324
        """
        Setup the optimizer and the learning rate scheduler.

325
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
326
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
327
        """
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        if self.optimizer is None:
            no_decay = ["bias", "LayerNorm.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                    "weight_decay": 0.0,
                },
            ]
            self.optimizer = AdamW(
                optimizer_grouped_parameters,
                lr=self.args.learning_rate,
                betas=(self.args.adam_beta1, self.args.adam_beta2),
                eps=self.args.adam_epsilon,
            )
        if self.lr_scheduler is None:
            self.lr_scheduler = get_linear_schedule_with_warmup(
                self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
            )
Julien Chaumond's avatar
Julien Chaumond committed
350

351
    def setup_wandb(self):
352
353
354
        """
        Setup the optional Weights & Biases (`wandb`) integration.

355
356
        One can subclass and override this method to customize the setup if needed. Find more information
        `here <https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:
357
358
359
360
361
362
363
364
365

        Environment:
            WANDB_WATCH:
                (Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging
                or "all" to log gradients and parameters
            WANDB_PROJECT:
                (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project
            WANDB_DISABLED:
                (Optional): boolean - defaults to false, set to "true" to disable wandb entirely
366
        """
367
368
369
370
371
372
373
        if hasattr(self, "_setup_wandb"):
            warnings.warn(
                "The `_setup_wandb` method is deprecated and won't be called in a future version, define `setup_wandb` in your subclass.",
                FutureWarning,
            )
            return self._setup_wandb()

374
        if self.is_world_process_zero():
375
376
            logger.info(
                'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
377
            )
378
379
380
381
            combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
            wandb.init(
                project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name
            )
382
383
            # keep track of model topology and gradients, unsupported on TPU
            if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
384
385
386
                wandb.watch(
                    self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
                )
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    def setup_comet(self):
        """
        Setup the optional Comet.ml integration.

        Environment:
            COMET_MODE:
                (Optional): str - "OFFLINE", "ONLINE", or "DISABLED"
            COMET_PROJECT_NAME:
                (Optional): str - Comet.ml project name for experiments
            COMET_OFFLINE_DIRECTORY:
                (Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"

        For a number of configurable items in the environment,
        see `here <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__
        """
        if self.is_world_master():
            comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
            args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
            experiment = None
            if comet_mode == "ONLINE":
                experiment = comet_ml.Experiment(**args)
                logger.info("Automatic Comet.ml online logging enabled")
            elif comet_mode == "OFFLINE":
                args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
                experiment = comet_ml.OfflineExperiment(**args)
                logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
            if experiment is not None:
                experiment._set_model_graph(self.model, framework="transformers")
                experiment._log_parameters(self.args, prefix="args/", framework="transformers")
                experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")

419
    def num_examples(self, dataloader: DataLoader) -> int:
420
        """
421
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
422
        """
423
        return len(dataloader.dataset)
424

Julien Chaumond's avatar
Julien Chaumond committed
425
426
427
428
429
    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
430
431
432
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
Julien Chaumond's avatar
Julien Chaumond committed
433
434
435
436
437
438
439
440
441
442
443
        """
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

444
        self.create_optimizer_and_scheduler(num_training_steps=t_total)
Julien Chaumond's avatar
Julien Chaumond committed
445
446
447
448
449
450
451
452

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
453
            self.optimizer.load_state_dict(
454
455
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
456
            self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))
Julien Chaumond's avatar
Julien Chaumond committed
457
458

        model = self.model
459
        if self.args.fp16 and _use_apex:
Julien Chaumond's avatar
Julien Chaumond committed
460
461
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
462
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
Julien Chaumond's avatar
Julien Chaumond committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
479
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})
Julien Chaumond's avatar
Julien Chaumond committed
480
481

        # Train!
482
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
483
484
485
486
487
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
488
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
Lysandre Debut's avatar
Lysandre Debut committed
489
            )
Julien Chaumond's avatar
Julien Chaumond committed
490
        logger.info("***** Running training *****")
491
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
Julien Chaumond's avatar
Julien Chaumond committed
492
        logger.info("  Num Epochs = %d", num_train_epochs)
493
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
Lysandre Debut's avatar
Lysandre Debut committed
494
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
495
496
497
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

498
499
        self.global_step = 0
        self.epoch = 0
Julien Chaumond's avatar
Julien Chaumond committed
500
501
502
503
504
505
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
506
507
508
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
Julien Chaumond's avatar
Julien Chaumond committed
509
510
511
512
513
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
514
                logger.info("  Continuing training from global step %d", self.global_step)
Julien Chaumond's avatar
Julien Chaumond committed
515
516
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
517
                self.global_step = 0
Julien Chaumond's avatar
Julien Chaumond committed
518
519
520
521
522
523
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
524
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
525
526
        )
        for epoch in train_iterator:
527
528
529
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

530
            if is_torch_tpu_available():
531
532
533
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
534
                epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_process_zero())
535
            else:
536
                epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_process_zero())
537

538
539
540
541
            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

Julien Chaumond's avatar
Julien Chaumond committed
542
543
544
545
546
547
548
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

549
                tr_loss += self.training_step(model, inputs)
Julien Chaumond's avatar
Julien Chaumond committed
550
551
552
553
554
555

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
556
                    if self.args.fp16 and _use_native_amp:
557
                        self.scaler.unscale_(self.optimizer)
558
559
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16 and _use_apex:
560
                        torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
Julien Chaumond's avatar
Julien Chaumond committed
561
562
563
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

564
                    if is_torch_tpu_available():
565
                        xm.optimizer_step(self.optimizer)
566
                    if self.args.fp16 and _use_native_amp:
567
                        self.scaler.step(self.optimizer)
568
                        self.scaler.update()
Lysandre Debut's avatar
Lysandre Debut committed
569
                    else:
570
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
571

572
                    self.lr_scheduler.step()
Julien Chaumond's avatar
Julien Chaumond committed
573
                    model.zero_grad()
574
575
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)
Julien Chaumond's avatar
Julien Chaumond committed
576

577
578
579
580
581
                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
582
583
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
584
                            self.lr_scheduler.get_last_lr()[0]
585
                            if version.parse(torch.__version__) >= version.parse("1.4")
586
                            else self.lr_scheduler.get_lr()[0]
587
                        )
588
589
                        logging_loss = tr_loss

590
                        self.log(logs)
591

592
593
                    if self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 0:
                        self.evaluate()
594

595
596
597
598
                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
Teven's avatar
Teven committed
599
600
601
                            assert (
                                model.module is self.model
                            ), f"Module {model.module} should be a reference to self.model"
602
                        else:
Teven's avatar
Teven committed
603
                            assert model is self.model, f"Model {model} should be a reference to self.model"
604
605
606
607
608
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

609
                        if self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
610
                            self._rotate_checkpoints()
611

612
                        if is_torch_tpu_available():
613
                            xm.rendezvous("saving_optimizer_states")
614
615
616
617
618
                            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_process_zero():
                            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Julien Chaumond's avatar
Julien Chaumond committed
619

620
                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
621
622
                    epoch_iterator.close()
                    break
623
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
Julien Chaumond's avatar
Julien Chaumond committed
624
625
                train_iterator.close()
                break
626
            if self.args.tpu_metrics_debug or self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
627
628
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())
Julien Chaumond's avatar
Julien Chaumond committed
629
630
631

        if self.tb_writer:
            self.tb_writer.close()
632
633
634
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
635
636

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
637
638
        return TrainOutput(self.global_step, tr_loss / self.global_step)

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    def log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
            iterator (:obj:`tqdm`, `optional`):
                A potential tqdm progress bar to write the logs on.
        """
        if hasattr(self, "_log"):
            warnings.warn(
                "The `_log` method is deprecated and won't be called in a future version, define `log` in your subclass.",
                FutureWarning,
            )
            return self._log(logs, iterator=iterator)

658
659
        if self.epoch is not None:
            logs["epoch"] = self.epoch
660
661
662
        if self.global_step is None:
            # when logging evaluation metrics without training
            self.global_step = 0
663
664
        if self.tb_writer:
            for k, v in logs.items():
665
666
667
668
669
670
671
672
673
674
675
676
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, self.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
677
            self.tb_writer.flush()
678
        if is_wandb_available():
679
            if self.is_world_process_zero():
680
                wandb.log(logs, step=self.global_step)
681
682
683
684
685
        if is_comet_available():
            if self.is_world_process_zero():
                experiment = comet_ml.config.get_global_experiment()
                if experiment is not None:
                    experiment._log_metrics(logs, step=self.global_step, epoch=self.epoch, framework="transformers")
686
        output = {**logs, **{"step": self.global_step}}
687
688
689
        if iterator is not None:
            iterator.write(output)
        else:
690
            print(output)
Julien Chaumond's avatar
Julien Chaumond committed
691

692
693
694
695
696
697
698
    def _prepare_inputs(
        self, inputs: Dict[str, Union[torch.Tensor, Any]], model: nn.Module
    ) -> Dict[str, Union[torch.Tensor, Any]]:
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
Julien Chaumond's avatar
Julien Chaumond committed
699
        for k, v in inputs.items():
700
701
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)
Julien Chaumond's avatar
Julien Chaumond committed
702

703
704
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
705

706
707
        return inputs

708
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> float:
709
        """
710
        Perform a training step on a batch of inputs.
711
712
713
714
715
716
717
718
719
720
721
722
723

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
724
            :obj:`float`: The training loss on this batch.
725
726
727
728
729
730
        """
        if hasattr(self, "_training_step"):
            warnings.warn(
                "The `_training_step` method is deprecated and won't be called in a future version, define `training_step` in your subclass.",
                FutureWarning,
            )
731
            return self._training_step(model, inputs, self.optimizer)
732
733
734

        model.train()
        inputs = self._prepare_inputs(inputs, model)
735

736
737
738
739
740
741
742
743
        if self.args.fp16 and _use_native_amp:
            with autocast():
                outputs = model(**inputs)
                loss = outputs[0]
        else:
            outputs = model(**inputs)
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
            loss = outputs[0]
Julien Chaumond's avatar
Julien Chaumond committed
744

745
746
747
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]

Julien Chaumond's avatar
Julien Chaumond committed
748
749
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
750

Julien Chaumond's avatar
Julien Chaumond committed
751
752
753
        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

754
755
756
        if self.args.fp16 and _use_native_amp:
            self.scaler.scale(loss).backward()
        elif self.args.fp16 and _use_apex:
757
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
758
759
760
761
762
763
                scaled_loss.backward()
        else:
            loss.backward()

        return loss.item()

Lysandre Debut's avatar
Lysandre Debut committed
764
    def is_local_master(self) -> bool:
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        """
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
        several machines) main process.

        .. warning::

            This method is deprecated, use :meth:`~transformers.Trainer.is_local_process_zero` instead.
        """
        warnings.warn("This method is deprecated, use `Trainer.is_local_process_zero()` instead.", FutureWarning)
        return self.is_local_process_zero()

    def is_local_process_zero(self) -> bool:
        """
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
        several machines) main process.
        """
781
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
782
783
784
785
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

Julien Chaumond's avatar
Julien Chaumond committed
786
787
    def is_world_master(self) -> bool:
        """
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        Whether or not this process is the global main process (when training in a distributed fashion on
        several machines, this is only going to be :obj:`True` for one process).

        .. warning::

            This method is deprecated, use :meth:`~transformers.Trainer.is_world_process_zero` instead.
        """
        warnings.warn("This method is deprecated, use `Trainer.is_world_process_zero()` instead.", FutureWarning)
        return self.is_world_process_zero()

    def is_world_process_zero(self) -> bool:
        """
        Whether or not this process is the global main process (when training in a distributed fashion on
        several machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
802
        """
803
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
804
805
806
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
Julien Chaumond's avatar
Julien Chaumond committed
807
808
809

    def save_model(self, output_dir: Optional[str] = None):
        """
810
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
811

812
        Will only save from the world_master process (unless in TPUs).
Julien Chaumond's avatar
Julien Chaumond committed
813
        """
814

815
        if is_torch_tpu_available():
816
            self._save_tpu(output_dir)
817
        elif self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
818
819
            self._save(output_dir)

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)

Julien Chaumond's avatar
Julien Chaumond committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        ordering_and_checkpoint_path = []

852
        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
853
854
855
856
857

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
858
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
Julien Chaumond's avatar
Julien Chaumond committed
859
860
861
862
863
864
865
866
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
867
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
868
869
870
871
872
873
874
875
876
877
878
879
880
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

881
    def evaluate(self, eval_dataset: Optional[Dataset] = None) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
882
        """
883
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
884
885

        The calling script will be responsible for providing a method to compute metrics, as they are
886
        task-dependent (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
887

888
889
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
890
        Args:
891
892
            eval_dataset (:obj:`Dataset`, `optional`):
                Pass a dataset if you wish to override :obj:`self.eval_dataset`.
893

Julien Chaumond's avatar
Julien Chaumond committed
894
        Returns:
895
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
Julien Chaumond's avatar
Julien Chaumond committed
896
897
898
        """
        eval_dataloader = self.get_eval_dataloader(eval_dataset)

899
        output = self.prediction_loop(eval_dataloader, description="Evaluation")
Lysandre Debut's avatar
Lysandre Debut committed
900

901
        self.log(output.metrics)
902

903
        if self.args.tpu_metrics_debug or self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
904
905
906
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Julien Chaumond's avatar
Julien Chaumond committed
907
908
909
910
        return output.metrics

    def predict(self, test_dataset: Dataset) -> PredictionOutput:
        """
911
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
912
913

        Depending on the dataset and your use case, your test dataset may contain labels.
914
915
916
917
918
        In that case, this method will also return metrics, like in :obj:`evaluate()`.

        Args:
            test_dataset (:obj:`Dataset`):
                Dataset to run the predictions on.
919

920
921
922
923
924
925
926
927
        Returns:
            `NamedTuple`:
            predictions (:obj:`np.ndarray`):
                The predictions on :obj:`test_dataset`.
            label_ids (:obj:`np.ndarray`, `optional`):
                The labels (if the dataset contained some).
            metrics (:obj:`Dict[str, float]`, `optional`):
                The potential dictionary of metrics (if the dataset contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
928
929
        """
        test_dataloader = self.get_test_dataloader(test_dataset)
930

931
        return self.prediction_loop(test_dataloader, description="Prediction")
Julien Chaumond's avatar
Julien Chaumond committed
932

933
    def prediction_loop(
Julien Chaumond's avatar
Julien Chaumond committed
934
935
936
        self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
    ) -> PredictionOutput:
        """
937
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
938
939
940

        Works both with or without labels.
        """
941
942
943
944
945
946
        if hasattr(self, "_prediction_loop"):
            warnings.warn(
                "The `_prediction_loop` method is deprecated and won't be called in a future version, define `prediction_loop` in your subclass.",
                FutureWarning,
            )
            return self._prediction_loop(dataloader, description, prediction_loss_only=prediction_loss_only)
Julien Chaumond's avatar
Julien Chaumond committed
947
948
949

        prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else self.prediction_loss_only

950
        model = self.model
Julien Chaumond's avatar
Julien Chaumond committed
951
        # multi-gpu eval
952
953
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)
Julien Chaumond's avatar
Julien Chaumond committed
954
955
        else:
            model = self.model
956
957
        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
Julien Chaumond's avatar
Julien Chaumond committed
958

959
        batch_size = dataloader.batch_size
Julien Chaumond's avatar
Julien Chaumond committed
960
        logger.info("***** Running %s *****", description)
961
962
        logger.info("  Num examples = %d", self.num_examples(dataloader))
        logger.info("  Batch size = %d", batch_size)
Julien Chaumond's avatar
Julien Chaumond committed
963
        eval_losses: List[float] = []
964
965
        preds: torch.Tensor = None
        label_ids: torch.Tensor = None
Julien Chaumond's avatar
Julien Chaumond committed
966
967
        model.eval()

968
        if is_torch_tpu_available():
969
970
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

971
        if self.args.past_index >= 0:
972
            self._past = None
973

Julien Chaumond's avatar
Julien Chaumond committed
974
        for inputs in tqdm(dataloader, desc=description):
975
976
977
978
979
980
981
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only)
            if loss is not None:
                eval_losses.append(loss)
            if logits is not None:
                preds = logits if preds is None else torch.cat((preds, logits), dim=0)
            if labels is not None:
                label_ids = labels if label_ids is None else torch.cat((label_ids, labels), dim=0)
Julien Chaumond's avatar
Julien Chaumond committed
982

983
984
985
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
986

987
988
989
990
991
992
        if self.args.local_rank != -1:
            # In distributed mode, concatenate all results from all nodes:
            if preds is not None:
                preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader))
            if label_ids is not None:
                label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader))
993
        elif is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
994
            # tpu-comment: Get all predictions and labels from all worker shards of eval dataset
995
996
997
998
999
1000
1001
1002
1003
1004
            if preds is not None:
                preds = xm.mesh_reduce("eval_preds", preds, torch.cat)
            if label_ids is not None:
                label_ids = xm.mesh_reduce("eval_label_ids", label_ids, torch.cat)

        # Finally, turn the aggregated tensors into numpy arrays.
        if preds is not None:
            preds = preds.cpu().numpy()
        if label_ids is not None:
            label_ids = label_ids.cpu().numpy()
Lysandre Debut's avatar
Lysandre Debut committed
1005

Julien Chaumond's avatar
Julien Chaumond committed
1006
1007
1008
1009
1010
        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}
        if len(eval_losses) > 0:
1011
1012
1013
1014
1015
1016
            metrics["eval_loss"] = np.mean(eval_losses)

        # Prefix all keys with eval_
        for key in list(metrics.keys()):
            if not key.startswith("eval_"):
                metrics[f"eval_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
1017
1018

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

    def distributed_concat(self, tensor: torch.Tensor, num_total_examples: int) -> torch.Tensor:
        assert self.args.local_rank != -1

        output_tensors = [tensor.clone() for _ in range(torch.distributed.get_world_size())]
        torch.distributed.all_gather(output_tensors, tensor)

        concat = torch.cat(output_tensors, dim=0)

        # truncate the dummy elements added by SequentialDistributedSampler
        output = concat[:num_total_examples]
        return output
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

    def prediction_step(
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
            A tuple with the loss, logits and labels (each being optional).
        """
        has_labels = any(inputs.get(k) is not None for k in ["labels", "lm_labels", "masked_lm_labels"])

        inputs = self._prepare_inputs(inputs, model)

        with torch.no_grad():
            outputs = model(**inputs)
            if has_labels:
                loss, logits = outputs[:2]
                loss = loss.mean().item()
            else:
                loss = None
                logits = outputs[0]
            if self.args.past_index >= 0:
                self._past = outputs[self.args.past_index if has_labels else self.args.past_index - 1]

        if prediction_loss_only:
            return (loss, None, None)

        labels = inputs.get("labels")
        if labels is not None:
            labels = labels.detach()
        return (loss, logits.detach(), labels)