trainer.py 90.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 馃 Transformers from scratch or finetune it on a new task.
"""

19
import collections
20
import gc
21
import inspect
22
import math
Julien Chaumond's avatar
Julien Chaumond committed
23
24
25
import os
import re
import shutil
26
import sys
27
import time
28
import warnings
29
from logging import StreamHandler
Julien Chaumond's avatar
Julien Chaumond committed
30
from pathlib import Path
31
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
32
33


34
35
# Integrations must be imported before ML frameworks:
from .integrations import (  # isort: split
36
    default_hp_search_backend,
37
    get_reporting_integration_callbacks,
38
    hp_params,
39
    is_fairscale_available,
40
    is_optuna_available,
41
    is_ray_tune_available,
42
43
    run_hp_search_optuna,
    run_hp_search_ray,
44
    init_deepspeed,
45
)
46
47
48
49
50
51
52
53
54
55
56

import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler

from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
59
60
61
62
63
from .file_utils import (
    WEIGHTS_NAME,
    is_apex_available,
    is_datasets_available,
    is_in_notebook,
    is_sagemaker_distributed_available,
    is_torch_tpu_available,
64
    is_training_run_on_sagemaker,
Sylvain Gugger's avatar
Sylvain Gugger committed
65
)
66
from .modeling_utils import PreTrainedModel, unwrap_model
Sylvain Gugger's avatar
Sylvain Gugger committed
67
from .optimization import Adafactor, AdamW, get_scheduler
68
from .tokenization_utils_base import PreTrainedTokenizerBase
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
71
72
73
74
75
76
77
78
from .trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from .trainer_pt_utils import (
79
    DistributedLengthGroupedSampler,
80
    DistributedSamplerWithLoop,
81
    DistributedTensorGatherer,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
    LabelSmoother,
83
    LengthGroupedSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
    SequentialDistributedSampler,
    distributed_broadcast_scalars,
    distributed_concat,
87
    get_parameter_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
92
93
    nested_concat,
    nested_detach,
    nested_numpify,
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
)
94
95
96
97
98
99
from .trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
    EvalPrediction,
    HPSearchBackend,
    PredictionOutput,
100
    ShardedDDPOption,
101
    TrainerMemoryTracker,
102
103
104
    TrainOutput,
    default_compute_objective,
    default_hp_space,
105
    denumpify_detensorize,
106
    get_last_checkpoint,
107
    set_seed,
108
    speed_metrics,
109
)
110
from .training_args import ParallelMode, TrainingArguments
Lysandre Debut's avatar
Lysandre Debut committed
111
from .utils import logging
112
from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
Julien Chaumond's avatar
Julien Chaumond committed
113
114


115
_is_native_amp_available = False
116

Sylvain Gugger's avatar
Sylvain Gugger committed
117
DEFAULT_CALLBACKS = [DefaultFlowCallback]
118
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
Sylvain Gugger's avatar
Sylvain Gugger committed
119

120
121
122
123
if is_in_notebook():
    from .utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
124

125
126
if is_apex_available():
    from apex import amp
127

128
if version.parse(torch.__version__) >= version.parse("1.6"):
129
    _is_native_amp_available = True
130
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
131

132
133
if is_datasets_available():
    import datasets
Julien Chaumond's avatar
Julien Chaumond committed
134

135
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
136
137
138
139
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

140
if is_fairscale_available():
141
    import fairscale
142
143
144
145
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler

146
147
    if version.parse(fairscale.__version__) >= version.parse("0.3"):
        from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
148
        from fairscale.nn.wrap import auto_wrap
149
150
151
    else:
        FullyShardedDDP = None

Sylvain Gugger's avatar
Sylvain Gugger committed
152
153
154
155
156
if is_sagemaker_distributed_available():
    import smdistributed.dataparallel.torch.distributed as dist
    from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
    import torch.distributed as dist
157

158
159
160
161
if is_training_run_on_sagemaker():
    logging.add_handler(StreamHandler(sys.stdout))


162
163
164
if TYPE_CHECKING:
    import optuna

Lysandre Debut's avatar
Lysandre Debut committed
165
logger = logging.get_logger(__name__)
Julien Chaumond's avatar
Julien Chaumond committed
166
167
168
169


class Trainer:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
170
    Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 馃 Transformers.
171
172

    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
173
        model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`):
174
            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
179
180

            .. note::

                :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel`
                provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as
                they work the same way as the 馃 Transformers models.
181
        args (:class:`~transformers.TrainingArguments`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
            The arguments to tweak for training. Will default to a basic instance of
            :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in
            the current directory if not provided.
185
        data_collator (:obj:`DataCollator`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
            The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
            Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
            :func:`~transformers.DataCollatorWithPadding` otherwise.
Sylvain Gugger's avatar
Sylvain Gugger committed
189
        train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
190
            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
191
            ``model.forward()`` method are automatically removed.
Sylvain Gugger's avatar
Sylvain Gugger committed
192
        eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
193
             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
Sylvain Gugger's avatar
Sylvain Gugger committed
194
             ``model.forward()`` method are automatically removed.
195
196
197
198
        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
            interrupted training or reuse the fine-tuned model.
199
200
201
        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
            A function that instantiates the model to be used. If provided, each call to
            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
202

Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
            The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be
            able to choose different architectures according to hyper parameters (such as layer count, sizes of inner
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
            layers, dropout probabilities etc).
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
207
            The function that will be used to compute metrics at evaluation. Must take a
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
211
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
            A list of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in :doc:`here <callback>`.
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213

            If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method.
Sylvain Gugger's avatar
Sylvain Gugger committed
214
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
215
            containing the optimizer and the scheduler to use. Will default to an instance of
216
            :class:`~transformers.AdamW` on your model and a scheduler given by
Sylvain Gugger's avatar
Sylvain Gugger committed
217
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
218

219
220
221
222
223
224
225
226
227
228
    Important attributes:

        - **model** -- Always points to the core model. If using a transformers model, it will be a
          :class:`~transformers.PreTrainedModel` subclass.
        - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
          original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``,
          the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the
          inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``.
        - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
          data parallelism, this means some of the model layers are split on different GPUs).
229
230
231
        - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
          to :obj:`False` if model parallel or deepspeed is used, or if the default
          ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` .
232
233
        - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called
          while in ``train``)
234

Julien Chaumond's avatar
Julien Chaumond committed
235
236
    """

237
    from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
238

Julien Chaumond's avatar
Julien Chaumond committed
239
240
    def __init__(
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
241
        model: Union[PreTrainedModel, torch.nn.Module] = None,
242
        args: TrainingArguments = None,
Julien Chaumond's avatar
Julien Chaumond committed
243
244
245
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
246
        tokenizer: Optional["PreTrainedTokenizerBase"] = None,
247
        model_init: Callable[[], PreTrainedModel] = None,
Julien Chaumond's avatar
Julien Chaumond committed
248
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
249
        callbacks: Optional[List[TrainerCallback]] = None,
250
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
251
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
252
        if args is None:
253
254
255
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
256
257
258
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
259
        self.hp_name = None
260
        self.deepspeed = None
261
        self.is_in_train = False
262

263
264
265
266
        # memory metrics - must set up as early as possible
        self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
        self._memory_tracker.start()

267
268
269
        # force device and distributed setup init explicitly
        args._setup_devices

270
271
272
273
274
275
276
277
278
279
280
281
282
283
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                warnings.warn(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. "
                    "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.",
                    FutureWarning,
                )
            self.model_init = model_init
284

285
286
287
288
289
        if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
            self.is_model_parallel = True
        else:
            self.is_model_parallel = False

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        # Setup Sharded DDP training
        self.sharded_ddp = None
        if len(args.sharded_ddp) > 0:
            if args.deepspeed:
                raise ValueError(
                    "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
                )

            if args.local_rank == -1:
                raise ValueError("Using sharded DDP only works in distributed training.")
            elif not is_fairscale_available():
                raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
            elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
                raise ImportError(
                    "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
                    f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
                )
            elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.SIMPLE
            elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
            elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_3

314
315
        # one place to sort out whether to place the model on device or not
        self.place_model_on_device = args.place_model_on_device
316
317
318
319
320
321
        if (
            self.is_model_parallel
            or (args.deepspeed and args.do_train)
            or (args.fp16_full_eval and not args.do_train)
            or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
        ):
322
323
            self.place_model_on_device = False

324
325
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
Julien Chaumond's avatar
Julien Chaumond committed
326
327
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
328
        self.tokenizer = tokenizer
329

Stas Bekman's avatar
Stas Bekman committed
330
331
        # postpone switching model to cuda when:
        # 1. MP - since we are trying to fit a much bigger than 1 gpu model
332
333
        # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
        #    and we only use deepspeed for training at the moment
334
        if self.place_model_on_device:
335
            model = model.to(args.device)
Stas Bekman's avatar
Stas Bekman committed
336
337
338

        # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
        if self.is_model_parallel:
339
            self.args._n_gpu = 1
340
341
342
343
344

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model_wrapped = model
        self.model = model

Julien Chaumond's avatar
Julien Chaumond committed
345
        self.compute_metrics = compute_metrics
346
        self.optimizer, self.lr_scheduler = optimizers
Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
351
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument."
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
352
353
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
354
355
356
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
357
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
Sylvain Gugger's avatar
Sylvain Gugger committed
358

359
360
361
        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

Julien Chaumond's avatar
Julien Chaumond committed
362
        # Create output directory if needed
363
        if self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
364
            os.makedirs(self.args.output_dir, exist_ok=True)
365
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
Sylvain Gugger's avatar
Sylvain Gugger committed
366
            raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
367

368
369
370
371
372
373
374
375
376
        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        # Enforce rules on using datasets with no __len__
        if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0:
            raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")
        if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized):
            raise ValueError("eval_dataset must implement __len__")

377
        self._signature_columns = None
378
379
        if is_datasets_available():
            if isinstance(train_dataset, datasets.Dataset):
380
                self._remove_unused_columns(self.train_dataset, description="training")
381
            if isinstance(eval_dataset, datasets.Dataset):
382
383
                self._remove_unused_columns(self.eval_dataset, description="evaluation")

384
385
386
        # Mixed precision setup
        self.use_apex = False
        self.use_amp = False
387
388
        self.fp16_backend = None

389
390
        if args.fp16:
            if args.fp16_backend == "auto":
391
                self.fp16_backend = "amp" if _is_native_amp_available else "apex"
392
            else:
393
394
                self.fp16_backend = args.fp16_backend
            logger.info(f"Using {self.fp16_backend} fp16 backend")
395

396
397
        if args.fp16 and not args.deepspeed:  # deepspeed manages its own fp16
            if self.fp16_backend == "amp":
398
                self.use_amp = True
399
                self.scaler = ShardedGradScaler() if self.sharded_ddp is not None else torch.cuda.amp.GradScaler()
400
401
402
403
404
405
406
            else:
                if not is_apex_available():
                    raise ImportError(
                        "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex."
                    )
                self.use_apex = True

Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
409
410
411
412
        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

413
        self.state = TrainerState()
Sylvain Gugger's avatar
Sylvain Gugger committed
414
        self.control = TrainerControl()
415
416
417
        # Internal variable for total_flos used to count as tensors (for distributed + TPU), will be sent in the
        # state at each call to self.log.
        self._total_flos = None
418
        self.hp_search_backend = None
419
        self.use_tune_checkpoints = False
420
        default_label_names = (
421
            ["start_positions", "end_positions"]
422
            if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values()
423
424
425
            else ["labels"]
        )
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
426
427
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)

428
429
430
        # very last
        self._memory_tracker.stop_and_update_metrics()

Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def add_callback(self, callback):
        """
        Add a callback to the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it.

        If the callback is not found, returns :obj:`None` (and no error is raised).

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            :class:`~transformer.TrainerCallback`: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)
Julien Chaumond's avatar
Julien Chaumond committed
468

469
    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
470
471
        if not self.args.remove_unused_columns:
            return
472
473
474
475
476
477
478
479
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            signature = inspect.signature(self.model.forward)
            self._signature_columns = list(signature.parameters.keys())
            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += ["label", "label_ids"]
        columns = [k for k in self._signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
480
481
482
483
484
485
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set "
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
            )
486
487

        dataset.set_format(type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"])
488

489
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
490
491
492
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset) or not isinstance(
            self.train_dataset, collections.abc.Sized
        ):
493
            return None
494
495
496

        # Build the sampler.
        if self.args.group_by_length:
497
            model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
498
            if self.args.world_size <= 1:
499
500
501
                return LengthGroupedSampler(
                    self.train_dataset, self.args.train_batch_size, model_input_name=model_input_name
                )
502
503
            else:
                return DistributedLengthGroupedSampler(
504
505
                    self.train_dataset,
                    self.args.train_batch_size,
506
507
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
508
                    model_input_name=model_input_name,
509
510
511
                )

        else:
512
            if self.args.world_size <= 1:
513
                return RandomSampler(self.train_dataset)
514
515
516
517
518
519
520
521
            elif self.args.parallel_mode == ParallelMode.TPU and not self.args.dataloader_drop_last:
                # Use a loop for TPUs when drop_last is False to have all batches have the same size.
                return DistributedSamplerWithLoop(
                    self.train_dataset,
                    batch_size=self.args.per_device_train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                )
522
            else:
523
524
525
                return DistributedSampler(
                    self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index
                )
526
527
528
529
530

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

Sylvain Gugger's avatar
Sylvain Gugger committed
531
532
        Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
        to distributed training if necessary) otherwise.
533
534
535
536
537
538
539
540

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
        train_sampler = self._get_train_sampler()

        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
541
542
543
            self.train_dataset,
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
544
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
545
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
546
            num_workers=self.args.dataloader_num_workers,
547
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
548
549
        )

550
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
551
        if is_torch_tpu_available():
552
553
554
555
556
            return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
        elif self.args.local_rank != -1:
            return SequentialDistributedSampler(eval_dataset)
        else:
            return SequentialSampler(eval_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
557

Julien Chaumond's avatar
Julien Chaumond committed
558
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
559
560
561
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

562
563
        Subclass and override this method if you want to inject some custom behavior.

564
        Args:
565
            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
566
                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
567
                accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
568
        """
Julien Chaumond's avatar
Julien Chaumond committed
569
570
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
571
572
573
        elif eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized):
            raise ValueError("eval_dataset must implement __len__")
        elif is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
574
            self._remove_unused_columns(eval_dataset, description="evaluation")
575
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
576
        eval_sampler = self._get_eval_sampler(eval_dataset)
577

578
        return DataLoader(
579
            eval_dataset,
580
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
581
            batch_size=self.args.eval_batch_size,
582
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
583
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
584
            num_workers=self.args.dataloader_num_workers,
585
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
586
587
588
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
589
590
591
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

592
593
        Subclass and override this method if you want to inject some custom behavior.

594
        Args:
595
            test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
596
                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
597
                ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
598
        """
599
600
601
        if not isinstance(test_dataset, collections.abc.Sized):
            raise ValueError("test_dataset must implement __len__")
        elif is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
602
            self._remove_unused_columns(test_dataset, description="test")
603
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
604

605
606
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
607
            test_dataset,
608
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
609
            batch_size=self.args.eval_batch_size,
610
            collate_fn=self.data_collator,
611
            drop_last=self.args.dataloader_drop_last,
612
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
613
        )
Lysandre Debut's avatar
Lysandre Debut committed
614

615
    def create_optimizer_and_scheduler(self, num_training_steps: int):
616
617
618
        """
        Setup the optimizer and the learning rate scheduler.

619
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
620
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
621
        """
622
        if self.optimizer is None:
623
624
            decay_parameters = get_parameter_names(self.model, [torch.nn.LayerNorm])
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
625
626
            optimizer_grouped_parameters = [
                {
627
                    "params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
628
629
630
                    "weight_decay": self.args.weight_decay,
                },
                {
631
                    "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
632
633
634
                    "weight_decay": 0.0,
                },
            ]
Sylvain Gugger's avatar
Sylvain Gugger committed
635
636
637
638
639
640
641
642
643
644
645
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
            if self.args.adafactor:
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
            else:
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
646
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
647
648
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
Sylvain Gugger's avatar
Sylvain Gugger committed
649
650
                    optim=optimizer_cls,
                    **optimizer_kwargs,
651
652
                )
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
653
654
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

655
        if self.lr_scheduler is None:
656
657
658
659
660
661
            warmup_steps = (
                self.args.warmup_steps
                if self.args.warmup_steps > 0
                else math.ceil(num_training_steps * self.args.warmup_ratio)
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
662
663
664
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
                self.optimizer,
665
                num_warmup_steps=warmup_steps,
Sylvain Gugger's avatar
Sylvain Gugger committed
666
                num_training_steps=num_training_steps,
667
            )
Julien Chaumond's avatar
Julien Chaumond committed
668

669
    def num_examples(self, dataloader: DataLoader) -> int:
670
        """
671
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
672
673

        Will raise an exception if the underlying dataset dese not implement method :obj:`__len__`
674
        """
675
        return len(dataloader.dataset)
676

677
678
    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
        """ HP search setup code """
679
680
        self._trial = trial

681
682
        if self.hp_search_backend is None or trial is None:
            return
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        params = self.hp_space(trial) if self.hp_search_backend == HPSearchBackend.OPTUNA else trial
        for key, value in params.items():
            if not hasattr(self.args, key):
                raise AttributeError(
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)

    def _report_to_hp_search(
        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
    ):
        if self.hp_search_backend is None or trial is None:
            return
703
        self.objective = self.compute_objective(metrics.copy())
704
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
705
706
            import optuna

707
708
709
710
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
711
712
            from ray import tune

713
            if self.control.should_save:
714
                self._tune_save_checkpoint()
715
716
            tune.report(objective=self.objective, **metrics)

717
    def _tune_save_checkpoint(self):
718
719
        from ray import tune

720
721
        if not self.use_tune_checkpoints:
            return
722
        with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
723
            output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
724
            self.save_model(output_dir)
725
            if self.is_world_process_zero():
726
                self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))
727
728
729
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

730
731
732
733
734
735
736
    def call_model_init(self, trial=None):
        model_init_argcount = len(inspect.signature(self.model_init).parameters)
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(trial)
        else:
737
738
739
740
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")
741
742
743

        return model

744
    def _wrap_model(self, model, training=True):
745
746
        # already initialized its own DDP and AMP
        if self.deepspeed:
747
            return self.deepspeed
748

749
750
751
752
        # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
        if unwrap_model(model) is not model:
            return model

753
754
755
756
757
758
759
760
761
762
763
764
765
766
        # Mixed precision training with apex (torch < 1.6)
        if self.use_apex and training:
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
        if not training:
            return model

        # Distributed training (should be after apex fp16 initialization)
767
768
769
770
771
772
773
774
775
        if self.sharded_ddp is not None:
            # Sharded DDP!
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
                model = ShardedDDP(model, self.optimizer)
            else:
                mixed_precision = self.args.fp16
                cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
                zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
                # XXX: Breaking the self.model convention but I see no way around it for now.
776
777
                if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
                    model = auto_wrap(model)
778
                self.model = model = FullyShardedDDP(
779
780
781
782
                    model,
                    mixed_precision=mixed_precision,
                    reshard_after_forward=zero_3,
                    cpu_offload=cpu_offload,
783
784
                ).to(self.args.device)

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        elif is_sagemaker_distributed_available():
            model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
        elif self.args.local_rank != -1:
            if self.args.ddp_find_unused_parameters is not None:
                find_unused_parameters = self.args.ddp_find_unused_parameters
            elif isinstance(model, PreTrainedModel):
                # find_unused_parameters breaks checkpointing as per
                # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
                find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False)
            else:
                find_unused_parameters = True
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=find_unused_parameters,
            )

        return model

805
806
    def train(
        self,
807
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
808
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
809
        **kwargs,
810
    ):
Julien Chaumond's avatar
Julien Chaumond committed
811
812
813
814
        """
        Main training entry point.

        Args:
815
816
817
818
819
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
820
821
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
822
823
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
Julien Chaumond's avatar
Julien Chaumond committed
824
        """
825
826
827
828

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

829
830
        self.is_in_train = True

831
832
833
834
835
836
837
838
839
        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
840
841
842
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

843
        # Model re-init
844
        model_reloaded = False
845
        if self.model_init is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
846
847
            # Seed must be set before instantiating the model when using model_init.
            set_seed(self.args.seed)
848
849
            self.model = self.call_model_init(trial)
            model_reloaded = True
Sylvain Gugger's avatar
Sylvain Gugger committed
850
851
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None
852

853
        # Load potential model checkpoint
854
855
856
857
858
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
            resume_from_checkpoint = get_last_checkpoint(self.args.output_dir)
            if resume_from_checkpoint is None:
                raise ValueError(f"No valid checkpoint found in output directory ({self.args.output_dir})")

859
860
        if resume_from_checkpoint is not None and os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
            logger.info(f"Loading model from {resume_from_checkpoint}).")
861
            if isinstance(self.model, PreTrainedModel):
862
                self.model = self.model.from_pretrained(resume_from_checkpoint)
863
864
                model_reloaded = True
            else:
865
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME))
866
867
868
869
                self.model.load_state_dict(state_dict)

        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
870
            if self.place_model_on_device:
871
872
873
                self.model = self.model.to(self.args.device)
            self.model_wrapped = self.model

874
875
876
        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

877
        # Data loader and number of training steps
Julien Chaumond's avatar
Julien Chaumond committed
878
        train_dataloader = self.get_train_dataloader()
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
        if train_dataset_is_sized:
            num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
            if self.args.max_steps > 0:
                max_steps = self.args.max_steps
                num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
                    self.args.max_steps % num_update_steps_per_epoch > 0
                )
            else:
                max_steps = math.ceil(self.args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(self.args.num_train_epochs)
Julien Chaumond's avatar
Julien Chaumond committed
895
        else:
896
897
898
899
            # see __init__. max_steps is set when the dataset has no __len__
            max_steps = self.args.max_steps
            num_train_epochs = 1
            num_update_steps_per_epoch = max_steps
Julien Chaumond's avatar
Julien Chaumond committed
900

901
        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
902
903
904
905
906
907
908
        if self.args.deepspeed:
            model, optimizer, lr_scheduler = init_deepspeed(self, num_training_steps=max_steps)
            self.model = model.module
            self.model_wrapped = model  # will get further wrapped in DDP
            self.deepspeed = model  # DeepSpeedEngine object
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
909
        elif not delay_optimizer_creation:
910
911
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

912
        self.state = TrainerState()
913
        self.state.is_hyper_param_search = trial is not None
Julien Chaumond's avatar
Julien Chaumond committed
914

915
        model = self._wrap_model(self.model_wrapped)
Julien Chaumond's avatar
Julien Chaumond committed
916

917
918
919
920
        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

921
922
923
        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

924
925
926
        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

927
928
        # important: at this point:
        # self.model         is the Transformers Model
929
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
930

Julien Chaumond's avatar
Julien Chaumond committed
931
        # Train!
932
        if is_torch_tpu_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
933
934
935
            world_size = xm.xrt_world_size()
        elif self.args.local_rank != -1:
            world_size = dist.get_world_size()
Lysandre Debut's avatar
Lysandre Debut committed
936
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
937
            world_size = 1
938

Sylvain Gugger's avatar
Sylvain Gugger committed
939
        total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps * world_size
940
941
942
943
944
945
        num_examples = (
            self.num_examples(train_dataloader)
            if train_dataset_is_sized
            else total_train_batch_size * self.args.max_steps
        )

Julien Chaumond's avatar
Julien Chaumond committed
946
        logger.info("***** Running training *****")
947
948
949
950
951
952
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
        logger.info(f"  Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {max_steps}")
Julien Chaumond's avatar
Julien Chaumond committed
953

954
        self.state.epoch = 0
955
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
956
957
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
958

Julien Chaumond's avatar
Julien Chaumond committed
959
        # Check if continuing training from a checkpoint
960
961
962
963
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, "trainer_state.json")
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json"))
964
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
965
966
967
968
969
            if not self.args.ignore_data_skip:
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
                steps_trained_in_current_epoch *= self.args.gradient_accumulation_steps
            else:
                steps_trained_in_current_epoch = 0
970
971

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
972
973
974
975
976
977
978
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
            if not self.args.ignore_data_skip:
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
                    "batches in the first epoch."
                )
979

Sylvain Gugger's avatar
Sylvain Gugger committed
980
981
982
983
984
        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
985
986
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
        self.state.trial_params = hp_params(trial) if trial is not None else None
987
988
989
990
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
Sylvain Gugger's avatar
Sylvain Gugger committed
991
992
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
993

994
        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
995
        tr_loss = torch.tensor(0.0).to(self.args.device)
996
997
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
998
        self._globalstep_last_logged = self.state.global_step
999
        self._total_flos = self.state.total_flos
Julien Chaumond's avatar
Julien Chaumond committed
1000
        model.zero_grad()
Sylvain Gugger's avatar
Sylvain Gugger committed
1001
1002
1003

        self.control = self.callback_handler.on_train_begin(self.args, self.state, self.control)

1004
1005
1006
1007
1008
1009
1010
        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
        if not self.args.ignore_data_skip:
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break

1011
        for epoch in range(epochs_trained, num_train_epochs):
1012
1013
1014
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

1015
            if is_torch_tpu_available():
1016
1017
1018
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
1019
                epoch_iterator = parallel_loader
1020
            else:
1021
                epoch_iterator = train_dataloader
1022

1023
1024
1025
1026
            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

1027
1028
1029
1030
1031
            steps_in_epoch = (
                len(epoch_iterator)
                if train_dataset_is_sized
                else self.args.max_steps * self.args.gradient_accumulation_steps
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1032
1033
            self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)

Julien Chaumond's avatar
Julien Chaumond committed
1034
1035
1036
1037
1038
1039
1040
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

Sylvain Gugger's avatar
Sylvain Gugger committed
1041
1042
1043
                if (step + 1) % self.args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(self.args, self.state, self.control)

1044
1045
1046
                if (
                    ((step + 1) % self.args.gradient_accumulation_steps != 0)
                    and self.args.local_rank != -1
Sylvain Gugger's avatar
Sylvain Gugger committed
1047
                    and self.args._no_sync_in_gradient_accumulation
1048
                ):
1049
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
1050
1051
1052
1053
                    with model.no_sync():
                        tr_loss += self.training_step(model, inputs)
                else:
                    tr_loss += self.training_step(model, inputs)
1054
                self._total_flos += float(self.floating_point_ops(inputs))
Julien Chaumond's avatar
Julien Chaumond committed
1055

1056
1057
1058
1059
                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

Julien Chaumond's avatar
Julien Chaumond committed
1060
1061
                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
1062
1063
                    steps_in_epoch <= self.args.gradient_accumulation_steps
                    and (step + 1) == steps_in_epoch
Julien Chaumond's avatar
Julien Chaumond committed
1064
                ):
1065
                    # Gradient clipping
1066
1067
1068
                    if self.args.max_grad_norm is not None and self.args.max_grad_norm > 0 and not self.deepspeed:
                        # deepspeed does its own clipping

1069
1070
1071
1072
1073
1074
1075
                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
                            self.optimizer.clip_grad_norm(self.args.max_grad_norm)
1076
1077
1078
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
                            model.clip_grad_norm_(self.args.max_grad_norm)
1079
1080
1081
1082
1083
1084
1085
1086
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
                            torch.nn.utils.clip_grad_norm_(
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
                                self.args.max_grad_norm,
                            )

                    # Optimizer step
Stas Bekman's avatar
Stas Bekman committed
1087
                    if self.deepspeed:
1088
                        pass  # called outside the loop
Stas Bekman's avatar
Stas Bekman committed
1089
                    elif is_torch_tpu_available():
1090
                        xm.optimizer_step(self.optimizer)
1091
                    elif self.use_amp:
1092
                        self.scaler.step(self.optimizer)
1093
                        self.scaler.update()
Lysandre Debut's avatar
Lysandre Debut committed
1094
                    else:
1095
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
1096

1097
1098
1099
                    if not self.deepspeed:
                        self.lr_scheduler.step()

Julien Chaumond's avatar
Julien Chaumond committed
1100
                    model.zero_grad()
1101
                    self.state.global_step += 1
1102
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
Sylvain Gugger's avatar
Sylvain Gugger committed
1103
1104
                    self.control = self.callback_handler.on_step_end(self.args, self.state, self.control)

1105
                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
Julien Chaumond's avatar
Julien Chaumond committed
1106

Sylvain Gugger's avatar
Sylvain Gugger committed
1107
                if self.control.should_epoch_stop or self.control.should_training_stop:
Julien Chaumond's avatar
Julien Chaumond committed
1108
                    break
1109

Sylvain Gugger's avatar
Sylvain Gugger committed
1110
            self.control = self.callback_handler.on_epoch_end(self.args, self.state, self.control)
1111
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
1112

1113
            if self.args.tpu_metrics_debug or self.args.debug:
1114
1115
1116
1117
1118
1119
1120
1121
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1122
            if self.control.should_training_stop:
1123
                break
Julien Chaumond's avatar
Julien Chaumond committed
1124

1125
1126
1127
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1128
1129

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
1130
        if self.args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
1131
1132
1133
1134
1135
1136
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
            elif self.args.local_rank != -1:
                dist.barrier()

1137
1138
1139
            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )
1140
1141
            if isinstance(self.model, PreTrainedModel):
                self.model = self.model.from_pretrained(self.state.best_model_checkpoint)
1142
                if self.place_model_on_device:
1143
                    self.model = self.model.to(self.args.device)
1144
1145
1146
1147
            else:
                state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME))
                self.model.load_state_dict(state_dict)

1148
1149
1150
1151
1152
            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

1153
        metrics = speed_metrics("train", start_time, self.state.max_steps)
1154
1155
        if self._total_flos is not None:
            self.store_flos()
1156
1157
            metrics["total_flos"] = self.state.total_flos
        self.log(metrics)
1158

Sylvain Gugger's avatar
Sylvain Gugger committed
1159
        self.control = self.callback_handler.on_train_end(self.args, self.state, self.control)
1160
1161
        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
Sylvain Gugger's avatar
Sylvain Gugger committed
1162

1163
1164
1165
1166
1167
1168
1169
        if self.deepspeed:
            # free up any memory that might be useful for eval
            self.deepspeed = None
            self.optimizer = None
            self.lr_scheduler = None
            self.model_wrapped = self.model
            gc.collect()  # force memory release
1170
1171
1172
1173
1174
1175
            # to restore normal behavior outside of train replay the place_model_on_device logic w/o deepspeed
            self.place_model_on_device = self.args.place_model_on_device
            if self.is_model_parallel:
                self.place_model_on_device = False

        self.is_in_train = False
1176

1177
1178
        self._memory_tracker.stop_and_update_metrics(metrics)

1179
        return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics)
1180

1181
    def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch):
Sylvain Gugger's avatar
Sylvain Gugger committed
1182
1183
1184
        if self.control.should_log:
            logs: Dict[str, float] = {}
            tr_loss_scalar = tr_loss.item()
1185
1186
1187
            # reset tr_loss to zero
            tr_loss -= tr_loss

1188
            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
1189
            logs["learning_rate"] = self._get_learning_rate()
1190

1191
            self._total_loss_scalar += tr_loss_scalar
1192
            self._globalstep_last_logged = self.state.global_step
Sylvain Gugger's avatar
Sylvain Gugger committed
1193
1194
1195
1196
1197
1198
1199

            self.log(logs)

        metrics = None
        if self.control.should_evaluate:
            metrics = self.evaluate()
            self._report_to_hp_search(trial, epoch, metrics)
1200

Sylvain Gugger's avatar
Sylvain Gugger committed
1201
1202
1203
1204
1205
        if self.control.should_save:
            self._save_checkpoint(model, trial, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

    def _save_checkpoint(self, model, trial, metrics=None):
1206
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
1207
        # want to save except FullyShardedDDP.
1208
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
1209

1210
        # Save model checkpoint
1211
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
1212

1213
        if self.hp_search_backend is not None and trial is not None:
1214
1215
1216
1217
1218
1219
            if self.hp_search_backend == HPSearchBackend.OPTUNA:
                run_id = trial.number
            else:
                from ray import tune

                run_id = tune.get_trial_id()
1220
            run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
1221
            run_dir = os.path.join(self.args.output_dir, run_name)
1222
        else:
1223
            run_dir = self.args.output_dir
1224
            self.store_flos()
1225

1226
        output_dir = os.path.join(run_dir, checkpoint_folder)
1227
        self.save_model(output_dir)
1228
1229
        if self.deepspeed:
            self.deepspeed.save_checkpoint(output_dir)
1230
1231

        # Save optimizer and scheduler
1232
        if self.sharded_ddp == ShardedDDPOption.SIMPLE:
1233
            self.optimizer.consolidate_state_dict()
1234

1235
1236
1237
1238
1239
1240
        if is_torch_tpu_available():
            xm.rendezvous("saving_optimizer_states")
            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                reissue_pt_warnings(caught_warnings)
1241
1242
        elif self.is_world_process_zero() and not self.deepspeed:
            # deepspeed.save_checkpoint above saves model/optim/sched
1243
1244
1245
1246
1247
1248
            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
            reissue_pt_warnings(caught_warnings)

        # Determine the new best metric / best model checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
1249
        if metrics is not None and self.args.metric_for_best_model is not None:
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
        if self.is_world_process_zero():
            self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))

        # Maybe delete some older checkpoints.
        if self.is_world_process_zero():
1270
            self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
1271

1272
    def _load_optimizer_and_scheduler(self, checkpoint):
Sylvain Gugger's avatar
Sylvain Gugger committed
1273
        """If optimizer and scheduler states exist, load them."""
1274
        if checkpoint is None:
1275
1276
            return

1277
1278
        if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile(
            os.path.join(checkpoint, "scheduler.pt")
Sylvain Gugger's avatar
Sylvain Gugger committed
1279
1280
1281
1282
        ):
            # Load in optimizer and scheduler states
            if is_torch_tpu_available():
                # On TPU we have to take some extra precautions to properly load the states on the right device.
1283
                optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1284
                with warnings.catch_warnings(record=True) as caught_warnings:
1285
                    lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
                reissue_pt_warnings(caught_warnings)

                xm.send_cpu_data_to_device(optimizer_state, self.args.device)
                xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)

                self.optimizer.load_state_dict(optimizer_state)
                self.lr_scheduler.load_state_dict(lr_scheduler_state)
            else:
                self.optimizer.load_state_dict(
1295
                    torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=self.args.device)
Sylvain Gugger's avatar
Sylvain Gugger committed
1296
1297
                )
                with warnings.catch_warnings(record=True) as caught_warnings:
1298
                    self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt")))
Sylvain Gugger's avatar
Sylvain Gugger committed
1299
1300
                reissue_pt_warnings(caught_warnings)

1301
1302
        if self.deepspeed:
            # Not sure how to check if there is a saved deepspeed checkpoint, but since it just return None if it fails to find a deepspeed checkpoint this is sort of a check-n-load function
1303
            self.deepspeed.load_checkpoint(checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True)
1304

1305
1306
1307
1308
1309
1310
1311
    def hyperparameter_search(
        self,
        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
        n_trials: int = 20,
        direction: str = "minimize",
        backend: Optional[Union["str", HPSearchBackend]] = None,
1312
        hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
1313
        **kwargs,
1314
1315
    ) -> BestRun:
        """
1316
        Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by
Sylvain Gugger's avatar
Sylvain Gugger committed
1317
1318
        :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is
        provided, the sum of all metrics otherwise.
1319

Sylvain Gugger's avatar
Sylvain Gugger committed
1320
1321
1322
1323
1324
1325
1326
        .. warning::

            To use this method, you need to have provided a ``model_init`` when initializing your
            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
        Args:
            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
                A function that defines the hyperparameter search space. Will default to
                :func:`~transformers.trainer_utils.default_hp_space_optuna` or
                :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend.
            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
                A function computing the objective to minimize or maximize from the metrics returned by the
                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
            n_trials (:obj:`int`, `optional`, defaults to 100):
                The number of trial runs to test.
            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
                several metrics.
            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
                The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which
                one is installed. If both are installed, will default to optuna.
            kwargs:
                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
                more information see:

Sylvain Gugger's avatar
Sylvain Gugger committed
1348
                - the documentation of `optuna.create_study
1349
                  <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
1350
1351
                - the documentation of `tune.run
                  <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
1352
1353

        Returns:
Tiger's avatar
Tiger committed
1354
            :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
                    "To install optuna run `pip install optuna`."
                    "To install ray run `pip install ray[tune]`."
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
1366
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
1367
        if backend == HPSearchBackend.RAY and not is_ray_tune_available():
1368
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1369
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
1370
1371
            )
        self.hp_search_backend = backend
Sylvain Gugger's avatar
Sylvain Gugger committed
1372
1373
1374
1375
1376
        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

1377
        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
1378
        self.hp_name = hp_name
1379
1380
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

1381
1382
        run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray
        best_run = run_hp_search(self, n_trials, direction, **kwargs)
1383
1384
1385
1386

        self.hp_search_backend = None
        return best_run

Sylvain Gugger's avatar
Sylvain Gugger committed
1387
    def log(self, logs: Dict[str, float]) -> None:
1388
1389
1390
1391
1392
1393
1394
1395
1396
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
        """
1397
        if self.state.epoch is not None:
1398
            logs["epoch"] = round(self.state.epoch, 2)
1399

1400
1401
        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
1402
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
Julien Chaumond's avatar
Julien Chaumond committed
1403

sgugger's avatar
Fix CI  
sgugger committed
1404
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
1405
1406
1407
1408
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
Julien Chaumond's avatar
Julien Chaumond committed
1409
        for k, v in inputs.items():
1410
1411
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)
Julien Chaumond's avatar
Julien Chaumond committed
1412

1413
1414
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
1415

1416
1417
        return inputs

1418
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1419
        """
1420
        Perform a training step on a batch of inputs.
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
1434
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
1435
1436
        """
        model.train()
1437
        inputs = self._prepare_inputs(inputs)
1438

1439
        if self.use_amp:
1440
            with autocast():
Sylvain Gugger's avatar
Sylvain Gugger committed
1441
                loss = self.compute_loss(model, inputs)
1442
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1443
            loss = self.compute_loss(model, inputs)
1444

Julien Chaumond's avatar
Julien Chaumond committed
1445
1446
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
1447

1448
1449
        if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
Julien Chaumond's avatar
Julien Chaumond committed
1450
1451
            loss = loss / self.args.gradient_accumulation_steps

1452
        if self.use_amp:
1453
            self.scaler.scale(loss).backward()
1454
        elif self.use_apex:
1455
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
1456
                scaled_loss.backward()
1457
        elif self.deepspeed:
1458
1459
            # loss gets scaled under gradient_accumulation_steps in deepspeed
            loss = self.deepspeed.backward(loss)
Julien Chaumond's avatar
Julien Chaumond committed
1460
1461
1462
        else:
            loss.backward()

1463
        return loss.detach()
Julien Chaumond's avatar
Julien Chaumond committed
1464

1465
    def compute_loss(self, model, inputs, return_outputs=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
1466
1467
1468
1469
1470
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
1471
1472
1473
1474
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1475
1476
        outputs = model(**inputs)
        # Save past state if it exists
1477
        # TODO: this needs to be fixed and made cleaner later.
Sylvain Gugger's avatar
Sylvain Gugger committed
1478
1479
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]
Sylvain Gugger's avatar
Sylvain Gugger committed
1480

1481
        if labels is not None:
1482
            loss = self.label_smoother(outputs, labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1483
1484
        else:
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
1485
1486
1487
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1488

1489
1490
    def is_local_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1491
1492
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
1493
        """
1494
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
1495
1496
1497
1498
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

1499
1500
    def is_world_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1501
1502
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
1503
        """
1504
        if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
1505
1506
            return xm.is_master_ordinal(local=False)
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1507
            return self.args.local_rank == -1 or dist.get_rank() == 0
Julien Chaumond's avatar
Julien Chaumond committed
1508
1509
1510

    def save_model(self, output_dir: Optional[str] = None):
        """
1511
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
1512

1513
        Will only save from the main process.
Julien Chaumond's avatar
Julien Chaumond committed
1514
        """
1515
        if is_torch_tpu_available():
1516
            self._save_tpu(output_dir)
1517
1518
1519
1520
        elif (
            ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
        ):
            state_dict = self.model.state_dict()
1521
            if self.is_world_process_zero():
1522
1523
1524
                self._save(output_dir, state_dict=state_dict)
        elif self.is_world_process_zero():
            self._save(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1525

1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        xm.rendezvous("saving_checkpoint")
1537
        if not isinstance(self.model, PreTrainedModel):
1538
1539
1540
1541
1542
1543
1544
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                unwrap_model(self.model).save_pretrained(
                    output_dir,
                    save_config=self.is_world_process_zero(),
                    state_dict=self.model.state_dict(),
                    save_function=xm.save,
                )
1545
1546
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1547
1548
                state_dict = self.model.state_dict()
                xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1549
        else:
1550
            self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save)
Sylvain Gugger's avatar
Sylvain Gugger committed
1551
        if self.tokenizer is not None and self.is_world_process_zero():
1552
            self.tokenizer.save_pretrained(output_dir)
1553

1554
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
1555
        # If we are executing this function, we are the process zero, so we don't check for that.
Julien Chaumond's avatar
Julien Chaumond committed
1556
1557
1558
1559
1560
1561
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
1562
            if isinstance(unwrap_model(self.model), PreTrainedModel):
1563
1564
1565
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
1566
1567
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1568
1569
                if state_dict is None:
                    state_dict = self.model.state_dict()
1570
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1571
        else:
1572
            self.model.save_pretrained(output_dir, state_dict=state_dict)
1573
        if self.tokenizer is not None:
1574
            self.tokenizer.save_pretrained(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1575
1576
1577

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
1578

1579
    def store_flos(self):
1580
        # Storing the number of floating-point operations that went into the model
1581
        if self._total_flos is not None:
1582
            if self.args.local_rank != -1:
1583
                self.state.total_flos = distributed_broadcast_scalars([self._total_flos]).sum().item()
1584
            else:
1585
                self.state.total_flos = self._total_flos
Julien Chaumond's avatar
Julien Chaumond committed
1586

1587
1588
1589
    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
Julien Chaumond's avatar
Julien Chaumond committed
1590
1591
        ordering_and_checkpoint_path = []

1592
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
1593
1594
1595
1596
1597

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
1598
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
Julien Chaumond's avatar
Julien Chaumond committed
1599
1600
1601
1602
1603
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
1604
1605
        # Make sure we don't delete the best model.
        if self.state.best_model_checkpoint is not None:
1606
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
1607
            checkpoints_sorted[best_model_index], checkpoints_sorted[-1] = (
1608
1609
1610
                checkpoints_sorted[-1],
                checkpoints_sorted[best_model_index],
            )
Julien Chaumond's avatar
Julien Chaumond committed
1611
1612
        return checkpoints_sorted

1613
    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
1614
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
1615
1616
1617
            return

        # Check if we should delete older checkpoint(s)
1618
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1619
1620
1621
1622
1623
1624
1625
1626
1627
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

1628
    def evaluate(
1629
1630
1631
1632
        self,
        eval_dataset: Optional[Dataset] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
1633
    ) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
1634
        """
1635
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
1636

Sylvain Gugger's avatar
Sylvain Gugger committed
1637
1638
        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
1639

1640
1641
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
1642
        Args:
1643
            eval_dataset (:obj:`Dataset`, `optional`):
1644
                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
Sylvain Gugger's avatar
Sylvain Gugger committed
1645
1646
                columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
                :obj:`__len__` method.
1647
1648
1649
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
1650
1651
1652
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
1653

Julien Chaumond's avatar
Julien Chaumond committed
1654
        Returns:
1655
1656
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
Julien Chaumond's avatar
Julien Chaumond committed
1657
        """
1658
1659
1660
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1661
1662
1663
        if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized):
            raise ValueError("eval_dataset must implement __len__")

Julien Chaumond's avatar
Julien Chaumond committed
1664
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
1665
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
1666

1667
1668
1669
1670
1671
1672
        output = self.prediction_loop(
            eval_dataloader,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
1673
            ignore_keys=ignore_keys,
1674
            metric_key_prefix=metric_key_prefix,
1675
        )
Lysandre Debut's avatar
Lysandre Debut committed
1676

1677
1678
        n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset)
        output.metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples))
1679
        self.log(output.metrics)
1680

1681
        if self.args.tpu_metrics_debug or self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
1682
1683
1684
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Sylvain Gugger's avatar
Sylvain Gugger committed
1685
        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
1686
1687
1688

        self._memory_tracker.stop_and_update_metrics(output.metrics)

Julien Chaumond's avatar
Julien Chaumond committed
1689
1690
        return output.metrics

1691
1692
1693
    def predict(
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval"
    ) -> PredictionOutput:
Julien Chaumond's avatar
Julien Chaumond committed
1694
        """
1695
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
1696

Sylvain Gugger's avatar
Sylvain Gugger committed
1697
1698
        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in :obj:`evaluate()`.
1699
1700
1701

        Args:
            test_dataset (:obj:`Dataset`):
1702
                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
1703
                ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__`
1704
1705
1706
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
1707
1708
1709
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
1710

1711
1712
1713
1714
1715
1716
        .. note::

            If your predictions or labels have different sequence length (for instance because you're doing dynamic
            padding in a token classification task) the predictions will be padded (on the right) to allow for
            concatenation into one array. The padding index is -100.

Sylvain Gugger's avatar
Sylvain Gugger committed
1717
1718
1719
1720
1721
1722
        Returns: `NamedTuple` A namedtuple with the following keys:

            - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
            - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
            - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
              contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
1723
        """
1724
1725
1726
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1727
1728
1729
        if test_dataset is not None and not isinstance(test_dataset, collections.abc.Sized):
            raise ValueError("test_dataset must implement __len__")

Julien Chaumond's avatar
Julien Chaumond committed
1730
        test_dataloader = self.get_test_dataloader(test_dataset)
1731
        start_time = time.time()
1732

1733
        output = self.prediction_loop(
1734
1735
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
1736
        output.metrics.update(speed_metrics(metric_key_prefix, start_time, len(test_dataset)))
1737
1738
1739

        self._memory_tracker.stop_and_update_metrics(output.metrics)

1740
        return output
Julien Chaumond's avatar
Julien Chaumond committed
1741

1742
    def prediction_loop(
1743
1744
1745
1746
1747
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
1748
        metric_key_prefix: str = "eval",
Julien Chaumond's avatar
Julien Chaumond committed
1749
1750
    ) -> PredictionOutput:
        """
1751
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
1752
1753
1754

        Works both with or without labels.
        """
1755
1756
        if not isinstance(dataloader.dataset, collections.abc.Sized):
            raise ValueError("dataset must implement __len__")
1757
1758
1759
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )
Julien Chaumond's avatar
Julien Chaumond committed
1760

1761
        if self.args.deepspeed and not self.args.do_train:
1762
1763
1764
            # no harm, but flagging to the user that deepspeed config is ignored for eval
            # flagging only for when --do_train wasn't passed as only then it's redundant
            logger.info("Detected the deepspeed argument but it will not be used for evaluation")
1765

1766
        model = self._wrap_model(self.model, training=False)
Julien Chaumond's avatar
Julien Chaumond committed
1767

1768
1769
1770
1771
1772
        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
        # ``train`` is running, half it first and then put on device
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

1773
        batch_size = dataloader.batch_size
1774
        num_examples = self.num_examples(dataloader)
Julien Chaumond's avatar
Julien Chaumond committed
1775
        logger.info("***** Running %s *****", description)
1776
        logger.info("  Num examples = %d", num_examples)
1777
        logger.info("  Batch size = %d", batch_size)
1778
1779
1780
1781
        losses_host: torch.Tensor = None
        preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
        labels_host: Union[torch.Tensor, List[torch.Tensor]] = None

1782
        world_size = max(1, self.args.world_size)
1783
1784

        eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
1785
1786
1787
        if not prediction_loss_only:
            preds_gatherer = DistributedTensorGatherer(world_size, num_examples)
            labels_gatherer = DistributedTensorGatherer(world_size, num_examples)
1788

Julien Chaumond's avatar
Julien Chaumond committed
1789
1790
        model.eval()

1791
        if is_torch_tpu_available():
1792
1793
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

1794
        if self.args.past_index >= 0:
1795
            self._past = None
1796

Sylvain Gugger's avatar
Sylvain Gugger committed
1797
1798
        self.callback_handler.eval_dataloader = dataloader

1799
        for step, inputs in enumerate(dataloader):
1800
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
1801
            if loss is not None:
1802
1803
                losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
1804
            if logits is not None:
1805
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
1806
            if labels is not None:
1807
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
Sylvain Gugger's avatar
Sylvain Gugger committed
1808
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
1809

1810
1811
1812
            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
                eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
1813
1814
1815
                if not prediction_loss_only:
                    preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
                    labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
1816
1817
1818
1819

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

1820
1821
1822
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1823

1824
1825
        # Gather all remaining tensors and put them back on the CPU
        eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
1826
1827
1828
        if not prediction_loss_only:
            preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
            labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
1829
1830

        eval_loss = eval_losses_gatherer.finalize()
1831
1832
        preds = preds_gatherer.finalize() if not prediction_loss_only else None
        label_ids = labels_gatherer.finalize() if not prediction_loss_only else None
Lysandre Debut's avatar
Lysandre Debut committed
1833

Julien Chaumond's avatar
Julien Chaumond committed
1834
1835
1836
1837
        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}
1838

1839
1840
1841
        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

1842
        if eval_loss is not None:
1843
            metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()
1844

1845
        # Prefix all keys with metric_key_prefix + '_'
1846
        for key in list(metrics.keys()):
1847
1848
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
1849
1850

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
1851

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
    def _gather_and_numpify(self, tensors, name):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
            tensors = nested_xla_mesh_reduce(tensors, name)
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)

        return nested_numpify(tensors)

1866
    def prediction_step(
1867
1868
1869
1870
1871
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.
1888
1889
1890
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
1891
1892

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1893
1894
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
            labels (each being optional).
1895
        """
1896
        has_labels = all(inputs.get(k) is not None for k in self.label_names)
1897
        inputs = self._prepare_inputs(inputs)
1898
1899
1900
1901
1902
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []
1903

1904
1905
1906
1907
1908
1909
1910
1911
        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels:
            labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

1912
1913
        with torch.no_grad():
            if has_labels:
1914
1915
                loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
                loss = loss.mean().detach()
1916
1917
1918
1919
                if isinstance(outputs, dict):
                    logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
                else:
                    logits = outputs[1:]
1920
1921
            else:
                loss = None
1922
1923
1924
1925
1926
                if self.use_amp:
                    with autocast():
                        outputs = model(**inputs)
                else:
                    outputs = model(**inputs)
1927
1928
1929
1930
                if isinstance(outputs, dict):
                    logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
                else:
                    logits = outputs
1931
1932
1933
                # TODO: this needs to be fixed and made cleaner later.
                if self.args.past_index >= 0:
                    self._past = outputs[self.args.past_index - 1]
1934
1935
1936
1937

        if prediction_loss_only:
            return (loss, None, None)

1938
        logits = nested_detach(logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
1939
1940
1941
1942
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
1943
1944
1945

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1946
1947
1948
        For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of
        floating point operations for every backward + forward pass. If using another model, either implement such a
        method in the model or subclass and override this method.
1949
1950
1951
1952
1953
1954
1955
1956

        Args:
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """
1957
1958
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
1959
1960
        else:
            return 0