trainer.py 123 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 馃 Transformers from scratch or finetune it on a new task.
"""

19
import collections
20
import inspect
21
import math
Julien Chaumond's avatar
Julien Chaumond committed
22
import os
23
import random
Julien Chaumond's avatar
Julien Chaumond committed
24
25
import re
import shutil
26
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
27
import tempfile
28
import time
29
import warnings
30
from logging import StreamHandler
Julien Chaumond's avatar
Julien Chaumond committed
31
from pathlib import Path
32
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
33

34
35
from tqdm.auto import tqdm

Julien Chaumond's avatar
Julien Chaumond committed
36

37
38
# Integrations must be imported before ML frameworks:
from .integrations import (  # isort: split
39
    default_hp_search_backend,
40
    get_reporting_integration_callbacks,
41
    hp_params,
42
    is_fairscale_available,
43
    is_optuna_available,
44
    is_ray_tune_available,
45
46
    run_hp_search_optuna,
    run_hp_search_ray,
47
)
48
49
50
51
52
53

import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
54
from torch.utils.data.dataset import Dataset, IterableDataset
55
56
57
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler

58
59
from . import __version__
from .configuration_utils import PretrainedConfig
60
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
61
from .debug_utils import DebugOption, DebugUnderflowOverflow
62
from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
63
from .dependency_versions_check import dep_version_check
Sylvain Gugger's avatar
Sylvain Gugger committed
64
from .file_utils import (
65
    CONFIG_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
66
    WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
67
    PushToHubMixin,
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
    is_apex_available,
    is_datasets_available,
    is_in_notebook,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
    is_torch_tpu_available,
74
    is_training_run_on_sagemaker,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
)
Sylvain Gugger's avatar
Sylvain Gugger committed
76
from .modelcard import TrainingSummary
77
from .modeling_utils import PreTrainedModel, unwrap_model
Sylvain Gugger's avatar
Sylvain Gugger committed
78
from .optimization import Adafactor, AdamW, get_scheduler
79
from .tokenization_utils_base import PreTrainedTokenizerBase
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
86
87
88
89
from .trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from .trainer_pt_utils import (
90
    DistributedLengthGroupedSampler,
91
    DistributedSamplerWithLoop,
92
    DistributedTensorGatherer,
93
    IterableDatasetShard,
Sylvain Gugger's avatar
Sylvain Gugger committed
94
    LabelSmoother,
95
    LengthGroupedSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
96
    SequentialDistributedSampler,
97
    ShardSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
    distributed_broadcast_scalars,
    distributed_concat,
100
    find_batch_size,
101
    get_parameter_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
    nested_concat,
    nested_detach,
    nested_numpify,
105
    nested_truncate,
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
)
109
110
111
from .trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
112
    EvalLoopOutput,
113
114
115
    EvalPrediction,
    HPSearchBackend,
    PredictionOutput,
116
    ShardedDDPOption,
117
    TrainerMemoryTracker,
118
119
120
    TrainOutput,
    default_compute_objective,
    default_hp_space,
121
    denumpify_detensorize,
122
    get_last_checkpoint,
123
    set_seed,
124
    speed_metrics,
125
)
126
from .training_args import ParallelMode, TrainingArguments
Lysandre Debut's avatar
Lysandre Debut committed
127
from .utils import logging
128
from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
Julien Chaumond's avatar
Julien Chaumond committed
129
130


131
_is_torch_generator_available = False
132
_is_native_amp_available = False
133

Sylvain Gugger's avatar
Sylvain Gugger committed
134
DEFAULT_CALLBACKS = [DefaultFlowCallback]
135
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
Sylvain Gugger's avatar
Sylvain Gugger committed
136

137
138
139
140
if is_in_notebook():
    from .utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
141

142
143
if is_apex_available():
    from apex import amp
144

145
if version.parse(torch.__version__) >= version.parse("1.6"):
146
    _is_torch_generator_available = True
147
    _is_native_amp_available = True
148
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
149

150
151
if is_datasets_available():
    import datasets
Julien Chaumond's avatar
Julien Chaumond committed
152

153
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
154
155
156
157
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

158
if is_fairscale_available():
159
    dep_version_check("fairscale")
160
    import fairscale
161
    from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
162
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
163
    from fairscale.nn.wrap import auto_wrap
164
165
166
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler

Sylvain Gugger's avatar
Sylvain Gugger committed
167
if is_sagemaker_dp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
    import smdistributed.dataparallel.torch.distributed as dist
    from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
    import torch.distributed as dist
172

Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
177
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat

178
179
180
181
if is_training_run_on_sagemaker():
    logging.add_handler(StreamHandler(sys.stdout))


182
183
184
if TYPE_CHECKING:
    import optuna

Lysandre Debut's avatar
Lysandre Debut committed
185
logger = logging.get_logger(__name__)
Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
189


class Trainer:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
190
    Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 馃 Transformers.
191
192

    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
193
        model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`):
194
            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
197
198
199
200

            .. note::

                :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel`
                provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as
                they work the same way as the 馃 Transformers models.
201
        args (:class:`~transformers.TrainingArguments`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
            The arguments to tweak for training. Will default to a basic instance of
            :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in
            the current directory if not provided.
205
        data_collator (:obj:`DataCollator`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
            The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
            Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
            :func:`~transformers.DataCollatorWithPadding` otherwise.
209
        train_dataset (:obj:`torch.utils.data.dataset.Dataset` or :obj:`torch.utils.data.dataset.IterableDataset`, `optional`):
210
            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
211
            ``model.forward()`` method are automatically removed.
212
213
214

            Note that if it's a :obj:`torch.utils.data.dataset.IterableDataset` with some randomization and you are
            training in a distributed fashion, your iterable dataset should either use a internal attribute
215
            :obj:`generator` that is a :obj:`torch.Generator` for the randomization that must be identical on all
216
217
            processes (and the Trainer will manually set the seed of this :obj:`generator` at each epoch) or have a
            :obj:`set_epoch()` method that internally sets the seed of the RNGs used.
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
219
             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
Sylvain Gugger's avatar
Sylvain Gugger committed
220
             ``model.forward()`` method are automatically removed.
221
222
223
224
        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
            interrupted training or reuse the fine-tuned model.
225
226
227
        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
            A function that instantiates the model to be used. If provided, each call to
            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
230
            The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be
            able to choose different architectures according to hyper parameters (such as layer count, sizes of inner
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
            layers, dropout probabilities etc).
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
233
            The function that will be used to compute metrics at evaluation. Must take a
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
            A list of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in :doc:`here <callback>`.
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239

            If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method.
Sylvain Gugger's avatar
Sylvain Gugger committed
240
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
241
            containing the optimizer and the scheduler to use. Will default to an instance of
242
            :class:`~transformers.AdamW` on your model and a scheduler given by
Sylvain Gugger's avatar
Sylvain Gugger committed
243
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
244

245
246
247
248
249
250
251
252
253
254
    Important attributes:

        - **model** -- Always points to the core model. If using a transformers model, it will be a
          :class:`~transformers.PreTrainedModel` subclass.
        - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
          original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``,
          the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the
          inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``.
        - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
          data parallelism, this means some of the model layers are split on different GPUs).
255
256
257
        - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
          to :obj:`False` if model parallel or deepspeed is used, or if the default
          ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` .
258
259
        - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called
          while in ``train``)
260

Julien Chaumond's avatar
Julien Chaumond committed
261
262
    """

263
    from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
264

Julien Chaumond's avatar
Julien Chaumond committed
265
266
    def __init__(
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
267
        model: Union[PreTrainedModel, torch.nn.Module] = None,
268
        args: TrainingArguments = None,
Julien Chaumond's avatar
Julien Chaumond committed
269
270
271
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
272
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
273
        model_init: Callable[[], PreTrainedModel] = None,
Julien Chaumond's avatar
Julien Chaumond committed
274
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
275
        callbacks: Optional[List[TrainerCallback]] = None,
276
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
277
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
278
        if args is None:
279
280
281
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
282
283
284
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
285
        self.hp_name = None
286
        self.deepspeed = None
287
        self.is_in_train = False
288

289
290
291
292
        # memory metrics - must set up as early as possible
        self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
        self._memory_tracker.start()

293
294
295
        # force device and distributed setup init explicitly
        args._setup_devices

296
297
298
299
300
301
302
303
304
305
306
307
308
309
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                warnings.warn(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. "
                    "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.",
                    FutureWarning,
                )
            self.model_init = model_init
310

311
312
313
314
315
        if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
            self.is_model_parallel = True
        else:
            self.is_model_parallel = False

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        # Setup Sharded DDP training
        self.sharded_ddp = None
        if len(args.sharded_ddp) > 0:
            if args.deepspeed:
                raise ValueError(
                    "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
                )

            if args.local_rank == -1:
                raise ValueError("Using sharded DDP only works in distributed training.")
            elif not is_fairscale_available():
                raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
            elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
                raise ImportError(
                    "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
                    f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
                )
            elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.SIMPLE
            elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
            elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_3

340
        # one place to sort out whether to place the model on device or not
341
342
343
344
345
346
        # postpone switching model to cuda when:
        # 1. MP - since we are trying to fit a much bigger than 1 gpu model
        # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
        #    and we only use deepspeed for training at the moment
        # 3. full fp16 eval - since the model needs to be half'ed first
        # 4. Sharded DDP - same as MP
347
        self.place_model_on_device = args.place_model_on_device
348
349
        if (
            self.is_model_parallel
350
            or args.deepspeed
351
352
353
            or (args.fp16_full_eval and not args.do_train)
            or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
        ):
354
355
            self.place_model_on_device = False

356
357
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
Julien Chaumond's avatar
Julien Chaumond committed
358
359
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
360
        self.tokenizer = tokenizer
361

362
        if self.place_model_on_device:
363
            model = model.to(args.device)
Stas Bekman's avatar
Stas Bekman committed
364
365
366

        # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
        if self.is_model_parallel:
367
            self.args._n_gpu = 1
368
369
370
371
372

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model_wrapped = model
        self.model = model

Julien Chaumond's avatar
Julien Chaumond committed
373
        self.compute_metrics = compute_metrics
374
        self.optimizer, self.lr_scheduler = optimizers
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument."
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
380
381
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
382
383
384
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
385
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
Sylvain Gugger's avatar
Sylvain Gugger committed
386

387
388
389
        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

Julien Chaumond's avatar
Julien Chaumond committed
390
        # Create output directory if needed
391
        if self.is_world_process_zero():
Julien Chaumond's avatar
Julien Chaumond committed
392
            os.makedirs(self.args.output_dir, exist_ok=True)
393
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
Sylvain Gugger's avatar
Sylvain Gugger committed
394
            raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
395

396
397
398
399
400
401
        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0:
            raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")

402
        self._signature_columns = None
403

404
405
406
        # Mixed precision setup
        self.use_apex = False
        self.use_amp = False
407
408
        self.fp16_backend = None

409
410
        if args.fp16:
            if args.fp16_backend == "auto":
411
                self.fp16_backend = "amp" if _is_native_amp_available else "apex"
412
            else:
413
414
                self.fp16_backend = args.fp16_backend
            logger.info(f"Using {self.fp16_backend} fp16 backend")
415

416
417
        if args.fp16 and not args.deepspeed:  # deepspeed manages its own fp16
            if self.fp16_backend == "amp":
418
                self.use_amp = True
419
420
421
422
423
424
                if is_sagemaker_mp_enabled():
                    self.scaler = smp.amp.GradScaler()
                elif self.sharded_ddp is not None:
                    self.scaler = ShardedGradScaler()
                else:
                    self.scaler = torch.cuda.amp.GradScaler()
425
426
427
428
429
430
431
            else:
                if not is_apex_available():
                    raise ImportError(
                        "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex."
                    )
                self.use_apex = True

432
433
434
435
436
437
438
        # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
        if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0:
            raise ValueError(
                "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
                "along 'max_grad_norm': 0 in your hyperparameters."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
441
442
443
444
        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

445
        self.state = TrainerState()
Sylvain Gugger's avatar
Sylvain Gugger committed
446
        self.control = TrainerControl()
447
448
449
        # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
        # returned to 0 every time flos need to be logged
        self.current_flos = 0
450
        self.hp_search_backend = None
451
        self.use_tune_checkpoints = False
452
        default_label_names = (
453
            ["start_positions", "end_positions"]
454
            if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values()
455
456
457
            else ["labels"]
        )
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)

460
461
462
        # very last
        self._memory_tracker.stop_and_update_metrics()

Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    def add_callback(self, callback):
        """
        Add a callback to the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it.

        If the callback is not found, returns :obj:`None` (and no error is raised).

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            :class:`~transformer.TrainerCallback`: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)
Julien Chaumond's avatar
Julien Chaumond committed
500

501
    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
502
        if not self.args.remove_unused_columns:
503
            return dataset
504
505
506
507
508
509
510
511
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            signature = inspect.signature(self.model.forward)
            self._signature_columns = list(signature.parameters.keys())
            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += ["label", "label_ids"]
        columns = [k for k in self._signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
512
513
514
515
516
517
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set "
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
            )
518

519
520
521
522
523
524
525
        if version.parse(datasets.__version__) < version.parse("1.4.0"):
            dataset.set_format(
                type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
            )
            return dataset
        else:
            return dataset.remove_columns(ignored_columns)
526

527
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
528
        if not isinstance(self.train_dataset, collections.abc.Sized):
529
            return None
530

531
532
533
534
535
        generator = None
        if self.args.world_size <= 1 and _is_torch_generator_available:
            generator = torch.Generator()
            generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))

536
537
        # Build the sampler.
        if self.args.group_by_length:
538
539
540
541
542
543
544
545
            if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
                lengths = (
                    self.train_dataset[self.args.length_column_name]
                    if self.args.length_column_name in self.train_dataset.column_names
                    else None
                )
            else:
                lengths = None
546
            model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
547
            if self.args.world_size <= 1:
548
                return LengthGroupedSampler(
549
550
551
552
553
                    self.train_dataset,
                    self.args.train_batch_size,
                    lengths=lengths,
                    model_input_name=model_input_name,
                    generator=generator,
554
                )
555
556
            else:
                return DistributedLengthGroupedSampler(
557
558
                    self.train_dataset,
                    self.args.train_batch_size,
559
560
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
561
                    lengths=lengths,
562
                    model_input_name=model_input_name,
563
                    seed=self.args.seed,
564
565
566
                )

        else:
567
            if self.args.world_size <= 1:
568
569
                if _is_torch_generator_available:
                    return RandomSampler(self.train_dataset, generator=generator)
570
                return RandomSampler(self.train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
571
572
573
574
            elif (
                self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
                and not self.args.dataloader_drop_last
            ):
575
576
577
578
579
580
                # Use a loop for TPUs when drop_last is False to have all batches have the same size.
                return DistributedSamplerWithLoop(
                    self.train_dataset,
                    batch_size=self.args.per_device_train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
581
                    seed=self.args.seed,
582
                )
583
            else:
584
                return DistributedSampler(
585
586
587
588
                    self.train_dataset,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                    seed=self.args.seed,
589
                )
590
591
592
593
594

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

Sylvain Gugger's avatar
Sylvain Gugger committed
595
596
        Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
        to distributed training if necessary) otherwise.
597
598
599
600
601

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
602

603
604
605
606
607
        train_dataset = self.train_dataset
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")

        if isinstance(train_dataset, torch.utils.data.dataset.IterableDataset):
608
609
            if self.args.world_size > 1:
                train_dataset = IterableDatasetShard(
610
                    train_dataset,
611
612
613
614
615
                    batch_size=self.args.train_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
616

617
618
619
620
621
622
623
624
            return DataLoader(
                train_dataset,
                batch_size=self.args.train_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

625
626
627
        train_sampler = self._get_train_sampler()

        return DataLoader(
628
            train_dataset,
Julien Chaumond's avatar
Julien Chaumond committed
629
630
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
631
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
632
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
633
            num_workers=self.args.dataloader_num_workers,
634
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
635
636
        )

637
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        # Deprecated code
        if self.args.use_legacy_prediction_loop:
            if is_torch_tpu_available():
                return SequentialDistributedSampler(
                    eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
                )
            elif is_sagemaker_mp_enabled():
                return SequentialDistributedSampler(
                    eval_dataset,
                    num_replicas=smp.dp_size(),
                    rank=smp.dp_rank(),
                    batch_size=self.args.per_device_eval_batch_size,
                )
            elif self.args.local_rank != -1:
                return SequentialDistributedSampler(eval_dataset)
            else:
                return SequentialSampler(eval_dataset)

        if self.args.world_size <= 1:
            return SequentialSampler(eval_dataset)
        else:
            return ShardSampler(
Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
                eval_dataset,
                batch_size=self.args.per_device_eval_batch_size,
662
663
                num_processes=self.args.world_size,
                process_index=self.args.process_index,
Sylvain Gugger's avatar
Sylvain Gugger committed
664
            )
Lysandre Debut's avatar
Lysandre Debut committed
665

Julien Chaumond's avatar
Julien Chaumond committed
666
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
667
668
669
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

670
671
        Subclass and override this method if you want to inject some custom behavior.

672
        Args:
673
            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
674
                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
675
                accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
676
        """
Julien Chaumond's avatar
Julien Chaumond committed
677
678
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
679
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
680

681
682
683
        if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
            eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        if isinstance(eval_dataset, torch.utils.data.dataset.IterableDataset):
            if self.args.world_size > 1:
                eval_dataset = IterableDatasetShard(
                    eval_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                eval_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

701
        eval_sampler = self._get_eval_sampler(eval_dataset)
702

703
        return DataLoader(
704
            eval_dataset,
705
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
706
            batch_size=self.args.eval_batch_size,
707
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
708
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
709
            num_workers=self.args.dataloader_num_workers,
710
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
711
712
713
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
714
715
716
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

717
718
        Subclass and override this method if you want to inject some custom behavior.

719
        Args:
720
            test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
721
                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
722
                ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
723
        """
724
        if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
725
            test_dataset = self._remove_unused_columns(test_dataset, description="test")
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

        if isinstance(test_dataset, torch.utils.data.dataset.IterableDataset):
            if self.args.world_size > 1:
                test_dataset = IterableDatasetShard(
                    test_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                test_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

744
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
745

746
747
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
748
            test_dataset,
749
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
750
            batch_size=self.args.eval_batch_size,
751
            collate_fn=self.data_collator,
752
            drop_last=self.args.dataloader_drop_last,
753
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
754
        )
Lysandre Debut's avatar
Lysandre Debut committed
755

756
    def create_optimizer_and_scheduler(self, num_training_steps: int):
757
758
759
        """
        Setup the optimizer and the learning rate scheduler.

760
761
762
763
764
765
766
767
768
769
770
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer`
        and/or :obj:`create_scheduler`) in a subclass.
        """
        self.create_optimizer()
        self.create_scheduler(num_training_steps)

    def create_optimizer(self):
        """
        Setup the optimizer.

771
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
772
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
773
        """
774
        if self.optimizer is None:
775
776
            decay_parameters = get_parameter_names(self.model, [torch.nn.LayerNorm])
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
777
778
            optimizer_grouped_parameters = [
                {
779
                    "params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
780
781
782
                    "weight_decay": self.args.weight_decay,
                },
                {
783
                    "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
784
785
786
                    "weight_decay": 0.0,
                },
            ]
Sylvain Gugger's avatar
Sylvain Gugger committed
787
788
789
790
791
792
793
794
795
796
797
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
            if self.args.adafactor:
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
            else:
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
798
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
799
800
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
Sylvain Gugger's avatar
Sylvain Gugger committed
801
802
                    optim=optimizer_cls,
                    **optimizer_kwargs,
803
804
                )
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
805
806
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

Sylvain Gugger's avatar
Sylvain Gugger committed
807
808
809
        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(self.optimizer)

810
811
812
813
814
815
816
    def create_scheduler(self, num_training_steps: int):
        """
        Setup the scheduler. The optimizer of the trainer must have been set up before this method is called.

        Args:
            num_training_steps (int): The number of training steps to do.
        """
817
        if self.lr_scheduler is None:
818
819
820
821
822
823
            warmup_steps = (
                self.args.warmup_steps
                if self.args.warmup_steps > 0
                else math.ceil(num_training_steps * self.args.warmup_ratio)
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
824
825
826
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
                self.optimizer,
827
                num_warmup_steps=warmup_steps,
Sylvain Gugger's avatar
Sylvain Gugger committed
828
                num_training_steps=num_training_steps,
829
            )
Julien Chaumond's avatar
Julien Chaumond committed
830

831
    def num_examples(self, dataloader: DataLoader) -> int:
832
        """
833
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
834

835
        Will raise an exception if the underlying dataset does not implement method :obj:`__len__`
836
        """
837
        return len(dataloader.dataset)
838

839
    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
Patrick von Platen's avatar
Patrick von Platen committed
840
        """HP search setup code"""
841
842
        self._trial = trial

843
844
        if self.hp_search_backend is None or trial is None:
            return
845
846
847
848
849
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            params = self.hp_space(trial)
        elif self.hp_search_backend == HPSearchBackend.RAY:
            params = trial
            params.pop("wandb", None)
850

851
852
853
854
855
856
857
858
859
860
861
862
        for key, value in params.items():
            if not hasattr(self.args, key):
                raise AttributeError(
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)
863
864
        if self.args.deepspeed:
            # Rebuild the deepspeed config to reflect the updated training parameters
865
            from transformers.deepspeed import HfDeepSpeedConfig
866

867
            self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args)
868
869
870
871
872
873

    def _report_to_hp_search(
        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
    ):
        if self.hp_search_backend is None or trial is None:
            return
874
        self.objective = self.compute_objective(metrics.copy())
875
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
876
877
            import optuna

878
879
880
881
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
882
883
            from ray import tune

884
            if self.control.should_save:
885
                self._tune_save_checkpoint()
886
887
            tune.report(objective=self.objective, **metrics)

888
    def _tune_save_checkpoint(self):
889
890
        from ray import tune

891
892
        if not self.use_tune_checkpoints:
            return
893
        with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
894
            output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
895
            self.save_model(output_dir)
896
            if self.is_world_process_zero():
897
                self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))
898
899
900
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

901
902
903
904
905
906
907
    def call_model_init(self, trial=None):
        model_init_argcount = len(inspect.signature(self.model_init).parameters)
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(trial)
        else:
908
909
910
911
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")
912
913
914

        return model

915
    def _wrap_model(self, model, training=True):
Sylvain Gugger's avatar
Sylvain Gugger committed
916
917
918
919
920
921
        if is_sagemaker_mp_enabled():
            # Wrapping the base model twice in a DistributedModel will raise an error.
            if isinstance(self.model_wrapped, smp.model.DistributedModel):
                return self.model_wrapped
            return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)

922
923
        # already initialized its own DDP and AMP
        if self.deepspeed:
924
            return self.deepspeed
925

926
927
928
929
        # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
        if unwrap_model(model) is not model:
            return model

930
931
932
933
934
935
936
937
938
939
940
941
942
943
        # Mixed precision training with apex (torch < 1.6)
        if self.use_apex and training:
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
        if not training:
            return model

        # Distributed training (should be after apex fp16 initialization)
944
945
946
947
948
949
950
951
952
        if self.sharded_ddp is not None:
            # Sharded DDP!
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
                model = ShardedDDP(model, self.optimizer)
            else:
                mixed_precision = self.args.fp16
                cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
                zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
                # XXX: Breaking the self.model convention but I see no way around it for now.
953
954
                if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
                    model = auto_wrap(model)
955
                self.model = model = FullyShardedDDP(
956
957
958
959
                    model,
                    mixed_precision=mixed_precision,
                    reshard_after_forward=zero_3,
                    cpu_offload=cpu_offload,
960
961
                ).to(self.args.device)

Sylvain Gugger's avatar
Sylvain Gugger committed
962
        elif is_sagemaker_dp_enabled():
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
            model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
        elif self.args.local_rank != -1:
            if self.args.ddp_find_unused_parameters is not None:
                find_unused_parameters = self.args.ddp_find_unused_parameters
            elif isinstance(model, PreTrainedModel):
                # find_unused_parameters breaks checkpointing as per
                # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
                find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False)
            else:
                find_unused_parameters = True
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=find_unused_parameters,
            )

        return model

982
983
    def train(
        self,
984
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
985
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
986
        **kwargs,
987
    ):
Julien Chaumond's avatar
Julien Chaumond committed
988
989
990
991
        """
        Main training entry point.

        Args:
992
993
994
995
996
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
997
998
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
999
1000
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
Julien Chaumond's avatar
Julien Chaumond committed
1001
        """
1002
1003
1004
1005

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1006
1007
        args = self.args

1008
1009
        self.is_in_train = True

1010
1011
1012
1013
1014
        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if args.fp16_full_eval and not args.do_train:
            self.model = self.model.to(args.device)

1015
1016
1017
1018
1019
1020
1021
1022
1023
        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1024
1025
1026
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

1027
        # Model re-init
1028
        model_reloaded = False
1029
        if self.model_init is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1030
            # Seed must be set before instantiating the model when using model_init.
1031
            set_seed(args.seed)
1032
1033
            self.model = self.call_model_init(trial)
            model_reloaded = True
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
1035
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None
1036

1037
        # Load potential model checkpoint
1038
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
1039
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
1040
            if resume_from_checkpoint is None:
1041
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
1042

1043
1044
1045
1046
        if resume_from_checkpoint is not None:
            if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
                raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

1047
            logger.info(f"Loading model from {resume_from_checkpoint}).")
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
            if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
                config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
                checkpoint_version = config.transformers_version
                if checkpoint_version is not None and checkpoint_version != __version__:
                    logger.warn(
                        f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
                        f"Transformers but your current version is {__version__}. This is not recommended and could "
                        "yield to errors or unwanted behaviors."
                    )

1059
            if args.deepspeed:
1060
                # will be resumed in deepspeed_init
1061
                pass
1062
            else:
1063
1064
1065
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
                # If the model is on the GPU, it still works!
1066
                self._load_state_dict_in_model(state_dict)
1067
1068
1069

        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
1070
            if self.place_model_on_device:
1071
                self.model = self.model.to(args.device)
1072
1073
            self.model_wrapped = self.model

1074
1075
1076
        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

1077
        # Data loader and number of training steps
Julien Chaumond's avatar
Julien Chaumond committed
1078
        train_dataloader = self.get_train_dataloader()
1079
1080
1081
1082
1083

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
1084
        total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
1085
        if train_dataset_is_sized:
1086
            num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
1087
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
1088
1089
1090
1091
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
1092
                )
1093
1094
1095
                # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
1096
            else:
1097
1098
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
1099
                num_train_samples = len(self.train_dataset) * args.num_train_epochs
Julien Chaumond's avatar
Julien Chaumond committed
1100
        else:
1101
            # see __init__. max_steps is set when the dataset has no __len__
1102
1103
            max_steps = args.max_steps
            num_train_epochs = int(args.num_train_epochs)
1104
            num_update_steps_per_epoch = max_steps
1105
            num_train_samples = args.max_steps * total_train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1106

1107
1108
1109
        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
            debug_overflow = DebugUnderflowOverflow(self.model)  # noqa

1110
        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
1111
        if args.deepspeed:
1112
            deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
1113
1114
                self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
            )
1115
1116
1117
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
1118
1119
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
1120
        elif not delay_optimizer_creation:
1121
1122
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1123
        self.state = TrainerState()
1124
        self.state.is_hyper_param_search = trial is not None
Julien Chaumond's avatar
Julien Chaumond committed
1125

1126
        model = self._wrap_model(self.model_wrapped)
Julien Chaumond's avatar
Julien Chaumond committed
1127

1128
1129
1130
1131
        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

1132
1133
1134
        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1135
1136
1137
        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

1138
1139
        # important: at this point:
        # self.model         is the Transformers Model
1140
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
1141

Julien Chaumond's avatar
Julien Chaumond committed
1142
        # Train!
1143
        num_examples = (
1144
            self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps
1145
1146
        )

Julien Chaumond's avatar
Julien Chaumond committed
1147
        logger.info("***** Running training *****")
1148
1149
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
1150
        logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
1151
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
1152
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
1153
        logger.info(f"  Total optimization steps = {max_steps}")
Julien Chaumond's avatar
Julien Chaumond committed
1154

1155
        self.state.epoch = 0
1156
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
1157
1158
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
1159
        steps_trained_progress_bar = None
1160

Julien Chaumond's avatar
Julien Chaumond committed
1161
        # Check if continuing training from a checkpoint
1162
1163
1164
1165
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, "trainer_state.json")
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json"))
1166
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
1167
            if not args.ignore_data_skip:
1168
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
1169
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
1170
1171
            else:
                steps_trained_in_current_epoch = 0
1172
1173

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
1174
1175
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
1176
            if not args.ignore_data_skip:
1177
1178
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
1179
1180
                    "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` "
                    "flag to your launch command, but you will resume the training on data already seen by your model."
1181
                )
1182
1183
1184
                if self.is_local_process_zero() and not args.disable_tqdm:
                    steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
                    steps_trained_progress_bar.set_description("Skipping the first batches")
1185

Sylvain Gugger's avatar
Sylvain Gugger committed
1186
1187
1188
1189
1190
        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
1191
1192
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
        self.state.trial_params = hp_params(trial) if trial is not None else None
1193
1194
1195
1196
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
Sylvain Gugger's avatar
Sylvain Gugger committed
1197
1198
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
1199

1200
        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
1201
        tr_loss = torch.tensor(0.0).to(args.device)
1202
1203
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
1204
        self._globalstep_last_logged = self.state.global_step
Julien Chaumond's avatar
Julien Chaumond committed
1205
        model.zero_grad()
Sylvain Gugger's avatar
Sylvain Gugger committed
1206

1207
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1208

1209
        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
1210
        if not args.ignore_data_skip:
1211
1212
1213
1214
1215
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break

1216
        for epoch in range(epochs_trained, num_train_epochs):
1217
1218
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)
1219
1220
            elif isinstance(train_dataloader.dataset, IterableDatasetShard):
                train_dataloader.dataset.set_epoch(epoch)
1221

1222
            if is_torch_tpu_available():
1223
                parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
1224
                epoch_iterator = parallel_loader
1225
            else:
1226
                epoch_iterator = train_dataloader
1227

1228
            # Reset the past mems state at the beginning of each epoch if necessary.
1229
            if args.past_index >= 0:
1230
1231
                self._past = None

1232
            steps_in_epoch = (
1233
                len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps
1234
            )
1235
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1236

Julien Chaumond's avatar
Julien Chaumond committed
1237
1238
1239
1240
1241
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
1242
1243
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
1244
1245
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
Julien Chaumond's avatar
Julien Chaumond committed
1246
                    continue
1247
1248
1249
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None
Julien Chaumond's avatar
Julien Chaumond committed
1250

1251
1252
                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1253

1254
                if (
1255
1256
1257
                    ((step + 1) % args.gradient_accumulation_steps != 0)
                    and args.local_rank != -1
                    and args._no_sync_in_gradient_accumulation
1258
                ):
1259
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
1260
1261
1262
1263
                    with model.no_sync():
                        tr_loss += self.training_step(model, inputs)
                else:
                    tr_loss += self.training_step(model, inputs)
1264
                self.current_flos += float(self.floating_point_ops(inputs))
Julien Chaumond's avatar
Julien Chaumond committed
1265

1266
1267
1268
1269
                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

1270
                if (step + 1) % args.gradient_accumulation_steps == 0 or (
Julien Chaumond's avatar
Julien Chaumond committed
1271
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
1272
                    steps_in_epoch <= args.gradient_accumulation_steps
1273
                    and (step + 1) == steps_in_epoch
Julien Chaumond's avatar
Julien Chaumond committed
1274
                ):
1275
                    # Gradient clipping
1276
                    if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
1277
1278
                        # deepspeed does its own clipping

1279
1280
1281
1282
1283
1284
                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
1285
                            self.optimizer.clip_grad_norm(args.max_grad_norm)
1286
1287
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
1288
                            model.clip_grad_norm_(args.max_grad_norm)
1289
1290
1291
1292
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
                            torch.nn.utils.clip_grad_norm_(
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
1293
                                args.max_grad_norm,
1294
1295
1296
                            )

                    # Optimizer step
1297
                    optimizer_was_run = True
Stas Bekman's avatar
Stas Bekman committed
1298
                    if self.deepspeed:
1299
                        pass  # called outside the loop
Stas Bekman's avatar
Stas Bekman committed
1300
                    elif is_torch_tpu_available():
1301
                        xm.optimizer_step(self.optimizer)
1302
                    elif self.use_amp:
1303
                        scale_before = self.scaler.get_scale()
1304
                        self.scaler.step(self.optimizer)
1305
                        self.scaler.update()
1306
1307
                        scale_after = self.scaler.get_scale()
                        optimizer_was_run = scale_before <= scale_after
Lysandre Debut's avatar
Lysandre Debut committed
1308
                    else:
1309
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
1310

1311
                    if optimizer_was_run and not self.deepspeed:
1312
1313
                        self.lr_scheduler.step()

Julien Chaumond's avatar
Julien Chaumond committed
1314
                    model.zero_grad()
1315
                    self.state.global_step += 1
1316
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
1317
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1318

1319
                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
Julien Chaumond's avatar
Julien Chaumond committed
1320

Sylvain Gugger's avatar
Sylvain Gugger committed
1321
                if self.control.should_epoch_stop or self.control.should_training_stop:
Julien Chaumond's avatar
Julien Chaumond committed
1322
                    break
1323

1324
            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
1325
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
1326

1327
            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
1328
1329
1330
1331
1332
1333
1334
1335
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1336
            if self.control.should_training_stop:
1337
                break
Julien Chaumond's avatar
Julien Chaumond committed
1338

1339
        if args.past_index and hasattr(self, "_past"):
1340
1341
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1342
1343

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
1344
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
1345
1346
1347
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
1348
            elif args.local_rank != -1:
1349
1350
                dist.barrier()

1351
1352
1353
            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )
1354
1355
1356
            # We load the model state dict on the CPU to avoid an OOM error.
            state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME), map_location="cpu")
            # If the model is on the GPU, it still works!
1357
            self._load_state_dict_in_model(state_dict)
1358

1359
1360
1361
1362
1363
            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

1364
1365
1366
1367
        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

1368
        metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
1369
1370
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
1371
        metrics["train_loss"] = train_loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1372

1373
        self.is_in_train = False
1374

1375
1376
        self._memory_tracker.stop_and_update_metrics(metrics)

1377
1378
1379
1380
1381
        self.log(metrics)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        return TrainOutput(self.state.global_step, train_loss, metrics)
1382

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
    def _load_state_dict_in_model(self, state_dict):
        load_result = self.model.load_state_dict(state_dict, strict=False)

        if len(load_result.missing_keys) != 0:
            if set(load_result.missing_keys) == set(self.model._keys_to_ignore_on_save):
                self.model.tie_weights()
            else:
                logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
        if len(load_result.unexpected_keys) != 0:
            logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.")

1394
    def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch):
Sylvain Gugger's avatar
Sylvain Gugger committed
1395
1396
1397
        if self.control.should_log:
            logs: Dict[str, float] = {}
            tr_loss_scalar = tr_loss.item()
1398
1399
1400
            # reset tr_loss to zero
            tr_loss -= tr_loss

1401
            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
1402
            logs["learning_rate"] = self._get_learning_rate()
1403

1404
            self._total_loss_scalar += tr_loss_scalar
1405
            self._globalstep_last_logged = self.state.global_step
Teven's avatar
Teven committed
1406
            self.store_flos()
Sylvain Gugger's avatar
Sylvain Gugger committed
1407
1408
1409
1410
1411
1412
1413

            self.log(logs)

        metrics = None
        if self.control.should_evaluate:
            metrics = self.evaluate()
            self._report_to_hp_search(trial, epoch, metrics)
1414

Sylvain Gugger's avatar
Sylvain Gugger committed
1415
1416
1417
1418
        if self.control.should_save:
            self._save_checkpoint(model, trial, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
    def _load_rng_state(self, checkpoint):
        # Load RNG states from `checkpoint`
        if checkpoint is None:
            return

        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank != -1:
            rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that "
                    "wasn't launched in a distributed fashion, reproducibility is not guaranteed."
                )
                return
        else:
            rng_file = os.path.join(checkpoint, "rng_state.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    "Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
                    "fashion, reproducibility is not guaranteed."
                )
                return

        checkpoint_rng_state = torch.load(rng_file)
        random.setstate(checkpoint_rng_state["python"])
        np.random.set_state(checkpoint_rng_state["numpy"])
        torch.random.set_rng_state(checkpoint_rng_state["cpu"])
        if torch.cuda.is_available():
            if self.args.local_rank != -1:
                torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
            else:
                torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
        if is_torch_tpu_available():
            xm.set_rng_state(checkpoint_rng_state["xla"])

Sylvain Gugger's avatar
Sylvain Gugger committed
1454
    def _save_checkpoint(self, model, trial, metrics=None):
1455
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
1456
        # want to save except FullyShardedDDP.
1457
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
1458

1459
        # Save model checkpoint
1460
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
1461

1462
        if self.hp_search_backend is not None and trial is not None:
1463
1464
1465
1466
1467
1468
            if self.hp_search_backend == HPSearchBackend.OPTUNA:
                run_id = trial.number
            else:
                from ray import tune

                run_id = tune.get_trial_id()
1469
            run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
1470
            run_dir = os.path.join(self.args.output_dir, run_name)
1471
        else:
1472
            run_dir = self.args.output_dir
1473
            self.store_flos()
1474

1475
        output_dir = os.path.join(run_dir, checkpoint_folder)
1476
        self.save_model(output_dir)
1477
        if self.deepspeed:
1478
1479
            # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
            # config `stage3_gather_fp16_weights_on_model_save` is True
1480
            self.deepspeed.save_checkpoint(output_dir)
1481
1482

        # Save optimizer and scheduler
1483
        if self.sharded_ddp == ShardedDDPOption.SIMPLE:
1484
            self.optimizer.consolidate_state_dict()
1485

1486
1487
1488
1489
1490
1491
        if is_torch_tpu_available():
            xm.rendezvous("saving_optimizer_states")
            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                reissue_pt_warnings(caught_warnings)
Sylvain Gugger's avatar
Sylvain Gugger committed
1492
        elif is_sagemaker_mp_enabled():
1493
1494
1495
1496
1497
1498
1499
1500
1501
            if smp.dp_rank() == 0:
                # Consolidate the state dict on all processed of dp_rank 0
                opt_state_dict = self.optimizer.state_dict()
                # Save it and the scheduler on the main process
                if self.is_world_process_zero():
                    torch.save(opt_state_dict, os.path.join(output_dir, "optimizer.pt"))
                    with warnings.catch_warnings(record=True) as caught_warnings:
                        torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    reissue_pt_warnings(caught_warnings)
1502
1503
                    if self.use_amp:
                        torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt"))
1504
1505
        elif self.is_world_process_zero() and not self.deepspeed:
            # deepspeed.save_checkpoint above saves model/optim/sched
1506
1507
1508
1509
            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
            reissue_pt_warnings(caught_warnings)
1510
1511
            if self.use_amp:
                torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt"))
1512
1513

        # Determine the new best metric / best model checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
1514
        if metrics is not None and self.args.metric_for_best_model is not None:
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
        if self.is_world_process_zero():
            self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))

1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
        # Save RNG state in non-distributed training
        rng_states = {
            "python": random.getstate(),
            "numpy": np.random.get_state(),
            "cpu": torch.random.get_rng_state(),
        }
        if torch.cuda.is_available():
            if self.args.local_rank == -1:
                # In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
                rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
            else:
                rng_states["cuda"] = torch.cuda.random.get_rng_state()

        if is_torch_tpu_available():
            rng_states["xla"] = xm.get_rng_state()

1549
1550
1551
        # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
        # not yet exist.
        os.makedirs(output_dir, exist_ok=True)
1552
1553
1554
1555
1556
1557
        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank == -1:
            torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
        else:
            torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth"))

1558
1559
1560
1561
        # Maybe delete some older checkpoints.
        if self.is_world_process_zero():
            self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)

1562
    def _load_optimizer_and_scheduler(self, checkpoint):
Sylvain Gugger's avatar
Sylvain Gugger committed
1563
        """If optimizer and scheduler states exist, load them."""
1564
        if checkpoint is None:
1565
1566
            return

1567
        if self.deepspeed:
1568
            # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
1569
1570
            return

1571
1572
        if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile(
            os.path.join(checkpoint, "scheduler.pt")
Sylvain Gugger's avatar
Sylvain Gugger committed
1573
1574
1575
1576
        ):
            # Load in optimizer and scheduler states
            if is_torch_tpu_available():
                # On TPU we have to take some extra precautions to properly load the states on the right device.
1577
                optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1578
                with warnings.catch_warnings(record=True) as caught_warnings:
1579
                    lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1580
1581
1582
1583
1584
1585
1586
1587
                reissue_pt_warnings(caught_warnings)

                xm.send_cpu_data_to_device(optimizer_state, self.args.device)
                xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)

                self.optimizer.load_state_dict(optimizer_state)
                self.lr_scheduler.load_state_dict(lr_scheduler_state)
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1588
                map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device
Sylvain Gugger's avatar
Sylvain Gugger committed
1589
                self.optimizer.load_state_dict(
Sylvain Gugger's avatar
Sylvain Gugger committed
1590
                    torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
1591
1592
                )
                with warnings.catch_warnings(record=True) as caught_warnings:
1593
                    self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt")))
Sylvain Gugger's avatar
Sylvain Gugger committed
1594
                reissue_pt_warnings(caught_warnings)
1595
1596
                if self.use_amp and os.path.isfile(os.path.join(checkpoint, "scaler.pt")):
                    self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, "scaler.pt")))
Sylvain Gugger's avatar
Sylvain Gugger committed
1597

1598
1599
1600
1601
1602
1603
1604
    def hyperparameter_search(
        self,
        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
        n_trials: int = 20,
        direction: str = "minimize",
        backend: Optional[Union["str", HPSearchBackend]] = None,
1605
        hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
1606
        **kwargs,
1607
1608
    ) -> BestRun:
        """
1609
        Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by
Sylvain Gugger's avatar
Sylvain Gugger committed
1610
1611
        :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is
        provided, the sum of all metrics otherwise.
1612

Sylvain Gugger's avatar
Sylvain Gugger committed
1613
1614
1615
1616
1617
1618
1619
        .. warning::

            To use this method, you need to have provided a ``model_init`` when initializing your
            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
        Args:
            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
                A function that defines the hyperparameter search space. Will default to
                :func:`~transformers.trainer_utils.default_hp_space_optuna` or
                :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend.
            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
                A function computing the objective to minimize or maximize from the metrics returned by the
                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
            n_trials (:obj:`int`, `optional`, defaults to 100):
                The number of trial runs to test.
            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
                several metrics.
            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
                The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which
                one is installed. If both are installed, will default to optuna.
            kwargs:
                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
                more information see:

Sylvain Gugger's avatar
Sylvain Gugger committed
1641
                - the documentation of `optuna.create_study
1642
                  <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
1643
1644
                - the documentation of `tune.run
                  <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
1645
1646

        Returns:
Tiger's avatar
Tiger committed
1647
            :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
                    "To install optuna run `pip install optuna`."
                    "To install ray run `pip install ray[tune]`."
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
1659
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
1660
        if backend == HPSearchBackend.RAY and not is_ray_tune_available():
1661
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1662
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
1663
1664
            )
        self.hp_search_backend = backend
Sylvain Gugger's avatar
Sylvain Gugger committed
1665
1666
1667
1668
1669
        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

1670
        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
1671
        self.hp_name = hp_name
1672
1673
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

1674
1675
        run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray
        best_run = run_hp_search(self, n_trials, direction, **kwargs)
1676
1677
1678
1679

        self.hp_search_backend = None
        return best_run

Sylvain Gugger's avatar
Sylvain Gugger committed
1680
    def log(self, logs: Dict[str, float]) -> None:
1681
1682
1683
1684
1685
1686
1687
1688
1689
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
        """
1690
        if self.state.epoch is not None:
1691
            logs["epoch"] = round(self.state.epoch, 2)
1692

1693
1694
        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
1695
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
Julien Chaumond's avatar
Julien Chaumond committed
1696

sgugger's avatar
Fix CI  
sgugger committed
1697
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
1698
1699
1700
1701
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
Julien Chaumond's avatar
Julien Chaumond committed
1702
        for k, v in inputs.items():
1703
            if isinstance(v, torch.Tensor):
1704
1705
1706
1707
1708
1709
1710
1711
                kwargs = dict(device=self.args.device)
                if self.deepspeed and inputs[k].dtype != torch.int64:
                    # NLP models inputs are int64 and those get adjusted to the right dtype of the
                    # embedding. Other models such as wav2vec2's inputs are already float and thus
                    # may need special handling to match the dtypes of the model
                    kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype()))

                inputs[k] = v.to(**kwargs)
Julien Chaumond's avatar
Julien Chaumond committed
1712

1713
1714
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
1715

1716
1717
        return inputs

1718
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1719
        """
1720
        Perform a training step on a batch of inputs.
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
1734
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
1735
1736
        """
        model.train()
1737
        inputs = self._prepare_inputs(inputs)
1738

Sylvain Gugger's avatar
Sylvain Gugger committed
1739
        if is_sagemaker_mp_enabled():
1740
1741
            scaler = self.scaler if self.use_amp else None
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler)
Sylvain Gugger's avatar
Sylvain Gugger committed
1742
1743
            return loss_mb.reduce_mean().detach().to(self.args.device)

1744
        if self.use_amp:
1745
            with autocast():
Sylvain Gugger's avatar
Sylvain Gugger committed
1746
                loss = self.compute_loss(model, inputs)
1747
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1748
            loss = self.compute_loss(model, inputs)
1749

Julien Chaumond's avatar
Julien Chaumond committed
1750
1751
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
1752

1753
1754
        if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
Julien Chaumond's avatar
Julien Chaumond committed
1755
1756
            loss = loss / self.args.gradient_accumulation_steps

1757
        if self.use_amp:
1758
            self.scaler.scale(loss).backward()
1759
        elif self.use_apex:
1760
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
1761
                scaled_loss.backward()
1762
        elif self.deepspeed:
1763
1764
            # loss gets scaled under gradient_accumulation_steps in deepspeed
            loss = self.deepspeed.backward(loss)
Julien Chaumond's avatar
Julien Chaumond committed
1765
1766
1767
        else:
            loss.backward()

1768
        return loss.detach()
Julien Chaumond's avatar
Julien Chaumond committed
1769

1770
    def compute_loss(self, model, inputs, return_outputs=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
1771
1772
1773
1774
1775
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
1776
1777
1778
1779
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1780
1781
        outputs = model(**inputs)
        # Save past state if it exists
1782
        # TODO: this needs to be fixed and made cleaner later.
Sylvain Gugger's avatar
Sylvain Gugger committed
1783
1784
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]
Sylvain Gugger's avatar
Sylvain Gugger committed
1785

1786
        if labels is not None:
1787
            loss = self.label_smoother(outputs, labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1788
1789
        else:
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
1790
1791
1792
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1793

1794
1795
    def is_local_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1796
1797
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
1798
        """
1799
        return self.args.local_process_index == 0
Lysandre Debut's avatar
Lysandre Debut committed
1800

1801
1802
    def is_world_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1803
1804
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
1805
        """
1806
1807
1808
        # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
        # process index.
        if is_sagemaker_mp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
1809
            return smp.rank() == 0
Lysandre Debut's avatar
Lysandre Debut committed
1810
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1811
            return self.args.process_index == 0
Julien Chaumond's avatar
Julien Chaumond committed
1812
1813
1814

    def save_model(self, output_dir: Optional[str] = None):
        """
1815
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
1816

1817
        Will only save from the main process.
Julien Chaumond's avatar
Julien Chaumond committed
1818
        """
1819
1820
1821
1822

        if output_dir is None:
            output_dir = self.args.output_dir

1823
        if is_torch_tpu_available():
1824
            self._save_tpu(output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
1825
1826
1827
1828
1829
        elif is_sagemaker_mp_enabled():
            # Calling the state_dict needs to be done on the wrapped model and on all processes.
            state_dict = self.model_wrapped.state_dict()
            if self.is_world_process_zero():
                self._save(output_dir, state_dict=state_dict)
1830
1831
1832
1833
        elif (
            ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
        ):
            state_dict = self.model.state_dict()
1834

1835
            if self.is_world_process_zero():
1836
                self._save(output_dir, state_dict=state_dict)
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
        elif self.deepspeed:

            # this takes care of everything as long as we aren't under zero3
            if self.is_world_process_zero():
                self._save(output_dir)

            if is_deepspeed_zero3_enabled():
                # It's too complicated to try to override different places where the weights dump gets
                # saved, so since under zero3 the file is bogus, simply delete it. The user should
                # either user deepspeed checkpoint to resume or to recover full weights use
                # zero_to_fp32.py stored in the checkpoint.
                if self.is_world_process_zero():
                    file = os.path.join(output_dir, WEIGHTS_NAME)
                    if os.path.isfile(file):
                        # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
                        os.remove(file)

                # now save the real model if stage3_gather_fp16_weights_on_model_save=True
                # if false it will not be saved.
                # This must be called on all ranks
                self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME)

1859
1860
        elif self.is_world_process_zero():
            self._save(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1861

1862
1863
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
1864
        logger.info(f"Saving model checkpoint to {output_dir}")
1865
1866
1867
1868
1869
1870
1871
1872

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        xm.rendezvous("saving_checkpoint")
1873
        if not isinstance(self.model, PreTrainedModel):
1874
1875
1876
1877
1878
1879
1880
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                unwrap_model(self.model).save_pretrained(
                    output_dir,
                    save_config=self.is_world_process_zero(),
                    state_dict=self.model.state_dict(),
                    save_function=xm.save,
                )
1881
1882
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1883
1884
                state_dict = self.model.state_dict()
                xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1885
        else:
1886
            self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save)
Sylvain Gugger's avatar
Sylvain Gugger committed
1887
        if self.tokenizer is not None and self.is_world_process_zero():
1888
            self.tokenizer.save_pretrained(output_dir)
1889

1890
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
1891
        # If we are executing this function, we are the process zero, so we don't check for that.
Julien Chaumond's avatar
Julien Chaumond committed
1892
1893
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
1894
        logger.info(f"Saving model checkpoint to {output_dir}")
Julien Chaumond's avatar
Julien Chaumond committed
1895
1896
1897
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
1898
            if isinstance(unwrap_model(self.model), PreTrainedModel):
1899
1900
1901
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
1902
1903
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1904
1905
                if state_dict is None:
                    state_dict = self.model.state_dict()
1906
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1907
        else:
1908
            self.model.save_pretrained(output_dir, state_dict=state_dict)
1909
        if self.tokenizer is not None:
1910
            self.tokenizer.save_pretrained(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1911
1912
1913

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
1914

1915
    def store_flos(self):
1916
        # Storing the number of floating-point operations that went into the model
1917
1918
1919
1920
        if self.args.local_rank != -1:
            self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item()
            self.current_flos = 0
        else:
Teven's avatar
Teven committed
1921
            self.state.total_flos += self.current_flos
1922
            self.current_flos = 0
Julien Chaumond's avatar
Julien Chaumond committed
1923

1924
1925
1926
    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
Julien Chaumond's avatar
Julien Chaumond committed
1927
1928
        ordering_and_checkpoint_path = []

1929
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
1930
1931
1932
1933
1934

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
1935
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
1936
                if regex_match is not None and regex_match.groups() is not None:
Julien Chaumond's avatar
Julien Chaumond committed
1937
1938
1939
1940
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
1941
1942
        # Make sure we don't delete the best model.
        if self.state.best_model_checkpoint is not None:
1943
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
1944
1945
            for i in range(best_model_index, len(checkpoints_sorted) - 2):
                checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
Julien Chaumond's avatar
Julien Chaumond committed
1946
1947
        return checkpoints_sorted

1948
    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
1949
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
1950
1951
1952
            return

        # Check if we should delete older checkpoint(s)
1953
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1954
1955
1956
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
        # If save_total_limit=1 with load_best_mode_at_end=True, we could end up deleting the last checkpoint, which
        # we don't do to allow resuming.
        save_total_limit = self.args.save_total_limit
        if (
            self.state.best_model_checkpoint is not None
            and self.args.save_total_limit == 1
            and checkpoints_sorted[-1] != self.state.best_model_checkpoint
        ):
            save_total_limit = 2

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
Julien Chaumond's avatar
Julien Chaumond committed
1968
1969
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
1970
            logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
Julien Chaumond's avatar
Julien Chaumond committed
1971
1972
            shutil.rmtree(checkpoint)

1973
    def evaluate(
1974
1975
1976
1977
        self,
        eval_dataset: Optional[Dataset] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
1978
    ) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
1979
        """
1980
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
1981

Sylvain Gugger's avatar
Sylvain Gugger committed
1982
1983
        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
1984

1985
1986
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
1987
        Args:
1988
            eval_dataset (:obj:`Dataset`, `optional`):
1989
                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
Sylvain Gugger's avatar
Sylvain Gugger committed
1990
1991
                columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
                :obj:`__len__` method.
1992
1993
1994
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
1995
1996
1997
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
1998

Julien Chaumond's avatar
Julien Chaumond committed
1999
        Returns:
2000
2001
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
Julien Chaumond's avatar
Julien Chaumond committed
2002
        """
2003
2004
2005
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2006
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
2007
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
2008

2009
2010
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2011
2012
2013
2014
2015
            eval_dataloader,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
2016
            ignore_keys=ignore_keys,
2017
            metric_key_prefix=metric_key_prefix,
2018
        )
Lysandre Debut's avatar
Lysandre Debut committed
2019

2020
2021
2022
2023
2024
2025
2026
2027
2028
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2029

2030
        self.log(output.metrics)
2031

2032
        if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
2033
2034
2035
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Sylvain Gugger's avatar
Sylvain Gugger committed
2036
        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
2037
2038
2039

        self._memory_tracker.stop_and_update_metrics(output.metrics)

Julien Chaumond's avatar
Julien Chaumond committed
2040
2041
        return output.metrics

2042
    def predict(
Bhadresh Savani's avatar
Bhadresh Savani committed
2043
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
2044
    ) -> PredictionOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2045
        """
2046
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2047

Sylvain Gugger's avatar
Sylvain Gugger committed
2048
2049
        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in :obj:`evaluate()`.
2050
2051
2052

        Args:
            test_dataset (:obj:`Dataset`):
2053
                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
2054
                ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__`
2055
2056
2057
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
Bhadresh Savani's avatar
Bhadresh Savani committed
2058
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`):
2059
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
Bhadresh Savani's avatar
Bhadresh Savani committed
2060
                "test_bleu" if the prefix is "test" (default)
2061

2062
2063
2064
2065
2066
2067
        .. note::

            If your predictions or labels have different sequence length (for instance because you're doing dynamic
            padding in a token classification task) the predictions will be padded (on the right) to allow for
            concatenation into one array. The padding index is -100.

Sylvain Gugger's avatar
Sylvain Gugger committed
2068
2069
2070
2071
2072
2073
        Returns: `NamedTuple` A namedtuple with the following keys:

            - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
            - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
            - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
              contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
2074
        """
2075
2076
2077
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2078
        test_dataloader = self.get_test_dataloader(test_dataset)
2079
        start_time = time.time()
2080

2081
2082
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2083
2084
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
2085
2086
2087
2088
2089
2090
2091
2092
2093
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2094
2095
2096

        self._memory_tracker.stop_and_update_metrics(output.metrics)

2097
        return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
Julien Chaumond's avatar
Julien Chaumond committed
2098

2099
    def evaluation_loop(
2100
2101
2102
2103
2104
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
2105
        metric_key_prefix: str = "eval",
2106
    ) -> EvalLoopOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2107
        """
2108
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
2109
2110
2111

        Works both with or without labels.
        """
2112
2113
2114
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )
Julien Chaumond's avatar
Julien Chaumond committed
2115

2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None
2130

2131
        model = self._wrap_model(self.model, training=False)
Julien Chaumond's avatar
Julien Chaumond committed
2132

2133
        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2134
        # ``train`` is running, halve it first and then put on device
2135
2136
2137
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

2138
        batch_size = dataloader.batch_size
2139

2140
        logger.info(f"***** Running {description} *****")
2141
2142
2143
2144
        if isinstance(dataloader.dataset, collections.abc.Sized):
            logger.info(f"  Num examples = {self.num_examples(dataloader)}")
        else:
            logger.info("  Num examples: Unknown")
2145
        logger.info(f"  Batch size = {batch_size}")
2146

Julien Chaumond's avatar
Julien Chaumond committed
2147
2148
        model.eval()

2149
2150
2151
2152
        self.callback_handler.eval_dataloader = dataloader
        # Do this before wrapping.
        eval_dataset = dataloader.dataset

2153
        if is_torch_tpu_available():
2154
2155
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

2156
        if self.args.past_index >= 0:
2157
            self._past = None
2158

2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
        # Initialize containers
        # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
        losses_host = None
        preds_host = None
        labels_host = None
        # losses/preds/labels on CPU (final containers)
        all_losses = None
        all_preds = None
        all_labels = None
        # Will be useful when we have an iterable dataset so don't know its length.

        observed_num_examples = 0
        # Main evaluation loop
2172
        for step, inputs in enumerate(dataloader):
2173
2174
2175
2176
2177
2178
            # Update the observed num examples
            observed_batch_size = find_batch_size(inputs)
            if observed_batch_size is not None:
                observed_num_examples += observed_batch_size

            # Prediction step
2179
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
2180
2181

            # Update containers on host
2182
            if loss is not None:
2183
                losses = self._nested_gather(loss.repeat(batch_size))
2184
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
2185
            if logits is not None:
2186
2187
                logits = self._pad_across_processes(logits)
                logits = self._nested_gather(logits)
2188
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
2189
            if labels is not None:
2190
2191
                labels = self._pad_across_processes(labels)
                labels = self._nested_gather(labels)
2192
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
Sylvain Gugger's avatar
Sylvain Gugger committed
2193
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
2194

2195
2196
            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
                if losses_host is not None:
                    losses = nested_numpify(losses_host)
                    all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
                if preds_host is not None:
                    logits = nested_numpify(preds_host)
                    all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
                if labels_host is not None:
                    labels = nested_numpify(labels_host)
                    all_labels = (
                        labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                    )
2208
2209
2210
2211

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

2212
2213
2214
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
2215

2216
        # Gather all remaining tensors and put them back on the CPU
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
        if losses_host is not None:
            losses = nested_numpify(losses_host)
            all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
        if preds_host is not None:
            logits = nested_numpify(preds_host)
            all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
        if labels_host is not None:
            labels = nested_numpify(labels_host)
            all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

        # Number of samples
        if not isinstance(eval_dataset, IterableDataset):
            num_samples = len(eval_dataset)
        elif isinstance(eval_dataset, IterableDatasetShard):
            num_samples = eval_dataset.num_examples
        else:
            num_samples = observed_num_examples

        # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
        # samplers has been rounded to a multiple of batch_size, so we truncate.
        if all_losses is not None:
            all_losses = all_losses[:num_samples]
        if all_preds is not None:
            all_preds = nested_truncate(all_preds, num_samples)
        if all_labels is not None:
            all_labels = nested_truncate(all_labels, num_samples)

        # Metrics!
        if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
Julien Chaumond's avatar
Julien Chaumond committed
2247
2248
        else:
            metrics = {}
2249

2250
2251
2252
        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

2253
2254
        if all_losses is not None:
            metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
2255

2256
        # Prefix all keys with metric_key_prefix + '_'
2257
        for key in list(metrics.keys()):
2258
2259
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
2260

2261
        return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
2262

2263
    def _nested_gather(self, tensors, name=None):
2264
2265
2266
2267
2268
2269
2270
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
2271
2272
            if name is None:
                name = "nested_gather"
2273
            tensors = nested_xla_mesh_reduce(tensors, name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2274
2275
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
2276
2277
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)
2278
        return tensors
2279

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
    # Copied from Accelerate.
    def _pad_across_processes(self, tensor, pad_index=-100):
        """
        Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
        they can safely be gathered.
        """
        if isinstance(tensor, (list, tuple)):
            return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
        elif isinstance(tensor, dict):
            return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
        elif not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
            )

        if len(tensor.shape) < 2:
            return tensor
        # Gather all sizes
        size = torch.tensor(tensor.shape, device=tensor.device)[None]
        sizes = self._nested_gather(size).cpu()

        max_size = max(s[1] for s in sizes)
        if tensor.shape[1] == max_size:
            return tensor

        # Then pad to the maximum size
        old_size = tensor.shape
        new_size = list(old_size)
        new_size[1] = max_size
        new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
        new_tensor[:, : old_size[1]] = tensor
        return new_tensor
2312

2313
    def prediction_step(
2314
2315
2316
2317
2318
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
2319
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.
2335
2336
2337
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2338
2339

        Return:
2340
2341
            Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
2342
        """
2343
        has_labels = all(inputs.get(k) is not None for k in self.label_names)
2344
        inputs = self._prepare_inputs(inputs)
2345
2346
2347
2348
2349
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []
2350

2351
2352
2353
2354
2355
2356
2357
2358
        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels:
            labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

2359
        with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
            if is_sagemaker_mp_enabled():
                raw_outputs = smp_forward_only(model, inputs)
                if has_labels:
                    if isinstance(raw_outputs, dict):
                        loss_mb = raw_outputs["loss"]
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        loss_mb = raw_outputs[0]
                        logits_mb = raw_outputs[1:]

                    loss = loss_mb.reduce_mean().detach().cpu()
                    logits = smp_nested_concat(logits_mb)
2372
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2373
2374
2375
2376
2377
2378
                    loss = None
                    if isinstance(raw_outputs, dict):
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
                    else:
                        logits_mb = raw_outputs
                    logits = smp_nested_concat(logits_mb)
2379
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2380
2381
2382
2383
2384
2385
2386
                if has_labels:
                    loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
                    loss = loss.mean().detach()
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        logits = outputs[1:]
2387
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
                    loss = None
                    if self.use_amp:
                        with autocast():
                            outputs = model(**inputs)
                    else:
                        outputs = model(**inputs)
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
                    else:
                        logits = outputs
                    # TODO: this needs to be fixed and made cleaner later.
                    if self.args.past_index >= 0:
                        self._past = outputs[self.args.past_index - 1]
2401
2402
2403
2404

        if prediction_loss_only:
            return (loss, None, None)

2405
        logits = nested_detach(logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
2406
2407
2408
2409
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
2410
2411
2412

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2413
2414
2415
        For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of
        floating point operations for every backward + forward pass. If using another model, either implement such a
        method in the model or subclass and override this method.
2416
2417
2418
2419
2420
2421
2422
2423

        Args:
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """
2424
2425
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
2426
2427
        else:
            return 0
2428

Sylvain Gugger's avatar
Sylvain Gugger committed
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
    def create_model_card(
        self,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        model_name: Optional[str] = None,
        finetuned_from: Optional[str] = None,
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
        training_summary = TrainingSummary.from_trainer(
            self,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
            f.write(model_card)

Sylvain Gugger's avatar
Sylvain Gugger committed
2455
2456
2457
2458
2459
2460
2461
2462
    def push_to_hub(
        self,
        repo_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        commit_message: Optional[str] = "add model",
        organization: Optional[str] = None,
        private: bool = None,
        use_auth_token: Optional[Union[bool, str]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2463
        **kwargs,
Sylvain Gugger's avatar
Sylvain Gugger committed
2464
2465
2466
2467
2468
2469
    ):
        """
        Upload `self.model` to the 馃 model hub.

        Parameters:
            repo_name (:obj:`str`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2470
2471
                Repository name for your model or tokenizer in the hub. If not specified and :obj:`repo_url` is not
                specified either, will default to the stem of :obj:`self.args.output_dir`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
            repo_url (:obj:`str`, `optional`):
                Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
                repository will be created in your namespace (unless you specify an :obj:`organization`) with
                :obj:`repo_name`.
            commit_message (:obj:`str`, `optional`, defaults to :obj:`"add model"`):
                Message to commit while pushing.
            organization (:obj:`str`, `optional`):
                Organization in which you want to push your model or tokenizer (you must be a member of this
                organization).
            private (:obj:`bool`, `optional`):
                Whether or not the repository created should be private (requires a paying subscription).
            use_auth_token (:obj:`bool` or :obj:`str`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). Will default to
                :obj:`True` if :obj:`repo_url` is not specified.
Sylvain Gugger's avatar
Sylvain Gugger committed
2487
2488
            kwargs:
                Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

        Returns:
            The url of the commit of your model in the given repository.
        """
        if not self.is_world_process_zero():
            return

        if not isinstance(unwrap_model(self.model), PushToHubMixin):
            raise ValueError(
                "The `upload_model_to_hub` method only works for models that inherit from `PushToHubMixin` models."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
        if repo_url is None and repo_name is None:
            repo_name = Path(self.args.output_dir).name

        if repo_name is not None:
            model_name = repo_name
        elif repo_url is not None:
            model_name = repo_url.split("/")[-1]
        else:
            model_name = None
        self.create_model_card(model_name=model_name, **kwargs)

Sylvain Gugger's avatar
Sylvain Gugger committed
2512
        with tempfile.TemporaryDirectory() as tmp_dir:
Sylvain Gugger's avatar
Sylvain Gugger committed
2513
2514
2515
2516
            shutil.copy(os.path.join(self.args.output_dir, "README.md"), os.path.join(tmp_dir, "README.md"))
            unwrap_model(self.model).save_pretrained(tmp_dir)
            if self.tokenizer is not None:
                self.tokenizer.save_pretrained(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527

            return unwrap_model(self.model)._push_to_hub(
                save_directory=tmp_dir,
                repo_name=repo_name,
                repo_url=repo_url,
                commit_message=commit_message,
                organization=organization,
                private=private,
                use_auth_token=use_auth_token,
            )

2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
    #
    # Deprecated code
    #

    def prediction_loop(
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.

        Works both with or without labels.
        """
        if not isinstance(dataloader.dataset, collections.abc.Sized):
            raise ValueError("dataset must implement __len__")
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )

        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None

        model = self._wrap_model(self.model, training=False)

        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2569
        # ``train`` is running, halve it first and then put on device
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

        batch_size = dataloader.batch_size
        num_examples = self.num_examples(dataloader)
        logger.info(f"***** Running {description} *****")
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Batch size = {batch_size}")
        losses_host: torch.Tensor = None
        preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
        labels_host: Union[torch.Tensor, List[torch.Tensor]] = None

        world_size = max(1, self.args.world_size)

        eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
        if not prediction_loss_only:
            # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
            # a batch size to the sampler)
            make_multiple_of = None
            if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
                make_multiple_of = dataloader.sampler.batch_size
            preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
            labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)

        model.eval()

        if is_torch_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

        if self.args.past_index >= 0:
            self._past = None

        self.callback_handler.eval_dataloader = dataloader

        for step, inputs in enumerate(dataloader):
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
            if loss is not None:
                losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
            if logits is not None:
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
            if labels is not None:
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)

            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
                eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
                if not prediction_loss_only:
                    preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
                    labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")

        # Gather all remaining tensors and put them back on the CPU
        eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
        if not prediction_loss_only:
            preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
            labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

        eval_loss = eval_losses_gatherer.finalize()
        preds = preds_gatherer.finalize() if not prediction_loss_only else None
        label_ids = labels_gatherer.finalize() if not prediction_loss_only else None

        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}

        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

        if eval_loss is not None:
            metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)

    def _gather_and_numpify(self, tensors, name):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
            tensors = nested_xla_mesh_reduce(tensors, name)
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)

        return nested_numpify(tensors)