"git@developer.sourcefind.cn:chenpangpang/ComfyUI.git" did not exist on "cd4fc77d5f83867cdfb806f0c96c65ce8a84322c"
Unverified Commit 7e73c128 authored by Tiger's avatar Tiger Committed by GitHub
Browse files

fixed lots of typos. (#7758)

parent 8cb4ecca
...@@ -12,7 +12,7 @@ subclass :class:`~transformers.Trainer` and override the methods you need (see : ...@@ -12,7 +12,7 @@ subclass :class:`~transformers.Trainer` and override the methods you need (see :
By default a :class:`~transformers.Trainer` will use the following callbacks: By default a :class:`~transformers.Trainer` will use the following callbacks:
- :class:`~transformers.DefaultFlowCallback` which handles the default beahvior for logging, saving and evaluation. - :class:`~transformers.DefaultFlowCallback` which handles the default behavior for logging, saving and evaluation.
- :class:`~transformers.PrinterCallback` or :class:`~transformers.ProrgressCallback` to display progress and print the - :class:`~transformers.PrinterCallback` or :class:`~transformers.ProrgressCallback` to display progress and print the
logs (the first one is used if you deactivate tqdm through the :class:`~transformers.TrainingArguments`, otherwise logs (the first one is used if you deactivate tqdm through the :class:`~transformers.TrainingArguments`, otherwise
it's the second one). it's the second one).
......
...@@ -15,7 +15,7 @@ Both :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` contain ...@@ -15,7 +15,7 @@ Both :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` contain
previous features. To inject custom behavior you can subclass them and override the following methods: previous features. To inject custom behavior you can subclass them and override the following methods:
- **get_train_dataloader**/**get_train_tfdataset** -- Creates the training DataLoader (PyTorch) or TF Dataset. - **get_train_dataloader**/**get_train_tfdataset** -- Creates the training DataLoader (PyTorch) or TF Dataset.
- **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaulation DataLoader (PyTorch) or TF Dataset. - **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaluation DataLoader (PyTorch) or TF Dataset.
- **get_test_dataloader**/**get_test_tfdataset** -- Creates the test DataLoader (PyTorch) or TF Dataset. - **get_test_dataloader**/**get_test_tfdataset** -- Creates the test DataLoader (PyTorch) or TF Dataset.
- **log** -- Logs information on the various objects watching training. - **log** -- Logs information on the various objects watching training.
- **create_optimizer_and_scheduler** -- Setups the optimizer and learning rate scheduler if they were not passed at - **create_optimizer_and_scheduler** -- Setups the optimizer and learning rate scheduler if they were not passed at
......
...@@ -66,7 +66,7 @@ The library is built around three types of classes for each model: ...@@ -66,7 +66,7 @@ The library is built around three types of classes for each model:
All these classes can be instantiated from pretrained instances and saved locally using two methods: All these classes can be instantiated from pretrained instances and saved locally using two methods:
- :obj:`from_pretrained()` lets you instantiate a model/configuration/tokenizer from a pretrained version either - :obj:`from_pretrained()` lets you instantiate a model/configuration/tokenizer from a pretrained version either
provided by the library itself (the suported models are provided in the list :doc:`here <pretrained_models>` provided by the library itself (the supported models are provided in the list :doc:`here <pretrained_models>`
or stored locally (or on a server) by the user, or stored locally (or on a server) by the user,
- :obj:`save_pretrained()` lets you save a model/configuration/tokenizer locally so that it can be reloaded using - :obj:`save_pretrained()` lets you save a model/configuration/tokenizer locally so that it can be reloaded using
:obj:`from_pretrained()`. :obj:`from_pretrained()`.
......
...@@ -39,7 +39,7 @@ python run_summarization.py \ ...@@ -39,7 +39,7 @@ python run_summarization.py \
--compute_rouge true --compute_rouge true
``` ```
The scripts executes on GPU if one is available and if `no_cuda` is not set to `true`. Inference on multiple GPUs is not suported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize). The scripts executes on GPU if one is available and if `no_cuda` is not set to `true`. Inference on multiple GPUs is not supported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
## Summarize any text ## Summarize any text
......
...@@ -31,7 +31,7 @@ class MMBTConfig(object): ...@@ -31,7 +31,7 @@ class MMBTConfig(object):
Config of the underlying Transformer models. Its values are copied over to use a single config. Config of the underlying Transformer models. Its values are copied over to use a single config.
num_labels (:obj:`int`, `optional`): num_labels (:obj:`int`, `optional`):
Size of final Linear layer for classification. Size of final Linear layer for classification.
modal_hidden_size (:obj:`int`, `optional`, defautls to 2048): modal_hidden_size (:obj:`int`, `optional`, defaults to 2048):
Embedding dimension of the non-text modality encoder. Embedding dimension of the non-text modality encoder.
""" """
......
...@@ -274,7 +274,7 @@ class PretrainedConfig(object): ...@@ -274,7 +274,7 @@ class PretrainedConfig(object):
Path to a directory in which a downloaded pretrained model configuration should be cached if the Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used. standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Wheter or not to force to (re-)download the configuration files and override the cached versions if they Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist. exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file Whether or not to delete incompletely received file. Attempts to resume the download if such a file
......
...@@ -211,7 +211,7 @@ def load_graph_from_args(pipeline_name: str, framework: str, model: str, tokeniz ...@@ -211,7 +211,7 @@ def load_graph_from_args(pipeline_name: str, framework: str, model: str, tokeniz
pipeline_name: The kind of pipeline to use (ner, question-answering, etc.) pipeline_name: The kind of pipeline to use (ner, question-answering, etc.)
framework: The actual model to convert the pipeline from ("pt" or "tf") framework: The actual model to convert the pipeline from ("pt" or "tf")
model: The model name which will be loaded by the pipeline model: The model name which will be loaded by the pipeline
tokenizer: The tokenizer name which will be loaded by the pipeline, defaut to the model's value tokenizer: The tokenizer name which will be loaded by the pipeline, default to the model's value
Returns: Pipeline object Returns: Pipeline object
......
...@@ -560,7 +560,7 @@ class SquadProcessor(DataProcessor): ...@@ -560,7 +560,7 @@ class SquadProcessor(DataProcessor):
Args: Args:
dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")` dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")`
evaluate: boolean specifying if in evaluation mode or in training mode evaluate: Boolean specifying if in evaluation mode or in training mode
Returns: Returns:
List of SquadExample List of SquadExample
......
...@@ -1093,7 +1093,7 @@ def is_tensor(x): ...@@ -1093,7 +1093,7 @@ def is_tensor(x):
class ModelOutput(OrderedDict): class ModelOutput(OrderedDict):
""" """
Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like Base class for all model outputs as dataclass. Has a ``__getitem__`` that allows indexing by integer or slice (like
a tuple) or strings (like a dictionnary) that will ignore the ``None`` attributes. Otherwise behaves like a a tuple) or strings (like a dictionary) that will ignore the ``None`` attributes. Otherwise behaves like a
regular python dictionary. regular python dictionary.
.. warning:: .. warning::
......
...@@ -197,7 +197,7 @@ class TensorBoardCallback(TrainerCallback): ...@@ -197,7 +197,7 @@ class TensorBoardCallback(TrainerCallback):
Args: Args:
tb_writer (:obj:`SummaryWriter`, `optional`): tb_writer (:obj:`SummaryWriter`, `optional`):
The writer to use. Will instatiate one if not set. The writer to use. Will instantiate one if not set.
""" """
def __init__(self, tb_writer=None): def __init__(self, tb_writer=None):
......
...@@ -507,7 +507,7 @@ AUTO_MODEL_PRETRAINED_DOCSTRING = r""" ...@@ -507,7 +507,7 @@ AUTO_MODEL_PRETRAINED_DOCSTRING = r"""
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
request. request.
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
messages. messages.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (e.g., not try doanloading the model). Whether or not to only look at local files (e.g., not try doanloading the model).
......
...@@ -390,7 +390,7 @@ TF_AUTO_MODEL_PRETRAINED_DOCSTRING = r""" ...@@ -390,7 +390,7 @@ TF_AUTO_MODEL_PRETRAINED_DOCSTRING = r"""
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
request. request.
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
messages. messages.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (e.g., not try doanloading the model). Whether or not to only look at local files (e.g., not try doanloading the model).
......
...@@ -569,7 +569,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin): ...@@ -569,7 +569,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin):
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
request. request.
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
messages. messages.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (e.g., not try doanloading the model). Whether or not to only look at local files (e.g., not try doanloading the model).
......
...@@ -802,7 +802,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin): ...@@ -802,7 +802,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each
request. request.
output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether ot not to also return a dictionnary containing missing keys, unexpected keys and error Whether ot not to also return a dictionary containing missing keys, unexpected keys and error
messages. messages.
local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to only look at local files (e.g., not try doanloading the model). Whether or not to only look at local files (e.g., not try doanloading the model).
......
...@@ -169,7 +169,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam): ...@@ -169,7 +169,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
epsilon (:obj:`float`, `optional`, defaults to 1e-7): epsilon (:obj:`float`, `optional`, defaults to 1e-7):
The epsilon paramenter in Adam, which is a small constant for numerical stability. The epsilon paramenter in Adam, which is a small constant for numerical stability.
amsgrad (:obj:`bool`, `optional`, default to `False`): amsgrad (:obj:`bool`, `optional`, default to `False`):
Wheter to apply AMSGrad varient of this algorithm or not, see Whether to apply AMSGrad varient of this algorithm or not, see
`On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__. `On the Convergence of Adam and Beyond <https://arxiv.org/abs/1904.09237>`__.
weight_decay_rate (:obj:`float`, `optional`, defaults to 0): weight_decay_rate (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply. The weight decay to apply.
......
...@@ -1766,7 +1766,7 @@ class QuestionAnsweringPipeline(Pipeline): ...@@ -1766,7 +1766,7 @@ class QuestionAnsweringPipeline(Pipeline):
def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple: def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple:
""" """
Take the output of any :obj:`ModelForQuestionAnswering` and will generate probalities for each span to be Take the output of any :obj:`ModelForQuestionAnswering` and will generate probabilities for each span to be
the actual answer. the actual answer.
In addition, it filters out some unwanted/impossible cases like answer len being greater than In addition, it filters out some unwanted/impossible cases like answer len being greater than
...@@ -1807,7 +1807,7 @@ class QuestionAnsweringPipeline(Pipeline): ...@@ -1807,7 +1807,7 @@ class QuestionAnsweringPipeline(Pipeline):
def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]:
""" """
When decoding from token probalities, this method maps token indexes to actual word in When decoding from token probabilities, this method maps token indexes to actual word in
the initial context. the initial context.
Args: Args:
......
...@@ -682,7 +682,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase): ...@@ -682,7 +682,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
token_ids_1 (:obj:`List[int]`, `optional`): token_ids_1 (:obj:`List[int]`, `optional`):
List of ids of the second sequence. List of ids of the second sequence.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Wheter or not the token list is already formated with special tokens for the model. Whether or not the token list is already formated with special tokens for the model.
Returns: Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
...@@ -815,7 +815,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase): ...@@ -815,7 +815,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
you want to reload it using the :meth:`~transformers.PreTrainedTokenizer.from_pretrained` class method. you want to reload it using the :meth:`~transformers.PreTrainedTokenizer.from_pretrained` class method.
Args: Args:
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved. save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
Returns: Returns:
A tuple of :obj:`str`: The files saved. A tuple of :obj:`str`: The files saved.
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
""" Base classes common to both the slow and the fast tokenization classes: """ Base classes common to both the slow and the fast tokenization classes:
PreTrainedTokenizerBase (host all the user fronting encoding methodes) PreTrainedTokenizerBase (host all the user fronting encoding methodes)
Special token mixing (host the special tokens logic) and Special token mixing (host the special tokens logic) and
BatchEncoding (wrap the dictionnary of output with special method for the Fast tokenizers) BatchEncoding (wrap the dictionary of output with special method for the Fast tokenizers)
""" """
import copy import copy
...@@ -249,7 +249,7 @@ class BatchEncoding(UserDict): ...@@ -249,7 +249,7 @@ class BatchEncoding(UserDict):
def tokens(self, batch_index: int = 0) -> List[str]: def tokens(self, batch_index: int = 0) -> List[str]:
""" """
Return the list of tokens (sub-parts of the input strings after word/subword splitting and before converstion Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion
to integer indices) at a given batch index (only works for the output of a fast tokenizer). to integer indices) at a given batch index (only works for the output of a fast tokenizer).
Args: Args:
...@@ -1121,7 +1121,7 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" ...@@ -1121,7 +1121,7 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to return overflowing token sequences. Whether or not to return overflowing token sequences.
return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`): return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`):
Wheter or not to return special tokens mask information. Whether or not to return special tokens mask information.
return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`): return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to return :obj:`(char_start, char_end)` for each token. Whether or not to return :obj:`(char_start, char_end)` for each token.
...@@ -1153,13 +1153,13 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" ...@@ -1153,13 +1153,13 @@ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
- **num_truncated_tokens** -- Number of tokens truncated (when a :obj:`max_length` is specified and - **num_truncated_tokens** -- Number of tokens truncated (when a :obj:`max_length` is specified and
:obj:`return_overflowing_tokens=True`). :obj:`return_overflowing_tokens=True`).
- **special_tokens_mask** -- List of 0s and 1s, with 0 specifying added special tokens and 1 specifying - **special_tokens_mask** -- List of 0s and 1s, with 0 specifying added special tokens and 1 specifying
regual sequence tokens (when :obj:`add_special_tokens=True` and :obj:`return_special_tokens_mask=True`). regular sequence tokens (when :obj:`add_special_tokens=True` and :obj:`return_special_tokens_mask=True`).
- **length** -- The length of the inputs (when :obj:`return_length=True`) - **length** -- The length of the inputs (when :obj:`return_length=True`)
""" """
INIT_TOKENIZER_DOCSTRING = r""" INIT_TOKENIZER_DOCSTRING = r"""
Class attributes (overridden by derived classes) Class attributes (overridden by derived classes)
- **vocab_files_names** (:obj:`Dict[str, str]`) -- A ditionary with, as keys, the ``__init__`` keyword name of - **vocab_files_names** (:obj:`Dict[str, str]`) -- A dictionary with, as keys, the ``__init__`` keyword name of
each vocabulary file required by the model, and as associated values, the filename for saving the associated each vocabulary file required by the model, and as associated values, the filename for saving the associated
file (string). file (string).
- **pretrained_vocab_files_map** (:obj:`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the - **pretrained_vocab_files_map** (:obj:`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the
...@@ -1170,7 +1170,7 @@ INIT_TOKENIZER_DOCSTRING = r""" ...@@ -1170,7 +1170,7 @@ INIT_TOKENIZER_DOCSTRING = r"""
:obj:`short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence :obj:`short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence
inputs of this model, or :obj:`None` if the model has no maximum input size. inputs of this model, or :obj:`None` if the model has no maximum input size.
- **pretrained_init_configuration** (:obj:`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the - **pretrained_init_configuration** (:obj:`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the
:obj:`short-cut-names` of the pretrained models, and as associated values, a dictionnary of specific :obj:`short-cut-names` of the pretrained models, and as associated values, a dictionary of specific
arguments to pass to the ``__init__`` method of the tokenizer class for this pretrained model when loading the arguments to pass to the ``__init__`` method of the tokenizer class for this pretrained model when loading the
tokenizer with the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained` tokenizer with the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`
method. method.
...@@ -1688,7 +1688,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -1688,7 +1688,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
modifying :obj:`tokenizer.do_lower_case` after creation). modifying :obj:`tokenizer.do_lower_case` after creation).
Args: Args:
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved. save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
Returns: Returns:
A tuple of :obj:`str`: The files saved. A tuple of :obj:`str`: The files saved.
...@@ -2383,7 +2383,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -2383,7 +2383,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
batch_size = len(encoded_inputs["input_ids"]) batch_size = len(encoded_inputs["input_ids"])
assert all( assert all(
len(v) == batch_size for v in encoded_inputs.values() len(v) == batch_size for v in encoded_inputs.values()
), "Some items in the output dictionnary have a different batch size than others." ), "Some items in the output dictionary have a different batch size than others."
if padding_strategy == PaddingStrategy.LONGEST: if padding_strategy == PaddingStrategy.LONGEST:
max_length = max(len(inputs) for inputs in encoded_inputs["input_ids"]) max_length = max(len(inputs) for inputs in encoded_inputs["input_ids"])
...@@ -2547,7 +2547,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -2547,7 +2547,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
sequence = ids + pair_ids if pair else ids sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionnary # Build output dictionary
encoded_inputs["input_ids"] = sequence encoded_inputs["input_ids"] = sequence
if return_token_type_ids: if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids encoded_inputs["token_type_ids"] = token_type_ids
...@@ -2819,7 +2819,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -2819,7 +2819,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
token_ids_1 (:obj:`List[int]`, `optional`): token_ids_1 (:obj:`List[int]`, `optional`):
List of ids of the second sequence. List of ids of the second sequence.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Wheter or not the token list is already formated with special tokens for the model. Whether or not the token list is already formated with special tokens for the model.
Returns: Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
......
...@@ -552,7 +552,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase): ...@@ -552,7 +552,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
you want to reload it using the :meth:`~transformers.PreTrainedTokenizerFast.from_pretrained` class method. you want to reload it using the :meth:`~transformers.PreTrainedTokenizerFast.from_pretrained` class method.
Args: Args:
save_directory (:obj:`str`): The path to adirectory where the tokenizer will be saved. save_directory (:obj:`str`): The path to a directory where the tokenizer will be saved.
Returns: Returns:
A tuple of :obj:`str`: The files saved. A tuple of :obj:`str`: The files saved.
......
...@@ -895,7 +895,7 @@ class Trainer: ...@@ -895,7 +895,7 @@ class Trainer:
- the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
Returns: Returns:
:class:`transformers.trainer_utils.BestRun`: All the informations about the best run. :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
""" """
if backend is None: if backend is None:
backend = default_hp_search_backend() backend = default_hp_search_backend()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment