trainer.py 125 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 馃 Transformers from scratch or finetune it on a new task.
"""

19
import collections
20
import inspect
21
import math
Julien Chaumond's avatar
Julien Chaumond committed
22
import os
23
import random
Julien Chaumond's avatar
Julien Chaumond committed
24
25
import re
import shutil
26
import sys
27
import time
28
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
29
from pathlib import Path
30
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
31

32
33
from tqdm.auto import tqdm

Julien Chaumond's avatar
Julien Chaumond committed
34

35
36
# Integrations must be imported before ML frameworks:
from .integrations import (  # isort: split
37
    default_hp_search_backend,
38
    get_reporting_integration_callbacks,
39
    hp_params,
40
    is_fairscale_available,
41
    is_optuna_available,
42
    is_ray_tune_available,
43
44
    run_hp_search_optuna,
    run_hp_search_ray,
45
)
46
47
48
49
50

import numpy as np
import torch
from packaging import version
from torch import nn
51
from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler
52
53
from torch.utils.data.distributed import DistributedSampler

54
55
from . import __version__
from .configuration_utils import PretrainedConfig
56
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
57
from .debug_utils import DebugOption, DebugUnderflowOverflow
58
from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
59
from .dependency_versions_check import dep_version_check
Sylvain Gugger's avatar
Sylvain Gugger committed
60
from .file_utils import (
61
    CONFIG_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
62
    WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
63
    PushToHubMixin,
Sylvain Gugger's avatar
Sylvain Gugger committed
64
65
66
    is_apex_available,
    is_datasets_available,
    is_in_notebook,
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
    is_torch_tpu_available,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
71
from .modelcard import TrainingSummary
72
from .modeling_utils import PreTrainedModel, unwrap_model
73
from .models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
Sylvain Gugger's avatar
Sylvain Gugger committed
74
from .optimization import Adafactor, AdamW, get_scheduler
75
from .tokenization_utils_base import PreTrainedTokenizerBase
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
80
81
82
83
84
85
from .trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from .trainer_pt_utils import (
86
    DistributedLengthGroupedSampler,
87
    DistributedSamplerWithLoop,
88
    DistributedTensorGatherer,
89
    IterableDatasetShard,
Sylvain Gugger's avatar
Sylvain Gugger committed
90
    LabelSmoother,
91
    LengthGroupedSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
92
    SequentialDistributedSampler,
93
    ShardSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
    distributed_broadcast_scalars,
    distributed_concat,
96
    find_batch_size,
97
    get_parameter_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
    nested_concat,
    nested_detach,
    nested_numpify,
101
    nested_truncate,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
)
105
106
107
from .trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
108
    EvalLoopOutput,
109
110
111
    EvalPrediction,
    HPSearchBackend,
    PredictionOutput,
112
    ShardedDDPOption,
113
    TrainerMemoryTracker,
114
115
116
    TrainOutput,
    default_compute_objective,
    default_hp_space,
117
    denumpify_detensorize,
118
    get_last_checkpoint,
119
    number_of_arguments,
120
    set_seed,
121
    speed_metrics,
122
)
123
from .training_args import ParallelMode, TrainingArguments
Lysandre Debut's avatar
Lysandre Debut committed
124
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
125
126


127
_is_torch_generator_available = False
128
_is_native_amp_available = False
129

Sylvain Gugger's avatar
Sylvain Gugger committed
130
DEFAULT_CALLBACKS = [DefaultFlowCallback]
131
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
Sylvain Gugger's avatar
Sylvain Gugger committed
132

133
134
135
136
if is_in_notebook():
    from .utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
137

138
139
if is_apex_available():
    from apex import amp
140

141
if version.parse(torch.__version__) >= version.parse("1.6"):
142
    _is_torch_generator_available = True
143
    _is_native_amp_available = True
144
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
145

146
147
if is_datasets_available():
    import datasets
Julien Chaumond's avatar
Julien Chaumond committed
148

149
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
150
151
152
153
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

154
if is_fairscale_available():
155
    dep_version_check("fairscale")
156
    import fairscale
157
    from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
158
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
159
    from fairscale.nn.wrap import auto_wrap
160
161
162
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler

Sylvain Gugger's avatar
Sylvain Gugger committed
163
if is_sagemaker_dp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
    import smdistributed.dataparallel.torch.distributed as dist
    from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
    import torch.distributed as dist
168

Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171
172
173
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat

174

175
176
177
if TYPE_CHECKING:
    import optuna

Lysandre Debut's avatar
Lysandre Debut committed
178
logger = logging.get_logger(__name__)
Julien Chaumond's avatar
Julien Chaumond committed
179
180
181
182


class Trainer:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
183
    Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 馃 Transformers.
184
185

    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
186
        model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`):
187
            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
190
191
192
193

            .. note::

                :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel`
                provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as
                they work the same way as the 馃 Transformers models.
194
        args (:class:`~transformers.TrainingArguments`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
197
            The arguments to tweak for training. Will default to a basic instance of
            :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in
            the current directory if not provided.
198
        data_collator (:obj:`DataCollator`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
199
200
201
            The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
            Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
            :func:`~transformers.DataCollatorWithPadding` otherwise.
202
        train_dataset (:obj:`torch.utils.data.Dataset` or :obj:`torch.utils.data.IterableDataset`, `optional`):
203
            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
204
            ``model.forward()`` method are automatically removed.
205

206
207
208
209
210
211
            Note that if it's a :obj:`torch.utils.data.IterableDataset` with some randomization and you are training in
            a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that
            is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer
            will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that
            internally sets the seed of the RNGs used.
        eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
212
             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
Sylvain Gugger's avatar
Sylvain Gugger committed
213
             ``model.forward()`` method are automatically removed.
214
215
216
217
        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
            interrupted training or reuse the fine-tuned model.
218
219
220
        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
            A function that instantiates the model to be used. If provided, each call to
            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
221

Sylvain Gugger's avatar
Sylvain Gugger committed
222
223
            The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be
            able to choose different architectures according to hyper parameters (such as layer count, sizes of inner
Sylvain Gugger's avatar
Sylvain Gugger committed
224
225
            layers, dropout probabilities etc).
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
226
            The function that will be used to compute metrics at evaluation. Must take a
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
            A list of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in :doc:`here <callback>`.
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232

            If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method.
Sylvain Gugger's avatar
Sylvain Gugger committed
233
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
234
            containing the optimizer and the scheduler to use. Will default to an instance of
235
            :class:`~transformers.AdamW` on your model and a scheduler given by
Sylvain Gugger's avatar
Sylvain Gugger committed
236
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
237

238
239
240
241
242
243
244
245
246
247
    Important attributes:

        - **model** -- Always points to the core model. If using a transformers model, it will be a
          :class:`~transformers.PreTrainedModel` subclass.
        - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
          original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``,
          the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the
          inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``.
        - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
          data parallelism, this means some of the model layers are split on different GPUs).
248
249
250
        - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
          to :obj:`False` if model parallel or deepspeed is used, or if the default
          ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` .
251
252
        - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called
          while in ``train``)
253

Julien Chaumond's avatar
Julien Chaumond committed
254
255
    """

256
    from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
257

Julien Chaumond's avatar
Julien Chaumond committed
258
259
    def __init__(
        self,
260
        model: Union[PreTrainedModel, nn.Module] = None,
261
        args: TrainingArguments = None,
Julien Chaumond's avatar
Julien Chaumond committed
262
263
264
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
265
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
266
        model_init: Callable[[], PreTrainedModel] = None,
Julien Chaumond's avatar
Julien Chaumond committed
267
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
268
        callbacks: Optional[List[TrainerCallback]] = None,
269
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
270
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
271
        if args is None:
272
273
274
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
277
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
278
        self.hp_name = None
279
        self.deepspeed = None
280
        self.is_in_train = False
281

282
283
284
285
        # memory metrics - must set up as early as possible
        self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
        self._memory_tracker.start()

286
        # set the correct log level depending on the node
287
        log_level = args.get_process_log_level()
288
289
        logging.set_verbosity(log_level)

290
291
292
        # force device and distributed setup init explicitly
        args._setup_devices

293
294
295
296
297
298
299
300
301
302
303
304
305
306
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                warnings.warn(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. "
                    "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.",
                    FutureWarning,
                )
            self.model_init = model_init
307

308
309
310
311
312
        if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
            self.is_model_parallel = True
        else:
            self.is_model_parallel = False

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        # Setup Sharded DDP training
        self.sharded_ddp = None
        if len(args.sharded_ddp) > 0:
            if args.deepspeed:
                raise ValueError(
                    "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
                )

            if args.local_rank == -1:
                raise ValueError("Using sharded DDP only works in distributed training.")
            elif not is_fairscale_available():
                raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
            elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
                raise ImportError(
                    "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
                    f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
                )
            elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.SIMPLE
            elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
            elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_3

337
        # one place to sort out whether to place the model on device or not
338
339
340
341
342
343
        # postpone switching model to cuda when:
        # 1. MP - since we are trying to fit a much bigger than 1 gpu model
        # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
        #    and we only use deepspeed for training at the moment
        # 3. full fp16 eval - since the model needs to be half'ed first
        # 4. Sharded DDP - same as MP
344
        self.place_model_on_device = args.place_model_on_device
345
346
        if (
            self.is_model_parallel
347
            or args.deepspeed
348
349
350
            or (args.fp16_full_eval and not args.do_train)
            or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
        ):
351
352
            self.place_model_on_device = False

353
354
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
Julien Chaumond's avatar
Julien Chaumond committed
355
356
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
357
        self.tokenizer = tokenizer
358

359
        if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
360
            self._move_model_to_device(model, args.device)
Stas Bekman's avatar
Stas Bekman committed
361
362
363

        # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
        if self.is_model_parallel:
364
            self.args._n_gpu = 1
365
366
367
368
369

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model_wrapped = model
        self.model = model

Julien Chaumond's avatar
Julien Chaumond committed
370
        self.compute_metrics = compute_metrics
371
        self.optimizer, self.lr_scheduler = optimizers
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
374
375
376
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument."
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
377
378
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
379
380
381
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
382
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
Sylvain Gugger's avatar
Sylvain Gugger committed
383

384
385
386
        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

387
388
389
        # Create clone of distant repo and output directory if needed
        if self.args.push_to_hub:
            self.init_git_repo()
390
        if self.args.should_save:
Julien Chaumond's avatar
Julien Chaumond committed
391
            os.makedirs(self.args.output_dir, exist_ok=True)
392

393
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
Sylvain Gugger's avatar
Sylvain Gugger committed
394
            raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
395

396
397
398
399
400
401
        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0:
            raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")

402
        self._signature_columns = None
403

404
405
406
        # Mixed precision setup
        self.use_apex = False
        self.use_amp = False
407
408
        self.fp16_backend = None

409
410
        if args.fp16:
            if args.fp16_backend == "auto":
411
                self.fp16_backend = "amp" if _is_native_amp_available else "apex"
412
            else:
413
414
                self.fp16_backend = args.fp16_backend
            logger.info(f"Using {self.fp16_backend} fp16 backend")
415

416
417
        if args.fp16 and not args.deepspeed:  # deepspeed manages its own fp16
            if self.fp16_backend == "amp":
418
                self.use_amp = True
419
420
421
422
423
424
                if is_sagemaker_mp_enabled():
                    self.scaler = smp.amp.GradScaler()
                elif self.sharded_ddp is not None:
                    self.scaler = ShardedGradScaler()
                else:
                    self.scaler = torch.cuda.amp.GradScaler()
425
426
427
428
429
430
431
            else:
                if not is_apex_available():
                    raise ImportError(
                        "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex."
                    )
                self.use_apex = True

432
433
434
435
436
437
438
        # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
        if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0:
            raise ValueError(
                "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
                "along 'max_grad_norm': 0 in your hyperparameters."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
439
440
441
442
443
444
        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

445
        self.state = TrainerState()
Sylvain Gugger's avatar
Sylvain Gugger committed
446
        self.control = TrainerControl()
447
448
449
        # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
        # returned to 0 every time flos need to be logged
        self.current_flos = 0
450
        self.hp_search_backend = None
451
        self.use_tune_checkpoints = False
452
        default_label_names = (
453
            ["start_positions", "end_positions"]
454
            if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values()
455
456
457
            else ["labels"]
        )
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)

460
461
462
        # very last
        self._memory_tracker.stop_and_update_metrics()

Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    def add_callback(self, callback):
        """
        Add a callback to the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it.

        If the callback is not found, returns :obj:`None` (and no error is raised).

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            :class:`~transformer.TrainerCallback`: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)
Julien Chaumond's avatar
Julien Chaumond committed
500

Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503
504
505
506
    def _move_model_to_device(self, model, device):
        model = model.to(device)
        # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
        if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
            model.tie_weights()

507
    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
508
        if not self.args.remove_unused_columns:
509
            return dataset
510
511
512
513
514
515
516
517
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            signature = inspect.signature(self.model.forward)
            self._signature_columns = list(signature.parameters.keys())
            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += ["label", "label_ids"]
        columns = [k for k in self._signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
518
519
520
521
522
523
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set "
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
            )
524

525
526
527
528
529
530
531
        if version.parse(datasets.__version__) < version.parse("1.4.0"):
            dataset.set_format(
                type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
            )
            return dataset
        else:
            return dataset.remove_columns(ignored_columns)
532

533
    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
534
        if not isinstance(self.train_dataset, collections.abc.Sized):
535
            return None
536

537
538
539
540
541
        generator = None
        if self.args.world_size <= 1 and _is_torch_generator_available:
            generator = torch.Generator()
            generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))

542
543
        # Build the sampler.
        if self.args.group_by_length:
544
545
546
547
548
549
550
551
            if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
                lengths = (
                    self.train_dataset[self.args.length_column_name]
                    if self.args.length_column_name in self.train_dataset.column_names
                    else None
                )
            else:
                lengths = None
552
            model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
553
            if self.args.world_size <= 1:
554
                return LengthGroupedSampler(
555
556
557
558
559
                    self.train_dataset,
                    self.args.train_batch_size,
                    lengths=lengths,
                    model_input_name=model_input_name,
                    generator=generator,
560
                )
561
562
            else:
                return DistributedLengthGroupedSampler(
563
564
                    self.train_dataset,
                    self.args.train_batch_size,
565
566
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
567
                    lengths=lengths,
568
                    model_input_name=model_input_name,
569
                    seed=self.args.seed,
570
571
572
                )

        else:
573
            if self.args.world_size <= 1:
574
575
                if _is_torch_generator_available:
                    return RandomSampler(self.train_dataset, generator=generator)
576
                return RandomSampler(self.train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
            elif (
                self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
                and not self.args.dataloader_drop_last
            ):
581
582
583
584
585
586
                # Use a loop for TPUs when drop_last is False to have all batches have the same size.
                return DistributedSamplerWithLoop(
                    self.train_dataset,
                    batch_size=self.args.per_device_train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
587
                    seed=self.args.seed,
588
                )
589
            else:
590
                return DistributedSampler(
591
592
593
594
                    self.train_dataset,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                    seed=self.args.seed,
595
                )
596
597
598
599
600

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

Sylvain Gugger's avatar
Sylvain Gugger committed
601
602
        Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
        to distributed training if necessary) otherwise.
603
604
605
606
607

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
608

609
610
611
612
        train_dataset = self.train_dataset
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")

613
        if isinstance(train_dataset, torch.utils.data.IterableDataset):
614
615
            if self.args.world_size > 1:
                train_dataset = IterableDatasetShard(
616
                    train_dataset,
617
618
619
620
621
                    batch_size=self.args.train_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
622

623
624
625
626
627
628
629
630
            return DataLoader(
                train_dataset,
                batch_size=self.args.train_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

631
632
633
        train_sampler = self._get_train_sampler()

        return DataLoader(
634
            train_dataset,
Julien Chaumond's avatar
Julien Chaumond committed
635
636
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
637
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
638
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
639
            num_workers=self.args.dataloader_num_workers,
640
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
641
642
        )

643
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        # Deprecated code
        if self.args.use_legacy_prediction_loop:
            if is_torch_tpu_available():
                return SequentialDistributedSampler(
                    eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
                )
            elif is_sagemaker_mp_enabled():
                return SequentialDistributedSampler(
                    eval_dataset,
                    num_replicas=smp.dp_size(),
                    rank=smp.dp_rank(),
                    batch_size=self.args.per_device_eval_batch_size,
                )
            elif self.args.local_rank != -1:
                return SequentialDistributedSampler(eval_dataset)
            else:
                return SequentialSampler(eval_dataset)

        if self.args.world_size <= 1:
            return SequentialSampler(eval_dataset)
        else:
            return ShardSampler(
Sylvain Gugger's avatar
Sylvain Gugger committed
666
667
                eval_dataset,
                batch_size=self.args.per_device_eval_batch_size,
668
669
                num_processes=self.args.world_size,
                process_index=self.args.process_index,
Sylvain Gugger's avatar
Sylvain Gugger committed
670
            )
Lysandre Debut's avatar
Lysandre Debut committed
671

Julien Chaumond's avatar
Julien Chaumond committed
672
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
673
674
675
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

676
677
        Subclass and override this method if you want to inject some custom behavior.

678
        Args:
679
            eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
680
                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
681
                accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
682
        """
Julien Chaumond's avatar
Julien Chaumond committed
683
684
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
685
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
686

687
688
689
        if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
            eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")

690
        if isinstance(eval_dataset, torch.utils.data.IterableDataset):
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
            if self.args.world_size > 1:
                eval_dataset = IterableDatasetShard(
                    eval_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                eval_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

707
        eval_sampler = self._get_eval_sampler(eval_dataset)
708

709
        return DataLoader(
710
            eval_dataset,
711
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
712
            batch_size=self.args.eval_batch_size,
713
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
714
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
715
            num_workers=self.args.dataloader_num_workers,
716
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
717
718
719
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
720
721
722
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

723
724
        Subclass and override this method if you want to inject some custom behavior.

725
        Args:
726
            test_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
727
                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
728
                ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
729
        """
730
        if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
731
            test_dataset = self._remove_unused_columns(test_dataset, description="test")
732

733
        if isinstance(test_dataset, torch.utils.data.IterableDataset):
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
            if self.args.world_size > 1:
                test_dataset = IterableDatasetShard(
                    test_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                test_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

750
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
751

752
753
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
754
            test_dataset,
755
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
756
            batch_size=self.args.eval_batch_size,
757
            collate_fn=self.data_collator,
758
            drop_last=self.args.dataloader_drop_last,
759
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
760
        )
Lysandre Debut's avatar
Lysandre Debut committed
761

762
    def create_optimizer_and_scheduler(self, num_training_steps: int):
763
764
765
        """
        Setup the optimizer and the learning rate scheduler.

766
767
768
769
770
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer`
        and/or :obj:`create_scheduler`) in a subclass.
        """
        self.create_optimizer()
771
        self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
772
773
774
775
776

    def create_optimizer(self):
        """
        Setup the optimizer.

777
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
778
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
779
        """
780
        if self.optimizer is None:
781
            decay_parameters = get_parameter_names(self.model, [nn.LayerNorm])
782
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
783
784
            optimizer_grouped_parameters = [
                {
785
                    "params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
786
787
788
                    "weight_decay": self.args.weight_decay,
                },
                {
789
                    "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
790
791
792
                    "weight_decay": 0.0,
                },
            ]
Sylvain Gugger's avatar
Sylvain Gugger committed
793
794
795
796
797
798
799
800
801
802
803
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
            if self.args.adafactor:
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
            else:
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
804
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
805
806
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
Sylvain Gugger's avatar
Sylvain Gugger committed
807
808
                    optim=optimizer_cls,
                    **optimizer_kwargs,
809
810
                )
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
811
812
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

Sylvain Gugger's avatar
Sylvain Gugger committed
813
814
815
        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(self.optimizer)

816
817
818
        return self.optimizer

    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
819
        """
820
821
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.
822
823
824
825

        Args:
            num_training_steps (int): The number of training steps to do.
        """
826
        if self.lr_scheduler is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
829
                optimizer=self.optimizer if optimizer is None else optimizer,
830
                num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
Sylvain Gugger's avatar
Sylvain Gugger committed
831
                num_training_steps=num_training_steps,
832
            )
833
        return self.lr_scheduler
Julien Chaumond's avatar
Julien Chaumond committed
834

835
    def num_examples(self, dataloader: DataLoader) -> int:
836
        """
837
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
838

839
        Will raise an exception if the underlying dataset does not implement method :obj:`__len__`
840
        """
841
        return len(dataloader.dataset)
842

843
    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
Patrick von Platen's avatar
Patrick von Platen committed
844
        """HP search setup code"""
845
846
        self._trial = trial

847
848
        if self.hp_search_backend is None or trial is None:
            return
849
850
851
852
853
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            params = self.hp_space(trial)
        elif self.hp_search_backend == HPSearchBackend.RAY:
            params = trial
            params.pop("wandb", None)
854

855
856
        for key, value in params.items():
            if not hasattr(self.args, key):
857
                logger.warn(
858
859
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
860
                continue
861
862
863
864
865
866
867
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)
868
869
        if self.args.deepspeed:
            # Rebuild the deepspeed config to reflect the updated training parameters
870
            from transformers.deepspeed import HfDeepSpeedConfig
871

872
            self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args)
873
874
875
876
877
878

    def _report_to_hp_search(
        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
    ):
        if self.hp_search_backend is None or trial is None:
            return
879
        self.objective = self.compute_objective(metrics.copy())
880
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
881
882
            import optuna

883
884
885
886
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
887
888
            from ray import tune

889
            if self.control.should_save:
890
                self._tune_save_checkpoint()
891
892
            tune.report(objective=self.objective, **metrics)

893
    def _tune_save_checkpoint(self):
894
895
        from ray import tune

896
897
        if not self.use_tune_checkpoints:
            return
898
        with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
899
            output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
900
            self.save_model(output_dir)
901
            if self.args.should_save:
902
                self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))
903
904
905
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

906
    def call_model_init(self, trial=None):
907
        model_init_argcount = number_of_arguments(self.model_init)
908
909
910
911
912
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(trial)
        else:
913
914
915
916
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")
917
918
919

        return model

920
    def _wrap_model(self, model, training=True):
Sylvain Gugger's avatar
Sylvain Gugger committed
921
922
923
924
925
926
        if is_sagemaker_mp_enabled():
            # Wrapping the base model twice in a DistributedModel will raise an error.
            if isinstance(self.model_wrapped, smp.model.DistributedModel):
                return self.model_wrapped
            return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)

927
928
        # already initialized its own DDP and AMP
        if self.deepspeed:
929
            return self.deepspeed
930

931
932
933
934
        # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
        if unwrap_model(model) is not model:
            return model

935
936
937
938
939
940
        # Mixed precision training with apex (torch < 1.6)
        if self.use_apex and training:
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
941
            model = nn.DataParallel(model)
942
943
944
945
946
947
948

        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
        if not training:
            return model

        # Distributed training (should be after apex fp16 initialization)
949
950
951
952
953
954
955
956
957
        if self.sharded_ddp is not None:
            # Sharded DDP!
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
                model = ShardedDDP(model, self.optimizer)
            else:
                mixed_precision = self.args.fp16
                cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
                zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
                # XXX: Breaking the self.model convention but I see no way around it for now.
958
959
                if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
                    model = auto_wrap(model)
960
                self.model = model = FullyShardedDDP(
961
962
963
964
                    model,
                    mixed_precision=mixed_precision,
                    reshard_after_forward=zero_3,
                    cpu_offload=cpu_offload,
965
966
                ).to(self.args.device)

Sylvain Gugger's avatar
Sylvain Gugger committed
967
        elif is_sagemaker_dp_enabled():
968
969
970
971
972
973
974
975
976
977
            model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
        elif self.args.local_rank != -1:
            if self.args.ddp_find_unused_parameters is not None:
                find_unused_parameters = self.args.ddp_find_unused_parameters
            elif isinstance(model, PreTrainedModel):
                # find_unused_parameters breaks checkpointing as per
                # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
                find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False)
            else:
                find_unused_parameters = True
978
            model = nn.parallel.DistributedDataParallel(
979
980
981
982
983
984
985
986
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=find_unused_parameters,
            )

        return model

987
988
    def train(
        self,
989
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
990
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
991
        ignore_keys_for_eval: Optional[List[str]] = None,
992
        **kwargs,
993
    ):
Julien Chaumond's avatar
Julien Chaumond committed
994
995
996
997
        """
        Main training entry point.

        Args:
998
999
1000
1001
1002
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
1003
1004
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
1005
1006
1007
            ignore_keys_for_eval (:obj:`List[str]`, `optional`)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
1008
1009
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
Julien Chaumond's avatar
Julien Chaumond committed
1010
        """
1011
        resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint
1012
1013
1014
1015

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1016
1017
        args = self.args

1018
1019
        self.is_in_train = True

1020
1021
1022
        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if args.fp16_full_eval and not args.do_train:
Sylvain Gugger's avatar
Sylvain Gugger committed
1023
            self._move_model_to_device(self.model, args.device)
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
1035
1036
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

1037
        # Model re-init
1038
        model_reloaded = False
1039
        if self.model_init is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1040
            # Seed must be set before instantiating the model when using model_init.
1041
            set_seed(args.seed)
1042
1043
            self.model = self.call_model_init(trial)
            model_reloaded = True
Sylvain Gugger's avatar
Sylvain Gugger committed
1044
1045
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None
1046

1047
        # Load potential model checkpoint
1048
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
1049
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
1050
            if resume_from_checkpoint is None:
1051
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
1052

1053
1054
1055
1056
        if resume_from_checkpoint is not None:
            if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
                raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

1057
            logger.info(f"Loading model from {resume_from_checkpoint}).")
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
            if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
                config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
                checkpoint_version = config.transformers_version
                if checkpoint_version is not None and checkpoint_version != __version__:
                    logger.warn(
                        f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
                        f"Transformers but your current version is {__version__}. This is not recommended and could "
                        "yield to errors or unwanted behaviors."
                    )

1069
            if args.deepspeed:
1070
                # will be resumed in deepspeed_init
1071
                pass
1072
            else:
1073
1074
1075
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
                # If the model is on the GPU, it still works!
1076
                self._load_state_dict_in_model(state_dict)
1077

1078
1079
1080
                # release memory
                del state_dict

1081
1082
        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
1083
            if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
1084
                self._move_model_to_device(self.model, args.device)
1085
1086
            self.model_wrapped = self.model

1087
1088
1089
        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

1090
        # Data loader and number of training steps
Julien Chaumond's avatar
Julien Chaumond committed
1091
        train_dataloader = self.get_train_dataloader()
1092
1093
1094
1095
1096

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
1097
        total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
1098
        if train_dataset_is_sized:
1099
            num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
1100
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
1101
1102
1103
1104
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
1105
                )
1106
1107
1108
                # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
1109
            else:
1110
1111
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
1112
                num_train_samples = len(self.train_dataset) * args.num_train_epochs
Julien Chaumond's avatar
Julien Chaumond committed
1113
        else:
1114
            # see __init__. max_steps is set when the dataset has no __len__
1115
            max_steps = args.max_steps
1116
1117
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
1118
            num_update_steps_per_epoch = max_steps
1119
            num_train_samples = args.max_steps * total_train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1120

1121
        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
1122
1123
1124
1125
1126
1127
1128
1129
            if self.args.n_gpu > 1:
                # nn.DataParallel(model) replicates the model, creating new variables and module
                # references registered here no longer work on other gpus, breaking the module
                raise ValueError(
                    "Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)."
                )
            else:
                debug_overflow = DebugUnderflowOverflow(self.model)  # noqa
1130

1131
        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
1132
        if args.deepspeed:
1133
            deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
1134
1135
                self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
            )
1136
1137
1138
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
1139
1140
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
1141
        elif not delay_optimizer_creation:
1142
1143
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1144
        self.state = TrainerState()
1145
        self.state.is_hyper_param_search = trial is not None
Julien Chaumond's avatar
Julien Chaumond committed
1146

1147
        model = self._wrap_model(self.model_wrapped)
Julien Chaumond's avatar
Julien Chaumond committed
1148

1149
1150
1151
1152
        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

1153
1154
1155
        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1156
1157
1158
        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

1159
1160
        # important: at this point:
        # self.model         is the Transformers Model
1161
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
1162

Julien Chaumond's avatar
Julien Chaumond committed
1163
        # Train!
1164
        num_examples = (
1165
            self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps
1166
1167
        )

Julien Chaumond's avatar
Julien Chaumond committed
1168
        logger.info("***** Running training *****")
1169
1170
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
1171
        logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
1172
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
1173
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
1174
        logger.info(f"  Total optimization steps = {max_steps}")
Julien Chaumond's avatar
Julien Chaumond committed
1175

1176
        self.state.epoch = 0
1177
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
1178
1179
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
1180
        steps_trained_progress_bar = None
1181

Julien Chaumond's avatar
Julien Chaumond committed
1182
        # Check if continuing training from a checkpoint
1183
1184
1185
1186
        if resume_from_checkpoint is not None and os.path.isfile(
            os.path.join(resume_from_checkpoint, "trainer_state.json")
        ):
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json"))
1187
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
1188
            if not args.ignore_data_skip:
1189
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
1190
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
1191
1192
            else:
                steps_trained_in_current_epoch = 0
1193
1194

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
1195
1196
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
1197
            if not args.ignore_data_skip:
1198
1199
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
1200
1201
                    "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` "
                    "flag to your launch command, but you will resume the training on data already seen by your model."
1202
                )
1203
1204
1205
                if self.is_local_process_zero() and not args.disable_tqdm:
                    steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
                    steps_trained_progress_bar.set_description("Skipping the first batches")
1206

Sylvain Gugger's avatar
Sylvain Gugger committed
1207
1208
1209
1210
1211
        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
1212
1213
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
        self.state.trial_params = hp_params(trial) if trial is not None else None
1214
1215
1216
1217
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
Sylvain Gugger's avatar
Sylvain Gugger committed
1218
1219
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
1220

1221
        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
1222
        tr_loss = torch.tensor(0.0).to(args.device)
1223
1224
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
1225
        self._globalstep_last_logged = self.state.global_step
Julien Chaumond's avatar
Julien Chaumond committed
1226
        model.zero_grad()
Sylvain Gugger's avatar
Sylvain Gugger committed
1227

1228
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1229

1230
        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
1231
        if not args.ignore_data_skip:
1232
1233
1234
1235
1236
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break

1237
        for epoch in range(epochs_trained, num_train_epochs):
1238
1239
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)
1240
1241
            elif isinstance(train_dataloader.dataset, IterableDatasetShard):
                train_dataloader.dataset.set_epoch(epoch)
1242

1243
            if is_torch_tpu_available():
1244
                parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
1245
                epoch_iterator = parallel_loader
1246
            else:
1247
                epoch_iterator = train_dataloader
1248

1249
            # Reset the past mems state at the beginning of each epoch if necessary.
1250
            if args.past_index >= 0:
1251
1252
                self._past = None

1253
            steps_in_epoch = (
1254
                len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps
1255
            )
1256
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1257

Julien Chaumond's avatar
Julien Chaumond committed
1258
1259
1260
1261
1262
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
1263
1264
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
1265
1266
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
Julien Chaumond's avatar
Julien Chaumond committed
1267
                    continue
1268
1269
1270
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None
Julien Chaumond's avatar
Julien Chaumond committed
1271

1272
1273
                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1274

1275
                if (
1276
1277
1278
                    ((step + 1) % args.gradient_accumulation_steps != 0)
                    and args.local_rank != -1
                    and args._no_sync_in_gradient_accumulation
1279
                ):
1280
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
1281
1282
1283
1284
                    with model.no_sync():
                        tr_loss += self.training_step(model, inputs)
                else:
                    tr_loss += self.training_step(model, inputs)
1285
                self.current_flos += float(self.floating_point_ops(inputs))
Julien Chaumond's avatar
Julien Chaumond committed
1286

1287
1288
1289
1290
                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

1291
                if (step + 1) % args.gradient_accumulation_steps == 0 or (
Julien Chaumond's avatar
Julien Chaumond committed
1292
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
1293
                    steps_in_epoch <= args.gradient_accumulation_steps
1294
                    and (step + 1) == steps_in_epoch
Julien Chaumond's avatar
Julien Chaumond committed
1295
                ):
1296
                    # Gradient clipping
1297
                    if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
1298
1299
                        # deepspeed does its own clipping

1300
1301
1302
1303
1304
1305
                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
1306
                            self.optimizer.clip_grad_norm(args.max_grad_norm)
1307
1308
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
1309
                            model.clip_grad_norm_(args.max_grad_norm)
1310
1311
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
1312
                            nn.utils.clip_grad_norm_(
1313
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
1314
                                args.max_grad_norm,
1315
1316
1317
                            )

                    # Optimizer step
1318
                    optimizer_was_run = True
Stas Bekman's avatar
Stas Bekman committed
1319
                    if self.deepspeed:
1320
                        pass  # called outside the loop
Stas Bekman's avatar
Stas Bekman committed
1321
                    elif is_torch_tpu_available():
1322
                        xm.optimizer_step(self.optimizer)
1323
                    elif self.use_amp:
1324
                        scale_before = self.scaler.get_scale()
1325
                        self.scaler.step(self.optimizer)
1326
                        self.scaler.update()
1327
1328
                        scale_after = self.scaler.get_scale()
                        optimizer_was_run = scale_before <= scale_after
Lysandre Debut's avatar
Lysandre Debut committed
1329
                    else:
1330
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
1331

1332
                    if optimizer_was_run and not self.deepspeed:
1333
1334
                        self.lr_scheduler.step()

Julien Chaumond's avatar
Julien Chaumond committed
1335
                    model.zero_grad()
1336
                    self.state.global_step += 1
1337
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
1338
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1339

1340
                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
wulu473's avatar
wulu473 committed
1341
1342
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
1343

Sylvain Gugger's avatar
Sylvain Gugger committed
1344
                if self.control.should_epoch_stop or self.control.should_training_stop:
Julien Chaumond's avatar
Julien Chaumond committed
1345
                    break
1346

1347
            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
1348
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
1349

1350
            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
1351
1352
1353
1354
1355
1356
1357
1358
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1359
            if self.control.should_training_stop:
1360
                break
Julien Chaumond's avatar
Julien Chaumond committed
1361

1362
        if args.past_index and hasattr(self, "_past"):
1363
1364
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1365
1366

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
1367
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
1368
1369
1370
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
1371
            elif args.local_rank != -1:
1372
1373
                dist.barrier()

1374
1375
1376
            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

            best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
            if os.path.exists(best_model_path):
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(best_model_path, map_location="cpu")
                # If the model is on the GPU, it still works!
                self._load_state_dict_in_model(state_dict)
            else:
                logger.warn(
                    f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
                    "on multiple nodes, you should activate `--save_on_each_node`."
                )
1389

1390
1391
1392
1393
1394
            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

1395
1396
1397
1398
        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

1399
        metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
1400
1401
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
1402
        metrics["train_loss"] = train_loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1403

1404
        self.is_in_train = False
1405

1406
1407
        self._memory_tracker.stop_and_update_metrics(metrics)

1408
1409
1410
1411
1412
        self.log(metrics)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        return TrainOutput(self.state.global_step, train_loss, metrics)
1413

1414
1415
1416
1417
    def _load_state_dict_in_model(self, state_dict):
        load_result = self.model.load_state_dict(state_dict, strict=False)

        if len(load_result.missing_keys) != 0:
1418
1419
1420
            if self.model._keys_to_ignore_on_save is not None and set(load_result.missing_keys) == set(
                self.model._keys_to_ignore_on_save
            ):
1421
1422
1423
1424
1425
1426
                self.model.tie_weights()
            else:
                logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
        if len(load_result.unexpected_keys) != 0:
            logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.")

1427
    def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
Sylvain Gugger's avatar
Sylvain Gugger committed
1428
1429
1430
        if self.control.should_log:
            logs: Dict[str, float] = {}
            tr_loss_scalar = tr_loss.item()
1431
1432
1433
            # reset tr_loss to zero
            tr_loss -= tr_loss

1434
            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
1435
            logs["learning_rate"] = self._get_learning_rate()
1436

1437
            self._total_loss_scalar += tr_loss_scalar
1438
            self._globalstep_last_logged = self.state.global_step
Teven's avatar
Teven committed
1439
            self.store_flos()
Sylvain Gugger's avatar
Sylvain Gugger committed
1440
1441
1442
1443
1444

            self.log(logs)

        metrics = None
        if self.control.should_evaluate:
1445
            metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
Sylvain Gugger's avatar
Sylvain Gugger committed
1446
            self._report_to_hp_search(trial, epoch, metrics)
1447

Sylvain Gugger's avatar
Sylvain Gugger committed
1448
1449
1450
1451
        if self.control.should_save:
            self._save_checkpoint(model, trial, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
    def _load_rng_state(self, checkpoint):
        # Load RNG states from `checkpoint`
        if checkpoint is None:
            return

        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank != -1:
            rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that "
                    "wasn't launched in a distributed fashion, reproducibility is not guaranteed."
                )
                return
        else:
            rng_file = os.path.join(checkpoint, "rng_state.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    "Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
                    "fashion, reproducibility is not guaranteed."
                )
                return

        checkpoint_rng_state = torch.load(rng_file)
        random.setstate(checkpoint_rng_state["python"])
        np.random.set_state(checkpoint_rng_state["numpy"])
        torch.random.set_rng_state(checkpoint_rng_state["cpu"])
        if torch.cuda.is_available():
            if self.args.local_rank != -1:
                torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
            else:
                torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
        if is_torch_tpu_available():
            xm.set_rng_state(checkpoint_rng_state["xla"])

Sylvain Gugger's avatar
Sylvain Gugger committed
1487
    def _save_checkpoint(self, model, trial, metrics=None):
1488
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
1489
        # want to save except FullyShardedDDP.
1490
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
1491

1492
        # Save model checkpoint
1493
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
1494

1495
        if self.hp_search_backend is not None and trial is not None:
1496
1497
1498
1499
1500
1501
            if self.hp_search_backend == HPSearchBackend.OPTUNA:
                run_id = trial.number
            else:
                from ray import tune

                run_id = tune.get_trial_id()
1502
            run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
1503
            run_dir = os.path.join(self.args.output_dir, run_name)
1504
        else:
1505
            run_dir = self.args.output_dir
1506
            self.store_flos()
1507

1508
        output_dir = os.path.join(run_dir, checkpoint_folder)
1509
        self.save_model(output_dir)
1510
        if self.deepspeed:
1511
1512
            # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
            # config `stage3_gather_fp16_weights_on_model_save` is True
1513
            self.deepspeed.save_checkpoint(output_dir)
1514
1515

        # Save optimizer and scheduler
1516
        if self.sharded_ddp == ShardedDDPOption.SIMPLE:
1517
            self.optimizer.consolidate_state_dict()
1518

1519
1520
1521
1522
1523
1524
        if is_torch_tpu_available():
            xm.rendezvous("saving_optimizer_states")
            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                reissue_pt_warnings(caught_warnings)
Sylvain Gugger's avatar
Sylvain Gugger committed
1525
        elif is_sagemaker_mp_enabled():
1526
1527
1528
1529
            if smp.dp_rank() == 0:
                # Consolidate the state dict on all processed of dp_rank 0
                opt_state_dict = self.optimizer.state_dict()
                # Save it and the scheduler on the main process
1530
                if self.args.should_save:
1531
1532
1533
1534
                    torch.save(opt_state_dict, os.path.join(output_dir, "optimizer.pt"))
                    with warnings.catch_warnings(record=True) as caught_warnings:
                        torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    reissue_pt_warnings(caught_warnings)
1535
1536
                    if self.use_amp:
                        torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt"))
1537
        elif self.args.should_save and not self.deepspeed:
1538
            # deepspeed.save_checkpoint above saves model/optim/sched
1539
1540
1541
1542
            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
            with warnings.catch_warnings(record=True) as caught_warnings:
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
            reissue_pt_warnings(caught_warnings)
1543
1544
            if self.use_amp:
                torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt"))
1545
1546

        # Determine the new best metric / best model checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
1547
        if metrics is not None and self.args.metric_for_best_model is not None:
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
1563
        if self.args.should_save:
1564
1565
            self.state.save_to_json(os.path.join(output_dir, "trainer_state.json"))

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
        # Save RNG state in non-distributed training
        rng_states = {
            "python": random.getstate(),
            "numpy": np.random.get_state(),
            "cpu": torch.random.get_rng_state(),
        }
        if torch.cuda.is_available():
            if self.args.local_rank == -1:
                # In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
                rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
            else:
                rng_states["cuda"] = torch.cuda.random.get_rng_state()

        if is_torch_tpu_available():
            rng_states["xla"] = xm.get_rng_state()

1582
1583
1584
        # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
        # not yet exist.
        os.makedirs(output_dir, exist_ok=True)
1585
1586
1587
1588
1589
1590
        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank == -1:
            torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
        else:
            torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth"))

1591
        # Maybe delete some older checkpoints.
1592
        if self.args.should_save:
1593
1594
            self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)

1595
    def _load_optimizer_and_scheduler(self, checkpoint):
Sylvain Gugger's avatar
Sylvain Gugger committed
1596
        """If optimizer and scheduler states exist, load them."""
1597
        if checkpoint is None:
1598
1599
            return

1600
        if self.deepspeed:
1601
            # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
1602
1603
            return

1604
1605
        if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile(
            os.path.join(checkpoint, "scheduler.pt")
Sylvain Gugger's avatar
Sylvain Gugger committed
1606
1607
1608
1609
        ):
            # Load in optimizer and scheduler states
            if is_torch_tpu_available():
                # On TPU we have to take some extra precautions to properly load the states on the right device.
1610
                optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1611
                with warnings.catch_warnings(record=True) as caught_warnings:
1612
                    lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1613
1614
1615
1616
1617
1618
1619
1620
                reissue_pt_warnings(caught_warnings)

                xm.send_cpu_data_to_device(optimizer_state, self.args.device)
                xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)

                self.optimizer.load_state_dict(optimizer_state)
                self.lr_scheduler.load_state_dict(lr_scheduler_state)
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1621
                map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device
Sylvain Gugger's avatar
Sylvain Gugger committed
1622
                self.optimizer.load_state_dict(
Sylvain Gugger's avatar
Sylvain Gugger committed
1623
                    torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
1624
1625
                )
                with warnings.catch_warnings(record=True) as caught_warnings:
1626
                    self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt")))
Sylvain Gugger's avatar
Sylvain Gugger committed
1627
                reissue_pt_warnings(caught_warnings)
1628
1629
                if self.use_amp and os.path.isfile(os.path.join(checkpoint, "scaler.pt")):
                    self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, "scaler.pt")))
Sylvain Gugger's avatar
Sylvain Gugger committed
1630

1631
1632
1633
1634
1635
1636
1637
    def hyperparameter_search(
        self,
        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
        n_trials: int = 20,
        direction: str = "minimize",
        backend: Optional[Union["str", HPSearchBackend]] = None,
1638
        hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
1639
        **kwargs,
1640
1641
    ) -> BestRun:
        """
1642
        Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by
Sylvain Gugger's avatar
Sylvain Gugger committed
1643
1644
        :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is
        provided, the sum of all metrics otherwise.
1645

Sylvain Gugger's avatar
Sylvain Gugger committed
1646
1647
1648
1649
1650
1651
1652
        .. warning::

            To use this method, you need to have provided a ``model_init`` when initializing your
            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
        Args:
            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
                A function that defines the hyperparameter search space. Will default to
                :func:`~transformers.trainer_utils.default_hp_space_optuna` or
                :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend.
            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
                A function computing the objective to minimize or maximize from the metrics returned by the
                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
            n_trials (:obj:`int`, `optional`, defaults to 100):
                The number of trial runs to test.
            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
                several metrics.
            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
                The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which
                one is installed. If both are installed, will default to optuna.
            kwargs:
                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
                more information see:

Sylvain Gugger's avatar
Sylvain Gugger committed
1674
                - the documentation of `optuna.create_study
1675
                  <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
1676
1677
                - the documentation of `tune.run
                  <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
1678
1679

        Returns:
Tiger's avatar
Tiger committed
1680
            :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
                    "To install optuna run `pip install optuna`."
                    "To install ray run `pip install ray[tune]`."
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
1692
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
1693
        if backend == HPSearchBackend.RAY and not is_ray_tune_available():
1694
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1695
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
1696
1697
            )
        self.hp_search_backend = backend
Sylvain Gugger's avatar
Sylvain Gugger committed
1698
1699
1700
1701
1702
        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

1703
        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
1704
        self.hp_name = hp_name
1705
1706
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

1707
1708
        run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray
        best_run = run_hp_search(self, n_trials, direction, **kwargs)
1709
1710
1711
1712

        self.hp_search_backend = None
        return best_run

Sylvain Gugger's avatar
Sylvain Gugger committed
1713
    def log(self, logs: Dict[str, float]) -> None:
1714
1715
1716
1717
1718
1719
1720
1721
1722
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
        """
1723
        if self.state.epoch is not None:
1724
            logs["epoch"] = round(self.state.epoch, 2)
1725

1726
1727
        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
1728
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
Julien Chaumond's avatar
Julien Chaumond committed
1729

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
    def _prepare_input(self, data: Union[torch.Tensor, Any]) -> Union[torch.Tensor, Any]:
        """
        Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
        """
        if isinstance(data, dict):
            return type(data)(**{k: self._prepare_input(v) for k, v in data.items()})
        elif isinstance(data, (tuple, list)):
            return type(data)(self._prepare_input(v) for v in data)
        elif isinstance(data, torch.Tensor):
            kwargs = dict(device=self.args.device)
            if self.deepspeed and data.dtype != torch.int64:
                # NLP models inputs are int64 and those get adjusted to the right dtype of the
                # embedding. Other models such as wav2vec2's inputs are already float and thus
                # may need special handling to match the dtypes of the model
                kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype()))
            return data.to(**kwargs)
        return data

sgugger's avatar
Fix CI  
sgugger committed
1748
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
1749
1750
1751
1752
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
1753
        inputs = self._prepare_input(inputs)
1754
1755
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
1756

1757
1758
        return inputs

1759
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1760
        """
1761
        Perform a training step on a batch of inputs.
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
1775
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
1776
1777
        """
        model.train()
1778
        inputs = self._prepare_inputs(inputs)
1779

Sylvain Gugger's avatar
Sylvain Gugger committed
1780
        if is_sagemaker_mp_enabled():
1781
1782
            scaler = self.scaler if self.use_amp else None
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler)
Sylvain Gugger's avatar
Sylvain Gugger committed
1783
1784
            return loss_mb.reduce_mean().detach().to(self.args.device)

1785
        if self.use_amp:
1786
            with autocast():
Sylvain Gugger's avatar
Sylvain Gugger committed
1787
                loss = self.compute_loss(model, inputs)
1788
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1789
            loss = self.compute_loss(model, inputs)
1790

Julien Chaumond's avatar
Julien Chaumond committed
1791
1792
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
1793

1794
1795
        if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
Julien Chaumond's avatar
Julien Chaumond committed
1796
1797
            loss = loss / self.args.gradient_accumulation_steps

1798
        if self.use_amp:
1799
            self.scaler.scale(loss).backward()
1800
        elif self.use_apex:
1801
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
1802
                scaled_loss.backward()
1803
        elif self.deepspeed:
1804
1805
            # loss gets scaled under gradient_accumulation_steps in deepspeed
            loss = self.deepspeed.backward(loss)
Julien Chaumond's avatar
Julien Chaumond committed
1806
1807
1808
        else:
            loss.backward()

1809
        return loss.detach()
Julien Chaumond's avatar
Julien Chaumond committed
1810

1811
    def compute_loss(self, model, inputs, return_outputs=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
1812
1813
1814
1815
1816
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
1817
1818
1819
1820
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1821
1822
        outputs = model(**inputs)
        # Save past state if it exists
1823
        # TODO: this needs to be fixed and made cleaner later.
Sylvain Gugger's avatar
Sylvain Gugger committed
1824
1825
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]
Sylvain Gugger's avatar
Sylvain Gugger committed
1826

1827
        if labels is not None:
1828
            loss = self.label_smoother(outputs, labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1829
1830
        else:
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
1831
1832
1833
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1834

1835
1836
    def is_local_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1837
1838
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
1839
        """
1840
        return self.args.local_process_index == 0
Lysandre Debut's avatar
Lysandre Debut committed
1841

1842
1843
    def is_world_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1844
1845
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
1846
        """
1847
1848
1849
        # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
        # process index.
        if is_sagemaker_mp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
1850
            return smp.rank() == 0
Lysandre Debut's avatar
Lysandre Debut committed
1851
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1852
            return self.args.process_index == 0
Julien Chaumond's avatar
Julien Chaumond committed
1853
1854
1855

    def save_model(self, output_dir: Optional[str] = None):
        """
1856
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
1857

1858
        Will only save from the main process.
Julien Chaumond's avatar
Julien Chaumond committed
1859
        """
1860
1861
1862
1863

        if output_dir is None:
            output_dir = self.args.output_dir

1864
        if is_torch_tpu_available():
1865
            self._save_tpu(output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
1866
1867
1868
        elif is_sagemaker_mp_enabled():
            # Calling the state_dict needs to be done on the wrapped model and on all processes.
            state_dict = self.model_wrapped.state_dict()
1869
            if self.args.should_save:
Sylvain Gugger's avatar
Sylvain Gugger committed
1870
                self._save(output_dir, state_dict=state_dict)
1871
1872
1873
1874
        elif (
            ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
        ):
            state_dict = self.model.state_dict()
1875

1876
            if self.args.should_save:
1877
                self._save(output_dir, state_dict=state_dict)
1878
1879
1880
        elif self.deepspeed:

            # this takes care of everything as long as we aren't under zero3
1881
            if self.args.should_save:
1882
1883
1884
1885
1886
1887
1888
                self._save(output_dir)

            if is_deepspeed_zero3_enabled():
                # It's too complicated to try to override different places where the weights dump gets
                # saved, so since under zero3 the file is bogus, simply delete it. The user should
                # either user deepspeed checkpoint to resume or to recover full weights use
                # zero_to_fp32.py stored in the checkpoint.
1889
                if self.args.should_save:
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
                    file = os.path.join(output_dir, WEIGHTS_NAME)
                    if os.path.isfile(file):
                        # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
                        os.remove(file)

                # now save the real model if stage3_gather_fp16_weights_on_model_save=True
                # if false it will not be saved.
                # This must be called on all ranks
                self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME)

1900
        elif self.args.should_save:
1901
            self._save(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1902

1903
1904
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
1905
        logger.info(f"Saving model checkpoint to {output_dir}")
1906
1907
1908
1909
1910
1911
1912
1913

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        xm.rendezvous("saving_checkpoint")
1914
        if not isinstance(self.model, PreTrainedModel):
1915
1916
1917
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                unwrap_model(self.model).save_pretrained(
                    output_dir,
1918
                    save_config=self.args.should_save,
1919
1920
1921
                    state_dict=self.model.state_dict(),
                    save_function=xm.save,
                )
1922
1923
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1924
1925
                state_dict = self.model.state_dict()
                xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1926
        else:
1927
1928
            self.model.save_pretrained(output_dir, save_config=self.args.should_save, save_function=xm.save)
        if self.tokenizer is not None and self.args.should_save:
1929
            self.tokenizer.save_pretrained(output_dir)
1930

1931
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
1932
        # If we are executing this function, we are the process zero, so we don't check for that.
Julien Chaumond's avatar
Julien Chaumond committed
1933
1934
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
1935
        logger.info(f"Saving model checkpoint to {output_dir}")
Julien Chaumond's avatar
Julien Chaumond committed
1936
1937
1938
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
1939
            if isinstance(unwrap_model(self.model), PreTrainedModel):
1940
1941
1942
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
1943
1944
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1945
1946
                if state_dict is None:
                    state_dict = self.model.state_dict()
1947
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1948
        else:
1949
            self.model.save_pretrained(output_dir, state_dict=state_dict)
1950
        if self.tokenizer is not None:
1951
            self.tokenizer.save_pretrained(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1952
1953
1954

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
1955

1956
    def store_flos(self):
1957
        # Storing the number of floating-point operations that went into the model
1958
1959
1960
1961
        if self.args.local_rank != -1:
            self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item()
            self.current_flos = 0
        else:
Teven's avatar
Teven committed
1962
            self.state.total_flos += self.current_flos
1963
            self.current_flos = 0
Julien Chaumond's avatar
Julien Chaumond committed
1964

1965
1966
1967
    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
Julien Chaumond's avatar
Julien Chaumond committed
1968
1969
        ordering_and_checkpoint_path = []

1970
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
1971
1972
1973
1974
1975

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
1976
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
1977
                if regex_match is not None and regex_match.groups() is not None:
Julien Chaumond's avatar
Julien Chaumond committed
1978
1979
1980
1981
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
1982
1983
        # Make sure we don't delete the best model.
        if self.state.best_model_checkpoint is not None:
1984
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
1985
1986
            for i in range(best_model_index, len(checkpoints_sorted) - 2):
                checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
Julien Chaumond's avatar
Julien Chaumond committed
1987
1988
        return checkpoints_sorted

1989
    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
1990
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
1991
1992
1993
            return

        # Check if we should delete older checkpoint(s)
1994
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1995
1996
1997
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

1998
        # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
        # we don't do to allow resuming.
        save_total_limit = self.args.save_total_limit
        if (
            self.state.best_model_checkpoint is not None
            and self.args.save_total_limit == 1
            and checkpoints_sorted[-1] != self.state.best_model_checkpoint
        ):
            save_total_limit = 2

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
Julien Chaumond's avatar
Julien Chaumond committed
2009
2010
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
2011
            logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
Julien Chaumond's avatar
Julien Chaumond committed
2012
2013
            shutil.rmtree(checkpoint)

2014
    def evaluate(
2015
2016
2017
2018
        self,
        eval_dataset: Optional[Dataset] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
2019
    ) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
2020
        """
2021
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2022

Sylvain Gugger's avatar
Sylvain Gugger committed
2023
2024
        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
2025

2026
2027
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
2028
        Args:
2029
            eval_dataset (:obj:`Dataset`, `optional`):
2030
                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
Sylvain Gugger's avatar
Sylvain Gugger committed
2031
2032
                columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
                :obj:`__len__` method.
2033
2034
2035
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2036
2037
2038
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
2039

Julien Chaumond's avatar
Julien Chaumond committed
2040
        Returns:
2041
2042
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
Julien Chaumond's avatar
Julien Chaumond committed
2043
        """
2044
2045
2046
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2047
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
2048
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
2049

2050
2051
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2052
2053
2054
2055
2056
            eval_dataloader,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
2057
            ignore_keys=ignore_keys,
2058
            metric_key_prefix=metric_key_prefix,
2059
        )
Lysandre Debut's avatar
Lysandre Debut committed
2060

2061
2062
2063
2064
2065
2066
2067
2068
2069
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2070

2071
        self.log(output.metrics)
2072

2073
        if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
2074
2075
2076
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Sylvain Gugger's avatar
Sylvain Gugger committed
2077
        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
2078
2079
2080

        self._memory_tracker.stop_and_update_metrics(output.metrics)

Julien Chaumond's avatar
Julien Chaumond committed
2081
2082
        return output.metrics

2083
    def predict(
Bhadresh Savani's avatar
Bhadresh Savani committed
2084
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
2085
    ) -> PredictionOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2086
        """
2087
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2088

Sylvain Gugger's avatar
Sylvain Gugger committed
2089
2090
        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in :obj:`evaluate()`.
2091
2092
2093

        Args:
            test_dataset (:obj:`Dataset`):
2094
                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
2095
                ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__`
2096
2097
2098
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
Bhadresh Savani's avatar
Bhadresh Savani committed
2099
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`):
2100
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
Bhadresh Savani's avatar
Bhadresh Savani committed
2101
                "test_bleu" if the prefix is "test" (default)
2102

2103
2104
2105
2106
2107
2108
        .. note::

            If your predictions or labels have different sequence length (for instance because you're doing dynamic
            padding in a token classification task) the predictions will be padded (on the right) to allow for
            concatenation into one array. The padding index is -100.

Sylvain Gugger's avatar
Sylvain Gugger committed
2109
2110
2111
2112
2113
2114
        Returns: `NamedTuple` A namedtuple with the following keys:

            - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
            - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
            - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
              contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
2115
        """
2116
2117
2118
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2119
        test_dataloader = self.get_test_dataloader(test_dataset)
2120
        start_time = time.time()
2121

2122
2123
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2124
2125
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
2126
2127
2128
2129
2130
2131
2132
2133
2134
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2135
2136
2137

        self._memory_tracker.stop_and_update_metrics(output.metrics)

2138
        return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
Julien Chaumond's avatar
Julien Chaumond committed
2139

2140
    def evaluation_loop(
2141
2142
2143
2144
2145
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
2146
        metric_key_prefix: str = "eval",
2147
    ) -> EvalLoopOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2148
        """
2149
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
2150
2151
2152

        Works both with or without labels.
        """
2153
2154
2155
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )
Julien Chaumond's avatar
Julien Chaumond committed
2156

2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None
2171

2172
        model = self._wrap_model(self.model, training=False)
Julien Chaumond's avatar
Julien Chaumond committed
2173

2174
        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2175
        # ``train`` is running, halve it first and then put on device
2176
2177
2178
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

2179
        batch_size = dataloader.batch_size
2180

2181
        logger.info(f"***** Running {description} *****")
2182
2183
2184
2185
        if isinstance(dataloader.dataset, collections.abc.Sized):
            logger.info(f"  Num examples = {self.num_examples(dataloader)}")
        else:
            logger.info("  Num examples: Unknown")
2186
        logger.info(f"  Batch size = {batch_size}")
2187

Julien Chaumond's avatar
Julien Chaumond committed
2188
2189
        model.eval()

2190
2191
2192
2193
        self.callback_handler.eval_dataloader = dataloader
        # Do this before wrapping.
        eval_dataset = dataloader.dataset

2194
        if is_torch_tpu_available():
2195
2196
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

2197
        if self.args.past_index >= 0:
2198
            self._past = None
2199

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
        # Initialize containers
        # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
        losses_host = None
        preds_host = None
        labels_host = None
        # losses/preds/labels on CPU (final containers)
        all_losses = None
        all_preds = None
        all_labels = None
        # Will be useful when we have an iterable dataset so don't know its length.

        observed_num_examples = 0
        # Main evaluation loop
2213
        for step, inputs in enumerate(dataloader):
2214
2215
2216
2217
            # Update the observed num examples
            observed_batch_size = find_batch_size(inputs)
            if observed_batch_size is not None:
                observed_num_examples += observed_batch_size
2218
2219
2220
                # For batch samplers, batch_size is not known by the dataloader in advance.
                if batch_size is None:
                    batch_size = observed_batch_size
2221
2222

            # Prediction step
2223
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
2224
2225

            # Update containers on host
2226
            if loss is not None:
2227
                losses = self._nested_gather(loss.repeat(batch_size))
2228
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
2229
            if logits is not None:
2230
2231
                logits = self._pad_across_processes(logits)
                logits = self._nested_gather(logits)
2232
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
2233
            if labels is not None:
2234
2235
                labels = self._pad_across_processes(labels)
                labels = self._nested_gather(labels)
2236
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
Sylvain Gugger's avatar
Sylvain Gugger committed
2237
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
2238

2239
2240
            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
                if losses_host is not None:
                    losses = nested_numpify(losses_host)
                    all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
                if preds_host is not None:
                    logits = nested_numpify(preds_host)
                    all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
                if labels_host is not None:
                    labels = nested_numpify(labels_host)
                    all_labels = (
                        labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                    )
2252
2253
2254
2255

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

2256
2257
2258
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
2259

2260
        # Gather all remaining tensors and put them back on the CPU
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
        if losses_host is not None:
            losses = nested_numpify(losses_host)
            all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
        if preds_host is not None:
            logits = nested_numpify(preds_host)
            all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
        if labels_host is not None:
            labels = nested_numpify(labels_host)
            all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

        # Number of samples
        if not isinstance(eval_dataset, IterableDataset):
            num_samples = len(eval_dataset)
2274
2275
2276
        # The instance check is weird and does not actually check for the type, but whether the dataset has the right
        # methods. Therefore we need to make sure it also has the attribute.
        elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"):
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
            num_samples = eval_dataset.num_examples
        else:
            num_samples = observed_num_examples

        # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
        # samplers has been rounded to a multiple of batch_size, so we truncate.
        if all_losses is not None:
            all_losses = all_losses[:num_samples]
        if all_preds is not None:
            all_preds = nested_truncate(all_preds, num_samples)
        if all_labels is not None:
            all_labels = nested_truncate(all_labels, num_samples)

        # Metrics!
        if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
Julien Chaumond's avatar
Julien Chaumond committed
2293
2294
        else:
            metrics = {}
2295

2296
2297
2298
        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

2299
2300
        if all_losses is not None:
            metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
2301

2302
        # Prefix all keys with metric_key_prefix + '_'
2303
        for key in list(metrics.keys()):
2304
2305
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
2306

2307
        return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
2308

2309
    def _nested_gather(self, tensors, name=None):
2310
2311
2312
2313
2314
2315
2316
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
2317
2318
            if name is None:
                name = "nested_gather"
2319
            tensors = nested_xla_mesh_reduce(tensors, name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2320
2321
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
2322
2323
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)
2324
        return tensors
2325

2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
    # Copied from Accelerate.
    def _pad_across_processes(self, tensor, pad_index=-100):
        """
        Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
        they can safely be gathered.
        """
        if isinstance(tensor, (list, tuple)):
            return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
        elif isinstance(tensor, dict):
            return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
        elif not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
            )

        if len(tensor.shape) < 2:
            return tensor
        # Gather all sizes
        size = torch.tensor(tensor.shape, device=tensor.device)[None]
        sizes = self._nested_gather(size).cpu()

        max_size = max(s[1] for s in sizes)
        if tensor.shape[1] == max_size:
            return tensor

        # Then pad to the maximum size
        old_size = tensor.shape
        new_size = list(old_size)
        new_size[1] = max_size
        new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
        new_tensor[:, : old_size[1]] = tensor
        return new_tensor
2358

2359
    def prediction_step(
2360
2361
2362
2363
2364
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
2365
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.
2381
2382
2383
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2384
2385

        Return:
2386
2387
            Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
2388
        """
2389
        has_labels = all(inputs.get(k) is not None for k in self.label_names)
2390
        inputs = self._prepare_inputs(inputs)
2391
2392
2393
2394
2395
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []
2396

2397
2398
2399
2400
2401
2402
2403
2404
        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels:
            labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

2405
        with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
            if is_sagemaker_mp_enabled():
                raw_outputs = smp_forward_only(model, inputs)
                if has_labels:
                    if isinstance(raw_outputs, dict):
                        loss_mb = raw_outputs["loss"]
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        loss_mb = raw_outputs[0]
                        logits_mb = raw_outputs[1:]

                    loss = loss_mb.reduce_mean().detach().cpu()
                    logits = smp_nested_concat(logits_mb)
2418
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2419
2420
2421
2422
2423
2424
                    loss = None
                    if isinstance(raw_outputs, dict):
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
                    else:
                        logits_mb = raw_outputs
                    logits = smp_nested_concat(logits_mb)
2425
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2426
2427
2428
2429
2430
2431
2432
                if has_labels:
                    loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
                    loss = loss.mean().detach()
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        logits = outputs[1:]
2433
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
                    loss = None
                    if self.use_amp:
                        with autocast():
                            outputs = model(**inputs)
                    else:
                        outputs = model(**inputs)
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
                    else:
                        logits = outputs
                    # TODO: this needs to be fixed and made cleaner later.
                    if self.args.past_index >= 0:
                        self._past = outputs[self.args.past_index - 1]
2447
2448
2449
2450

        if prediction_loss_only:
            return (loss, None, None)

2451
        logits = nested_detach(logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
2452
2453
2454
2455
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
2456
2457
2458

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2459
2460
2461
        For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of
        floating point operations for every backward + forward pass. If using another model, either implement such a
        method in the model or subclass and override this method.
2462
2463
2464
2465
2466
2467
2468
2469

        Args:
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """
2470
2471
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
2472
2473
        else:
            return 0
2474

2475
2476
2477
2478
    def init_git_repo(self):
        """
        Initializes a git repo in :obj:`self.args.push_to_hub_model_id`.
        """
2479
        if not self.args.should_save:
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
            return
        use_auth_token = True if self.args.push_to_hub_token is None else self.args.push_to_hub_token
        repo_url = PushToHubMixin._get_repo_url_from_name(
            self.args.push_to_hub_model_id,
            organization=self.args.push_to_hub_organization,
            use_auth_token=use_auth_token,
        )
        self.repo = PushToHubMixin._create_or_get_repo(
            self.args.output_dir, repo_url=repo_url, use_auth_token=use_auth_token
        )

        # By default, ignore the checkpoint folders
        if not os.path.exists(os.path.join(self.args.output_dir, ".gitignore")):
            with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
                writer.writelines(["checkpoint-*/"])

Sylvain Gugger's avatar
Sylvain Gugger committed
2496
2497
2498
2499
2500
2501
2502
    def create_model_card(
        self,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        model_name: Optional[str] = None,
        finetuned_from: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2503
        tasks: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
        training_summary = TrainingSummary.from_trainer(
            self,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
Sylvain Gugger's avatar
Sylvain Gugger committed
2515
            tasks=tasks,
Sylvain Gugger's avatar
Sylvain Gugger committed
2516
2517
2518
2519
2520
2521
2522
2523
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
            f.write(model_card)

2524
    def push_to_hub(self, commit_message: Optional[str] = "add model", **kwargs) -> str:
Sylvain Gugger's avatar
Sylvain Gugger committed
2525
        """
2526
        Upload `self.model` and `self.tokenizer` to the 馃 model hub on the repo `self.args.push_to_hub_model_id`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2527
2528
2529
2530

        Parameters:
            commit_message (:obj:`str`, `optional`, defaults to :obj:`"add model"`):
                Message to commit while pushing.
Sylvain Gugger's avatar
Sylvain Gugger committed
2531
2532
            kwargs:
                Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2533
2534
2535
2536
2537

        Returns:
            The url of the commit of your model in the given repository.
        """

2538
2539
2540
2541
        if self.args.should_save:
            self.create_model_card(model_name=self.args.push_to_hub_model_id, **kwargs)
        # Needs to be executed on all processes for TPU training, but will only save on the processed determined by
        # self.args.should_save.
2542
        self.save_model()
2543
2544
2545
2546
2547

        # Only push from one node.
        if not self.is_world_process_zero():
            return

2548
        return self.repo.push_to_hub(commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
2549

2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
    #
    # Deprecated code
    #

    def prediction_loop(
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.

        Works both with or without labels.
        """
        if not isinstance(dataloader.dataset, collections.abc.Sized):
            raise ValueError("dataset must implement __len__")
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )

        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None

        model = self._wrap_model(self.model, training=False)

        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2591
        # ``train`` is running, halve it first and then put on device
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

        batch_size = dataloader.batch_size
        num_examples = self.num_examples(dataloader)
        logger.info(f"***** Running {description} *****")
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Batch size = {batch_size}")
        losses_host: torch.Tensor = None
        preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
        labels_host: Union[torch.Tensor, List[torch.Tensor]] = None

        world_size = max(1, self.args.world_size)

        eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
        if not prediction_loss_only:
            # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
            # a batch size to the sampler)
            make_multiple_of = None
            if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
                make_multiple_of = dataloader.sampler.batch_size
            preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
            labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)

        model.eval()

        if is_torch_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

        if self.args.past_index >= 0:
            self._past = None

        self.callback_handler.eval_dataloader = dataloader

        for step, inputs in enumerate(dataloader):
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
            if loss is not None:
                losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
            if logits is not None:
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
            if labels is not None:
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)

            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
                eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
                if not prediction_loss_only:
                    preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
                    labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")

        # Gather all remaining tensors and put them back on the CPU
        eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
        if not prediction_loss_only:
            preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
            labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

        eval_loss = eval_losses_gatherer.finalize()
        preds = preds_gatherer.finalize() if not prediction_loss_only else None
        label_ids = labels_gatherer.finalize() if not prediction_loss_only else None

        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}

        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

        if eval_loss is not None:
            metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)

    def _gather_and_numpify(self, tensors, name):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
            tensors = nested_xla_mesh_reduce(tensors, name)
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)

        return nested_numpify(tensors)