trainer.py 131 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 馃 Transformers from scratch or finetune it on a new task.
"""

19
import collections
20
import inspect
21
import math
Julien Chaumond's avatar
Julien Chaumond committed
22
import os
23
import random
Julien Chaumond's avatar
Julien Chaumond committed
24
25
import re
import shutil
26
import sys
27
import time
28
import warnings
Julien Chaumond's avatar
Julien Chaumond committed
29
from pathlib import Path
30
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Julien Chaumond's avatar
Julien Chaumond committed
31

32
33
from tqdm.auto import tqdm

Julien Chaumond's avatar
Julien Chaumond committed
34

35
36
# Integrations must be imported before ML frameworks:
from .integrations import (  # isort: split
37
    default_hp_search_backend,
38
    get_reporting_integration_callbacks,
39
    hp_params,
40
    is_fairscale_available,
41
    is_optuna_available,
42
    is_ray_tune_available,
43
    is_sigopt_available,
44
45
    run_hp_search_optuna,
    run_hp_search_ray,
46
    run_hp_search_sigopt,
47
)
48
49
50
51
52

import numpy as np
import torch
from packaging import version
from torch import nn
53
from torch.utils.data import DataLoader, Dataset, IterableDataset, RandomSampler, SequentialSampler
54
55
from torch.utils.data.distributed import DistributedSampler

56
57
from huggingface_hub import Repository

58
59
from . import __version__
from .configuration_utils import PretrainedConfig
60
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
61
from .debug_utils import DebugOption, DebugUnderflowOverflow
62
from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
63
from .dependency_versions_check import dep_version_check
Sylvain Gugger's avatar
Sylvain Gugger committed
64
from .file_utils import (
65
    CONFIG_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
66
    WEIGHTS_NAME,
67
    get_full_repo_name,
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
    is_apex_available,
    is_datasets_available,
    is_in_notebook,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
Sylvain Gugger's avatar
Sylvain Gugger committed
73
74
    is_torch_tpu_available,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
75
from .modelcard import TrainingSummary
76
from .modeling_utils import PreTrainedModel, unwrap_model
77
from .models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
Sylvain Gugger's avatar
Sylvain Gugger committed
78
from .optimization import Adafactor, AdamW, get_scheduler
79
from .tokenization_utils_base import PreTrainedTokenizerBase
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
86
87
88
89
from .trainer_callback import (
    CallbackHandler,
    DefaultFlowCallback,
    PrinterCallback,
    ProgressCallback,
    TrainerCallback,
    TrainerControl,
    TrainerState,
)
from .trainer_pt_utils import (
90
    DistributedLengthGroupedSampler,
91
    DistributedSamplerWithLoop,
92
    DistributedTensorGatherer,
93
    IterableDatasetShard,
Sylvain Gugger's avatar
Sylvain Gugger committed
94
    LabelSmoother,
95
    LengthGroupedSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
96
    SequentialDistributedSampler,
97
    ShardSampler,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
    distributed_broadcast_scalars,
    distributed_concat,
100
    find_batch_size,
101
    get_parameter_names,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
    nested_concat,
    nested_detach,
    nested_numpify,
105
    nested_truncate,
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
    nested_xla_mesh_reduce,
    reissue_pt_warnings,
)
109
110
111
from .trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
112
    EvalLoopOutput,
113
114
    EvalPrediction,
    HPSearchBackend,
115
116
    HubStrategy,
    IntervalStrategy,
117
    PredictionOutput,
118
    ShardedDDPOption,
119
    TrainerMemoryTracker,
120
121
122
    TrainOutput,
    default_compute_objective,
    default_hp_space,
123
    denumpify_detensorize,
124
    get_last_checkpoint,
125
    number_of_arguments,
126
    set_seed,
127
    speed_metrics,
128
)
129
from .training_args import ParallelMode, TrainingArguments
Lysandre Debut's avatar
Lysandre Debut committed
130
from .utils import logging
Julien Chaumond's avatar
Julien Chaumond committed
131
132


133
_is_torch_generator_available = False
134
_is_native_amp_available = False
135

Sylvain Gugger's avatar
Sylvain Gugger committed
136
DEFAULT_CALLBACKS = [DefaultFlowCallback]
137
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
Sylvain Gugger's avatar
Sylvain Gugger committed
138

139
140
141
142
if is_in_notebook():
    from .utils.notebook import NotebookProgressCallback

    DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
143

144
145
if is_apex_available():
    from apex import amp
146

147
if version.parse(torch.__version__) >= version.parse("1.6"):
148
    _is_torch_generator_available = True
149
    _is_native_amp_available = True
150
    from torch.cuda.amp import autocast
Julien Chaumond's avatar
Julien Chaumond committed
151

152
153
if is_datasets_available():
    import datasets
Julien Chaumond's avatar
Julien Chaumond committed
154

155
if is_torch_tpu_available():
Lysandre Debut's avatar
Lysandre Debut committed
156
157
158
159
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

160
if is_fairscale_available():
161
    dep_version_check("fairscale")
162
    import fairscale
163
    from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
164
    from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
165
    from fairscale.nn.wrap import auto_wrap
166
167
168
    from fairscale.optim import OSS
    from fairscale.optim.grad_scaler import ShardedGradScaler

Sylvain Gugger's avatar
Sylvain Gugger committed
169
if is_sagemaker_dp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
    import smdistributed.dataparallel.torch.distributed as dist
    from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
    import torch.distributed as dist
174

Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
179
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat

180

181
182
183
if TYPE_CHECKING:
    import optuna

Lysandre Debut's avatar
Lysandre Debut committed
184
logger = logging.get_logger(__name__)
Julien Chaumond's avatar
Julien Chaumond committed
185
186


187
188
189
190
191
192
193
194
# Name of the files used for checkpointing
TRAINING_ARGS_NAME = "training_args.bin"
TRAINER_STATE_NAME = "trainer_state.json"
OPTIMIZER_NAME = "optimizer.pt"
SCHEDULER_NAME = "scheduler.pt"
SCALER_NAME = "scaler.pt"


Julien Chaumond's avatar
Julien Chaumond committed
195
196
class Trainer:
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
197
    Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 馃 Transformers.
198
199

    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
200
        model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`):
201
            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
206
207

            .. note::

                :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel`
                provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as
                they work the same way as the 馃 Transformers models.
208
        args (:class:`~transformers.TrainingArguments`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
209
210
211
            The arguments to tweak for training. Will default to a basic instance of
            :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in
            the current directory if not provided.
212
        data_collator (:obj:`DataCollator`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
            The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
            Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
            :func:`~transformers.DataCollatorWithPadding` otherwise.
216
        train_dataset (:obj:`torch.utils.data.Dataset` or :obj:`torch.utils.data.IterableDataset`, `optional`):
217
            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
218
            ``model.forward()`` method are automatically removed.
219

220
221
222
223
224
225
            Note that if it's a :obj:`torch.utils.data.IterableDataset` with some randomization and you are training in
            a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that
            is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer
            will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that
            internally sets the seed of the RNGs used.
        eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
226
             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
Sylvain Gugger's avatar
Sylvain Gugger committed
227
             ``model.forward()`` method are automatically removed.
228
229
230
231
        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
            interrupted training or reuse the fine-tuned model.
232
233
234
        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
            A function that instantiates the model to be used. If provided, each call to
            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
235

236
237
238
            The function may have zero argument, or a single one containing the optuna/Ray Tune/SigOpt trial object, to
            be able to choose different architectures according to hyper parameters (such as layer count, sizes of
            inner layers, dropout probabilities etc).
Sylvain Gugger's avatar
Sylvain Gugger committed
239
        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
240
            The function that will be used to compute metrics at evaluation. Must take a
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243
244
            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
        callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`):
            A list of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in :doc:`here <callback>`.
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246

            If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method.
Sylvain Gugger's avatar
Sylvain Gugger committed
247
        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
248
            containing the optimizer and the scheduler to use. Will default to an instance of
249
            :class:`~transformers.AdamW` on your model and a scheduler given by
Sylvain Gugger's avatar
Sylvain Gugger committed
250
            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
251

252
253
254
255
256
257
258
259
260
261
    Important attributes:

        - **model** -- Always points to the core model. If using a transformers model, it will be a
          :class:`~transformers.PreTrainedModel` subclass.
        - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
          original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``,
          the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the
          inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``.
        - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
          data parallelism, this means some of the model layers are split on different GPUs).
262
263
264
        - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
          to :obj:`False` if model parallel or deepspeed is used, or if the default
          ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` .
265
266
        - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called
          while in ``train``)
267

Julien Chaumond's avatar
Julien Chaumond committed
268
269
    """

270
    from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
271

Julien Chaumond's avatar
Julien Chaumond committed
272
273
    def __init__(
        self,
274
        model: Union[PreTrainedModel, nn.Module] = None,
275
        args: TrainingArguments = None,
Julien Chaumond's avatar
Julien Chaumond committed
276
277
278
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Dataset] = None,
279
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
280
        model_init: Callable[[], PreTrainedModel] = None,
Julien Chaumond's avatar
Julien Chaumond committed
281
        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
282
        callbacks: Optional[List[TrainerCallback]] = None,
283
        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
Julien Chaumond's avatar
Julien Chaumond committed
284
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
285
        if args is None:
286
287
288
            output_dir = "tmp_trainer"
            logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
            args = TrainingArguments(output_dir=output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
292
        self.hp_name = None
293
        self.deepspeed = None
294
        self.is_in_train = False
295

296
297
298
299
        # memory metrics - must set up as early as possible
        self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
        self._memory_tracker.start()

300
        # set the correct log level depending on the node
301
        log_level = args.get_process_log_level()
302
303
        logging.set_verbosity(log_level)

304
305
306
        # force device and distributed setup init explicitly
        args._setup_devices

307
308
309
310
311
312
313
314
315
316
317
318
319
320
        if model is None:
            if model_init is not None:
                self.model_init = model_init
                model = self.call_model_init()
            else:
                raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
        else:
            if model_init is not None:
                warnings.warn(
                    "`Trainer` requires either a `model` or `model_init` argument, but not both. "
                    "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.",
                    FutureWarning,
                )
            self.model_init = model_init
321

322
323
324
325
326
        if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
            self.is_model_parallel = True
        else:
            self.is_model_parallel = False

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        # Setup Sharded DDP training
        self.sharded_ddp = None
        if len(args.sharded_ddp) > 0:
            if args.deepspeed:
                raise ValueError(
                    "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
                )

            if args.local_rank == -1:
                raise ValueError("Using sharded DDP only works in distributed training.")
            elif not is_fairscale_available():
                raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
            elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
                raise ImportError(
                    "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
                    f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
                )
            elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.SIMPLE
            elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
            elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
                self.sharded_ddp = ShardedDDPOption.ZERO_DP_3

351
        # one place to sort out whether to place the model on device or not
352
353
354
355
356
357
        # postpone switching model to cuda when:
        # 1. MP - since we are trying to fit a much bigger than 1 gpu model
        # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
        #    and we only use deepspeed for training at the moment
        # 3. full fp16 eval - since the model needs to be half'ed first
        # 4. Sharded DDP - same as MP
358
        self.place_model_on_device = args.place_model_on_device
359
360
        if (
            self.is_model_parallel
361
            or args.deepspeed
362
363
364
            or (args.fp16_full_eval and not args.do_train)
            or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
        ):
365
366
            self.place_model_on_device = False

367
368
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
Julien Chaumond's avatar
Julien Chaumond committed
369
370
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
371
        self.tokenizer = tokenizer
372

373
        if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
374
            self._move_model_to_device(model, args.device)
Stas Bekman's avatar
Stas Bekman committed
375
376
377

        # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
        if self.is_model_parallel:
378
            self.args._n_gpu = 1
379
380
381
382
383

        # later use `self.model is self.model_wrapped` to check if it's wrapped or not
        self.model_wrapped = model
        self.model = model

Julien Chaumond's avatar
Julien Chaumond committed
384
        self.compute_metrics = compute_metrics
385
        self.optimizer, self.lr_scheduler = optimizers
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388
389
390
        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument."
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
391
392
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
393
394
395
        self.callback_handler = CallbackHandler(
            callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
        )
396
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
Sylvain Gugger's avatar
Sylvain Gugger committed
397

398
399
400
        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

401
402
403
        # Create clone of distant repo and output directory if needed
        if self.args.push_to_hub:
            self.init_git_repo()
404
405
406
407
408
409
            # In case of pull, we need to make sure every process has the latest.
            if is_torch_tpu_available():
                xm.rendezvous("init git repo")
            elif args.local_rank != -1:
                dist.barrier()

410
        if self.args.should_save:
Julien Chaumond's avatar
Julien Chaumond committed
411
            os.makedirs(self.args.output_dir, exist_ok=True)
412

413
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
Sylvain Gugger's avatar
Sylvain Gugger committed
414
            raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
415

416
417
418
419
420
421
        if args.max_steps > 0:
            logger.info("max_steps is given, it will override any value given in num_train_epochs")

        if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0:
            raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")

422
        self._signature_columns = None
423

424
425
426
        # Mixed precision setup
        self.use_apex = False
        self.use_amp = False
427
428
        self.fp16_backend = None

429
430
        if args.fp16:
            if args.fp16_backend == "auto":
431
                self.fp16_backend = "amp" if _is_native_amp_available else "apex"
432
            else:
433
434
                self.fp16_backend = args.fp16_backend
            logger.info(f"Using {self.fp16_backend} fp16 backend")
435

436
437
        if args.fp16 and not args.deepspeed:  # deepspeed manages its own fp16
            if self.fp16_backend == "amp":
438
                self.use_amp = True
439
440
441
442
443
444
                if is_sagemaker_mp_enabled():
                    self.scaler = smp.amp.GradScaler()
                elif self.sharded_ddp is not None:
                    self.scaler = ShardedGradScaler()
                else:
                    self.scaler = torch.cuda.amp.GradScaler()
445
446
447
448
449
450
451
            else:
                if not is_apex_available():
                    raise ImportError(
                        "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex."
                    )
                self.use_apex = True

452
453
454
455
456
457
458
        # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
        if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0:
            raise ValueError(
                "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
                "along 'max_grad_norm': 0 in your hyperparameters."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462
463
464
        # Label smoothing
        if self.args.label_smoothing_factor != 0:
            self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
        else:
            self.label_smoother = None

465
        self.state = TrainerState()
Sylvain Gugger's avatar
Sylvain Gugger committed
466
        self.control = TrainerControl()
467
468
469
        # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
        # returned to 0 every time flos need to be logged
        self.current_flos = 0
470
        self.hp_search_backend = None
471
        self.use_tune_checkpoints = False
472
        default_label_names = (
473
            ["start_positions", "end_positions"]
474
            if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values()
475
476
477
            else ["labels"]
        )
        self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
478
479
        self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)

480
481
482
        # very last
        self._memory_tracker.stop_and_update_metrics()

Sylvain Gugger's avatar
Sylvain Gugger committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def add_callback(self, callback):
        """
        Add a callback to the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will instantiate a member of that class.
        """
        self.callback_handler.add_callback(callback)

    def pop_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it.

        If the callback is not found, returns :obj:`None` (and no error is raised).

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will pop the first member of that class found in the list of callbacks.

        Returns:
            :class:`~transformer.TrainerCallback`: The callback removed, if found.
        """
        return self.callback_handler.pop_callback(callback)

    def remove_callback(self, callback):
        """
        Remove a callback from the current list of :class:`~transformer.TrainerCallback`.

        Args:
           callback (:obj:`type` or :class:`~transformer.TrainerCallback`):
               A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`.
               In the first case, will remove the first member of that class found in the list of callbacks.
        """
        self.callback_handler.remove_callback(callback)
Julien Chaumond's avatar
Julien Chaumond committed
520

Sylvain Gugger's avatar
Sylvain Gugger committed
521
522
523
524
525
526
    def _move_model_to_device(self, model, device):
        model = model.to(device)
        # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
        if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
            model.tie_weights()

527
    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
528
        if not self.args.remove_unused_columns:
529
            return dataset
530
531
532
533
534
535
536
537
        if self._signature_columns is None:
            # Inspect model forward signature to keep only the arguments it accepts.
            signature = inspect.signature(self.model.forward)
            self._signature_columns = list(signature.parameters.keys())
            # Labels may be named label or label_ids, the default data collator handles that.
            self._signature_columns += ["label", "label_ids"]
        columns = [k for k in self._signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(self._signature_columns))
538
539
540
541
542
543
        if len(ignored_columns) > 0:
            dset_description = "" if description is None else f"in the {description} set "
            logger.info(
                f"The following columns {dset_description} don't have a corresponding argument in "
                f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
            )
544

545
546
547
548
549
550
551
        if version.parse(datasets.__version__) < version.parse("1.4.0"):
            dataset.set_format(
                type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
            )
            return dataset
        else:
            return dataset.remove_columns(ignored_columns)
552

553
    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
554
        if not isinstance(self.train_dataset, collections.abc.Sized):
555
            return None
556

557
558
559
560
561
        generator = None
        if self.args.world_size <= 1 and _is_torch_generator_available:
            generator = torch.Generator()
            generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))

562
563
        # Build the sampler.
        if self.args.group_by_length:
564
565
566
567
568
569
570
571
            if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
                lengths = (
                    self.train_dataset[self.args.length_column_name]
                    if self.args.length_column_name in self.train_dataset.column_names
                    else None
                )
            else:
                lengths = None
572
            model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
573
            if self.args.world_size <= 1:
574
                return LengthGroupedSampler(
575
576
577
578
579
                    self.train_dataset,
                    self.args.train_batch_size,
                    lengths=lengths,
                    model_input_name=model_input_name,
                    generator=generator,
580
                )
581
582
            else:
                return DistributedLengthGroupedSampler(
583
584
                    self.train_dataset,
                    self.args.train_batch_size,
585
586
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
587
                    lengths=lengths,
588
                    model_input_name=model_input_name,
589
                    seed=self.args.seed,
590
591
592
                )

        else:
593
            if self.args.world_size <= 1:
594
595
                if _is_torch_generator_available:
                    return RandomSampler(self.train_dataset, generator=generator)
596
                return RandomSampler(self.train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
599
600
            elif (
                self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
                and not self.args.dataloader_drop_last
            ):
601
602
603
604
605
606
                # Use a loop for TPUs when drop_last is False to have all batches have the same size.
                return DistributedSamplerWithLoop(
                    self.train_dataset,
                    batch_size=self.args.per_device_train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
607
                    seed=self.args.seed,
608
                )
609
            else:
610
                return DistributedSampler(
611
612
613
614
                    self.train_dataset,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                    seed=self.args.seed,
615
                )
616
617
618
619
620

    def get_train_dataloader(self) -> DataLoader:
        """
        Returns the training :class:`~torch.utils.data.DataLoader`.

Sylvain Gugger's avatar
Sylvain Gugger committed
621
622
        Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
        to distributed training if necessary) otherwise.
623
624
625
626
627

        Subclass and override this method if you want to inject some custom behavior.
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
628

629
630
631
632
        train_dataset = self.train_dataset
        if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
            train_dataset = self._remove_unused_columns(train_dataset, description="training")

633
        if isinstance(train_dataset, torch.utils.data.IterableDataset):
634
635
            if self.args.world_size > 1:
                train_dataset = IterableDatasetShard(
636
                    train_dataset,
637
638
639
640
641
                    batch_size=self.args.train_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
642

643
644
645
646
647
648
649
650
            return DataLoader(
                train_dataset,
                batch_size=self.args.train_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

651
652
653
        train_sampler = self._get_train_sampler()

        return DataLoader(
654
            train_dataset,
Julien Chaumond's avatar
Julien Chaumond committed
655
656
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
657
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
658
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
659
            num_workers=self.args.dataloader_num_workers,
660
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
661
662
        )

663
    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        # Deprecated code
        if self.args.use_legacy_prediction_loop:
            if is_torch_tpu_available():
                return SequentialDistributedSampler(
                    eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
                )
            elif is_sagemaker_mp_enabled():
                return SequentialDistributedSampler(
                    eval_dataset,
                    num_replicas=smp.dp_size(),
                    rank=smp.dp_rank(),
                    batch_size=self.args.per_device_eval_batch_size,
                )
            elif self.args.local_rank != -1:
                return SequentialDistributedSampler(eval_dataset)
            else:
                return SequentialSampler(eval_dataset)

        if self.args.world_size <= 1:
            return SequentialSampler(eval_dataset)
        else:
            return ShardSampler(
Sylvain Gugger's avatar
Sylvain Gugger committed
686
687
                eval_dataset,
                batch_size=self.args.per_device_eval_batch_size,
688
689
                num_processes=self.args.world_size,
                process_index=self.args.process_index,
Sylvain Gugger's avatar
Sylvain Gugger committed
690
            )
Lysandre Debut's avatar
Lysandre Debut committed
691

Julien Chaumond's avatar
Julien Chaumond committed
692
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
693
694
695
        """
        Returns the evaluation :class:`~torch.utils.data.DataLoader`.

696
697
        Subclass and override this method if you want to inject some custom behavior.

698
        Args:
699
            eval_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
700
                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
701
                accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
702
        """
Julien Chaumond's avatar
Julien Chaumond committed
703
704
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
705
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
706

707
708
709
        if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
            eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")

710
        if isinstance(eval_dataset, torch.utils.data.IterableDataset):
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            if self.args.world_size > 1:
                eval_dataset = IterableDatasetShard(
                    eval_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                eval_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

727
        eval_sampler = self._get_eval_sampler(eval_dataset)
728

729
        return DataLoader(
730
            eval_dataset,
731
            sampler=eval_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
732
            batch_size=self.args.eval_batch_size,
733
            collate_fn=self.data_collator,
Setu Shah's avatar
Setu Shah committed
734
            drop_last=self.args.dataloader_drop_last,
Chady Kamar's avatar
Chady Kamar committed
735
            num_workers=self.args.dataloader_num_workers,
736
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
737
738
739
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
740
741
742
        """
        Returns the test :class:`~torch.utils.data.DataLoader`.

743
744
        Subclass and override this method if you want to inject some custom behavior.

745
        Args:
746
            test_dataset (:obj:`torch.utils.data.Dataset`, `optional`):
747
                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
748
                ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
749
        """
750
        if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
751
            test_dataset = self._remove_unused_columns(test_dataset, description="test")
752

753
        if isinstance(test_dataset, torch.utils.data.IterableDataset):
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
            if self.args.world_size > 1:
                test_dataset = IterableDatasetShard(
                    test_dataset,
                    batch_size=self.args.eval_batch_size,
                    drop_last=self.args.dataloader_drop_last,
                    num_processes=self.args.world_size,
                    process_index=self.args.process_index,
                )
            return DataLoader(
                test_dataset,
                batch_size=self.args.eval_batch_size,
                collate_fn=self.data_collator,
                num_workers=self.args.dataloader_num_workers,
                pin_memory=self.args.dataloader_pin_memory,
            )

770
        test_sampler = self._get_eval_sampler(test_dataset)
Lysandre Debut's avatar
Lysandre Debut committed
771

772
773
        # We use the same batch_size as for eval.
        return DataLoader(
Julien Chaumond's avatar
Julien Chaumond committed
774
            test_dataset,
775
            sampler=test_sampler,
Julien Chaumond's avatar
Julien Chaumond committed
776
            batch_size=self.args.eval_batch_size,
777
            collate_fn=self.data_collator,
778
            drop_last=self.args.dataloader_drop_last,
779
            pin_memory=self.args.dataloader_pin_memory,
Julien Chaumond's avatar
Julien Chaumond committed
780
        )
Lysandre Debut's avatar
Lysandre Debut committed
781

782
    def create_optimizer_and_scheduler(self, num_training_steps: int):
783
784
785
        """
        Setup the optimizer and the learning rate scheduler.

786
787
788
789
790
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer`
        and/or :obj:`create_scheduler`) in a subclass.
        """
        self.create_optimizer()
791
        self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
792
793
794
795
796

    def create_optimizer(self):
        """
        Setup the optimizer.

797
        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
798
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
799
        """
800
        if self.optimizer is None:
801
            decay_parameters = get_parameter_names(self.model, [nn.LayerNorm])
802
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
803
804
            optimizer_grouped_parameters = [
                {
805
                    "params": [p for n, p in self.model.named_parameters() if n in decay_parameters],
806
807
808
                    "weight_decay": self.args.weight_decay,
                },
                {
809
                    "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters],
810
811
812
                    "weight_decay": 0.0,
                },
            ]
Sylvain Gugger's avatar
Sylvain Gugger committed
813
814
815
816
817
818
819
820
821
822
823
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
            if self.args.adafactor:
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
            else:
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
824
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
825
826
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
                    optim=optimizer_cls,
                    **optimizer_kwargs,
829
830
                )
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
831
832
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)

Sylvain Gugger's avatar
Sylvain Gugger committed
833
834
835
        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(self.optimizer)

836
837
838
        return self.optimizer

    def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
839
        """
840
841
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.
842
843
844
845

        Args:
            num_training_steps (int): The number of training steps to do.
        """
846
        if self.lr_scheduler is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
847
848
            self.lr_scheduler = get_scheduler(
                self.args.lr_scheduler_type,
849
                optimizer=self.optimizer if optimizer is None else optimizer,
850
                num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
Sylvain Gugger's avatar
Sylvain Gugger committed
851
                num_training_steps=num_training_steps,
852
            )
853
        return self.lr_scheduler
Julien Chaumond's avatar
Julien Chaumond committed
854

855
    def num_examples(self, dataloader: DataLoader) -> int:
856
        """
857
        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
858

859
        Will raise an exception if the underlying dataset does not implement method :obj:`__len__`
860
        """
861
        return len(dataloader.dataset)
862

863
    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
Patrick von Platen's avatar
Patrick von Platen committed
864
        """HP search setup code"""
865
866
        self._trial = trial

867
868
        if self.hp_search_backend is None or trial is None:
            return
869
870
871
872
873
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            params = self.hp_space(trial)
        elif self.hp_search_backend == HPSearchBackend.RAY:
            params = trial
            params.pop("wandb", None)
874
875
        elif self.hp_search_backend == HPSearchBackend.SIGOPT:
            params = {k: int(v) if isinstance(v, str) else v for k, v in trial.assignments.items()}
876

877
878
        for key, value in params.items():
            if not hasattr(self.args, key):
879
                logger.warn(
880
881
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
882
                continue
883
884
885
886
887
888
889
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)
890
891
        if self.hp_search_backend == HPSearchBackend.SIGOPT:
            logger.info(f"SigOpt Assignments: {trial.assignments}")
892
893
        if self.args.deepspeed:
            # Rebuild the deepspeed config to reflect the updated training parameters
894
            from transformers.deepspeed import HfDeepSpeedConfig
895

896
            self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args)
897
898
899
900
901
902

    def _report_to_hp_search(
        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
    ):
        if self.hp_search_backend is None or trial is None:
            return
903
        self.objective = self.compute_objective(metrics.copy())
904
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
905
906
            import optuna

907
908
909
910
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
911
912
            from ray import tune

913
            if self.control.should_save:
914
                self._tune_save_checkpoint()
915
916
            tune.report(objective=self.objective, **metrics)

917
    def _tune_save_checkpoint(self):
918
919
        from ray import tune

920
921
        if not self.use_tune_checkpoints:
            return
922
        with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
923
            output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
924
            self.save_model(output_dir)
925
            if self.args.should_save:
926
927
928
                self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
929

930
    def call_model_init(self, trial=None):
931
        model_init_argcount = number_of_arguments(self.model_init)
932
933
934
935
936
        if model_init_argcount == 0:
            model = self.model_init()
        elif model_init_argcount == 1:
            model = self.model_init(trial)
        else:
937
938
939
940
            raise RuntimeError("model_init should have 0 or 1 argument.")

        if model is None:
            raise RuntimeError("model_init should not return None.")
941
942
943

        return model

944
    def _wrap_model(self, model, training=True):
Sylvain Gugger's avatar
Sylvain Gugger committed
945
946
947
948
949
950
        if is_sagemaker_mp_enabled():
            # Wrapping the base model twice in a DistributedModel will raise an error.
            if isinstance(self.model_wrapped, smp.model.DistributedModel):
                return self.model_wrapped
            return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)

951
952
        # already initialized its own DDP and AMP
        if self.deepspeed:
953
            return self.deepspeed
954

955
956
957
958
        # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
        if unwrap_model(model) is not model:
            return model

959
960
961
962
963
964
        # Mixed precision training with apex (torch < 1.6)
        if self.use_apex and training:
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
965
            model = nn.DataParallel(model)
966
967
968
969
970
971
972

        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
        if not training:
            return model

        # Distributed training (should be after apex fp16 initialization)
973
974
975
976
977
978
979
980
981
        if self.sharded_ddp is not None:
            # Sharded DDP!
            if self.sharded_ddp == ShardedDDPOption.SIMPLE:
                model = ShardedDDP(model, self.optimizer)
            else:
                mixed_precision = self.args.fp16
                cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
                zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
                # XXX: Breaking the self.model convention but I see no way around it for now.
982
983
                if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
                    model = auto_wrap(model)
984
                self.model = model = FullyShardedDDP(
985
986
987
988
                    model,
                    mixed_precision=mixed_precision,
                    reshard_after_forward=zero_3,
                    cpu_offload=cpu_offload,
989
990
                ).to(self.args.device)

Sylvain Gugger's avatar
Sylvain Gugger committed
991
        elif is_sagemaker_dp_enabled():
992
993
994
995
996
997
998
            model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
        elif self.args.local_rank != -1:
            if self.args.ddp_find_unused_parameters is not None:
                find_unused_parameters = self.args.ddp_find_unused_parameters
            elif isinstance(model, PreTrainedModel):
                # find_unused_parameters breaks checkpointing as per
                # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
999
                find_unused_parameters = not getattr(model.config, "_gradient_checkpointing", False)
1000
1001
            else:
                find_unused_parameters = True
1002
            model = nn.parallel.DistributedDataParallel(
1003
1004
1005
1006
1007
1008
1009
1010
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=find_unused_parameters,
            )

        return model

1011
1012
    def train(
        self,
1013
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
1014
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
1015
        ignore_keys_for_eval: Optional[List[str]] = None,
1016
        **kwargs,
1017
    ):
Julien Chaumond's avatar
Julien Chaumond committed
1018
1019
1020
1021
        """
        Main training entry point.

        Args:
1022
1023
1024
1025
1026
            resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`):
                If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of
                :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in
                `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present,
                training will resume from the model/optimizer/scheduler states loaded here.
1027
1028
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
1029
1030
1031
            ignore_keys_for_eval (:obj:`List[str]`, `optional`)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
1032
1033
            kwargs:
                Additional keyword arguments used to hide deprecated arguments
Julien Chaumond's avatar
Julien Chaumond committed
1034
        """
1035
        resume_from_checkpoint = None if not resume_from_checkpoint else resume_from_checkpoint
1036
1037
1038
1039

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

1040
1041
        args = self.args

1042
1043
        self.is_in_train = True

1044
1045
1046
        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if args.fp16_full_eval and not args.do_train:
Sylvain Gugger's avatar
Sylvain Gugger committed
1047
            self._move_model_to_device(self.model, args.device)
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1058
1059
1060
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

1061
        # Model re-init
1062
        model_reloaded = False
1063
        if self.model_init is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1064
            # Seed must be set before instantiating the model when using model_init.
1065
            set_seed(args.seed)
1066
1067
            self.model = self.call_model_init(trial)
            model_reloaded = True
Sylvain Gugger's avatar
Sylvain Gugger committed
1068
1069
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None
1070

1071
        # Load potential model checkpoint
1072
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
1073
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
1074
            if resume_from_checkpoint is None:
1075
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
1076

1077
1078
1079
1080
        if resume_from_checkpoint is not None:
            if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
                raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")

1081
            logger.info(f"Loading model from {resume_from_checkpoint}).")
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
                config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
                checkpoint_version = config.transformers_version
                if checkpoint_version is not None and checkpoint_version != __version__:
                    logger.warn(
                        f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
                        f"Transformers but your current version is {__version__}. This is not recommended and could "
                        "yield to errors or unwanted behaviors."
                    )

1093
            if args.deepspeed:
1094
                # will be resumed in deepspeed_init
1095
                pass
1096
            else:
1097
1098
1099
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
                # If the model is on the GPU, it still works!
1100
                self._load_state_dict_in_model(state_dict)
1101

1102
1103
1104
                # release memory
                del state_dict

1105
1106
        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
1107
            if self.place_model_on_device:
Sylvain Gugger's avatar
Sylvain Gugger committed
1108
                self._move_model_to_device(self.model, args.device)
1109
1110
            self.model_wrapped = self.model

1111
1112
1113
        # Keeping track whether we can can len() on the dataset or not
        train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)

1114
        # Data loader and number of training steps
Julien Chaumond's avatar
Julien Chaumond committed
1115
        train_dataloader = self.get_train_dataloader()
1116
1117
1118
1119
1120

        # Setting up training control variables:
        # number of training epochs: num_train_epochs
        # number of training steps per epoch: num_update_steps_per_epoch
        # total number of training steps to execute: max_steps
1121
        total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
1122
        if train_dataset_is_sized:
1123
            num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps
1124
            num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
1125
1126
1127
1128
            if args.max_steps > 0:
                max_steps = args.max_steps
                num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
                    args.max_steps % num_update_steps_per_epoch > 0
1129
                )
1130
1131
1132
                # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's
                # the best we can do.
                num_train_samples = args.max_steps * total_train_batch_size
1133
            else:
1134
1135
                max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
                num_train_epochs = math.ceil(args.num_train_epochs)
1136
                num_train_samples = len(self.train_dataset) * args.num_train_epochs
Julien Chaumond's avatar
Julien Chaumond committed
1137
        else:
1138
            # see __init__. max_steps is set when the dataset has no __len__
1139
            max_steps = args.max_steps
1140
1141
            # Setting a very large number of epochs so we go as many times as necessary over the iterator.
            num_train_epochs = sys.maxsize
1142
            num_update_steps_per_epoch = max_steps
1143
            num_train_samples = args.max_steps * total_train_batch_size
Julien Chaumond's avatar
Julien Chaumond committed
1144

1145
        if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
1146
1147
1148
1149
1150
1151
1152
1153
            if self.args.n_gpu > 1:
                # nn.DataParallel(model) replicates the model, creating new variables and module
                # references registered here no longer work on other gpus, breaking the module
                raise ValueError(
                    "Currently --debug underflow_overflow is not supported under DP. Please use DDP (torch.distributed.launch)."
                )
            else:
                debug_overflow = DebugUnderflowOverflow(self.model)  # noqa
1154

1155
        delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE
1156
        if args.deepspeed:
1157
            deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
1158
1159
                self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
            )
1160
1161
1162
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
1163
1164
            self.optimizer = optimizer
            self.lr_scheduler = lr_scheduler
1165
        elif not delay_optimizer_creation:
1166
1167
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1168
        self.state = TrainerState()
1169
        self.state.is_hyper_param_search = trial is not None
Julien Chaumond's avatar
Julien Chaumond committed
1170

1171
1172
1173
1174
        # Activate gradient checkpointing if needed
        if args.gradient_checkpointing:
            self.model.gradient_checkpointing_enable()

1175
        model = self._wrap_model(self.model_wrapped)
Julien Chaumond's avatar
Julien Chaumond committed
1176

1177
1178
1179
1180
        # for the rest of this function `model` is the outside model, whether it was wrapped or not
        if model is not self.model:
            self.model_wrapped = model

1181
1182
1183
        if delay_optimizer_creation:
            self.create_optimizer_and_scheduler(num_training_steps=max_steps)

1184
1185
1186
        # Check if saved optimizer or scheduler states exist
        self._load_optimizer_and_scheduler(resume_from_checkpoint)

1187
1188
        # important: at this point:
        # self.model         is the Transformers Model
1189
        # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
1190

Julien Chaumond's avatar
Julien Chaumond committed
1191
        # Train!
1192
        num_examples = (
1193
            self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps
1194
1195
        )

Julien Chaumond's avatar
Julien Chaumond committed
1196
        logger.info("***** Running training *****")
1197
1198
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
1199
        logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
1200
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
1201
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
1202
        logger.info(f"  Total optimization steps = {max_steps}")
Julien Chaumond's avatar
Julien Chaumond committed
1203

1204
        self.state.epoch = 0
1205
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
1206
1207
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
1208
        steps_trained_progress_bar = None
1209

Julien Chaumond's avatar
Julien Chaumond committed
1210
        # Check if continuing training from a checkpoint
1211
        if resume_from_checkpoint is not None and os.path.isfile(
1212
            os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
1213
        ):
1214
            self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
1215
            epochs_trained = self.state.global_step // num_update_steps_per_epoch
1216
            if not args.ignore_data_skip:
1217
                steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
1218
                steps_trained_in_current_epoch *= args.gradient_accumulation_steps
1219
1220
            else:
                steps_trained_in_current_epoch = 0
1221
1222

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
1223
1224
            logger.info(f"  Continuing training from epoch {epochs_trained}")
            logger.info(f"  Continuing training from global step {self.state.global_step}")
1225
            if not args.ignore_data_skip:
1226
1227
                logger.info(
                    f"  Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
1228
1229
                    "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` "
                    "flag to your launch command, but you will resume the training on data already seen by your model."
1230
                )
1231
1232
1233
                if self.is_local_process_zero() and not args.disable_tqdm:
                    steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
                    steps_trained_progress_bar.set_description("Skipping the first batches")
1234

Sylvain Gugger's avatar
Sylvain Gugger committed
1235
1236
1237
1238
1239
        # Update the references
        self.callback_handler.model = self.model
        self.callback_handler.optimizer = self.optimizer
        self.callback_handler.lr_scheduler = self.lr_scheduler
        self.callback_handler.train_dataloader = train_dataloader
1240
        self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
1241
        self.state.trial_params = hp_params(trial.assignments) if trial is not None else None
1242
1243
1244
1245
        # This should be the same if the state has been saved but in case the training arguments changed, it's safer
        # to set this after the load.
        self.state.max_steps = max_steps
        self.state.num_train_epochs = num_train_epochs
Sylvain Gugger's avatar
Sylvain Gugger committed
1246
1247
        self.state.is_local_process_zero = self.is_local_process_zero()
        self.state.is_world_process_zero = self.is_world_process_zero()
Julien Chaumond's avatar
Julien Chaumond committed
1248

1249
        # tr_loss is a tensor to avoid synchronization of TPUs through .item()
1250
        tr_loss = torch.tensor(0.0).to(args.device)
1251
1252
        # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
        self._total_loss_scalar = 0.0
1253
        self._globalstep_last_logged = self.state.global_step
Julien Chaumond's avatar
Julien Chaumond committed
1254
        model.zero_grad()
Sylvain Gugger's avatar
Sylvain Gugger committed
1255

1256
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1257

1258
        # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
1259
        if not args.ignore_data_skip:
1260
1261
1262
1263
1264
            for epoch in range(epochs_trained):
                # We just need to begin an iteration to create the randomization of the sampler.
                for _ in train_dataloader:
                    break

1265
        for epoch in range(epochs_trained, num_train_epochs):
1266
1267
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)
1268
1269
            elif isinstance(train_dataloader.dataset, IterableDatasetShard):
                train_dataloader.dataset.set_epoch(epoch)
1270

1271
            if is_torch_tpu_available():
1272
                parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
1273
                epoch_iterator = parallel_loader
1274
            else:
1275
                epoch_iterator = train_dataloader
1276

1277
            # Reset the past mems state at the beginning of each epoch if necessary.
1278
            if args.past_index >= 0:
1279
1280
                self._past = None

1281
            steps_in_epoch = (
1282
                len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps
1283
            )
1284
            self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1285

Julien Chaumond's avatar
Julien Chaumond committed
1286
1287
1288
1289
1290
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
1291
1292
                    if steps_trained_progress_bar is not None:
                        steps_trained_progress_bar.update(1)
1293
1294
                    if steps_trained_in_current_epoch == 0:
                        self._load_rng_state(resume_from_checkpoint)
Julien Chaumond's avatar
Julien Chaumond committed
1295
                    continue
1296
1297
1298
                elif steps_trained_progress_bar is not None:
                    steps_trained_progress_bar.close()
                    steps_trained_progress_bar = None
Julien Chaumond's avatar
Julien Chaumond committed
1299

1300
1301
                if step % args.gradient_accumulation_steps == 0:
                    self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1302

1303
                if (
1304
1305
1306
                    ((step + 1) % args.gradient_accumulation_steps != 0)
                    and args.local_rank != -1
                    and args._no_sync_in_gradient_accumulation
1307
                ):
1308
                    # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
1309
                    with model.no_sync():
1310
                        tr_loss_step = self.training_step(model, inputs)
1311
                else:
1312
1313
1314
1315
1316
1317
1318
1319
                    tr_loss_step = self.training_step(model, inputs)

                if args.logging_nan_inf_filter and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step)):
                    # if loss is nan or inf simply add the average of previous logged losses
                    tr_loss += tr_loss / 1 + (self.state.global_step - self._globalstep_last_logged)
                else:
                    tr_loss += tr_loss_step

1320
                self.current_flos += float(self.floating_point_ops(inputs))
Julien Chaumond's avatar
Julien Chaumond committed
1321

1322
1323
1324
1325
                # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
                if self.deepspeed:
                    self.deepspeed.step()

1326
                if (step + 1) % args.gradient_accumulation_steps == 0 or (
Julien Chaumond's avatar
Julien Chaumond committed
1327
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
1328
                    steps_in_epoch <= args.gradient_accumulation_steps
1329
                    and (step + 1) == steps_in_epoch
Julien Chaumond's avatar
Julien Chaumond committed
1330
                ):
1331
                    # Gradient clipping
1332
                    if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
1333
1334
                        # deepspeed does its own clipping

1335
1336
1337
1338
1339
1340
                        if self.use_amp:
                            # AMP: gradients need unscaling
                            self.scaler.unscale_(self.optimizer)

                        if hasattr(self.optimizer, "clip_grad_norm"):
                            # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
1341
                            self.optimizer.clip_grad_norm(args.max_grad_norm)
1342
1343
                        elif hasattr(model, "clip_grad_norm_"):
                            # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
1344
                            model.clip_grad_norm_(args.max_grad_norm)
1345
1346
                        else:
                            # Revert to normal clipping otherwise, handling Apex or full precision
1347
                            nn.utils.clip_grad_norm_(
1348
                                amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
1349
                                args.max_grad_norm,
1350
1351
1352
                            )

                    # Optimizer step
1353
                    optimizer_was_run = True
Stas Bekman's avatar
Stas Bekman committed
1354
                    if self.deepspeed:
1355
                        pass  # called outside the loop
Stas Bekman's avatar
Stas Bekman committed
1356
                    elif is_torch_tpu_available():
1357
                        xm.optimizer_step(self.optimizer)
1358
                    elif self.use_amp:
1359
                        scale_before = self.scaler.get_scale()
1360
                        self.scaler.step(self.optimizer)
1361
                        self.scaler.update()
1362
1363
                        scale_after = self.scaler.get_scale()
                        optimizer_was_run = scale_before <= scale_after
Lysandre Debut's avatar
Lysandre Debut committed
1364
                    else:
1365
                        self.optimizer.step()
Lysandre Debut's avatar
Lysandre Debut committed
1366

1367
                    if optimizer_was_run and not self.deepspeed:
1368
1369
                        self.lr_scheduler.step()

Julien Chaumond's avatar
Julien Chaumond committed
1370
                    model.zero_grad()
1371
                    self.state.global_step += 1
1372
                    self.state.epoch = epoch + (step + 1) / steps_in_epoch
1373
                    self.control = self.callback_handler.on_step_end(args, self.state, self.control)
Sylvain Gugger's avatar
Sylvain Gugger committed
1374

1375
                    self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
wulu473's avatar
wulu473 committed
1376
1377
                else:
                    self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
1378

Sylvain Gugger's avatar
Sylvain Gugger committed
1379
                if self.control.should_epoch_stop or self.control.should_training_stop:
Julien Chaumond's avatar
Julien Chaumond committed
1380
                    break
1381

1382
            self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
1383
            self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
1384

1385
            if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
1386
1387
1388
1389
1390
1391
1392
1393
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1394
            if self.control.should_training_stop:
1395
                break
Julien Chaumond's avatar
Julien Chaumond committed
1396

1397
        if args.past_index and hasattr(self, "_past"):
1398
1399
            # Clean the state at the end of training
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
1400
1401

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
1402
        if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
1403
1404
1405
            # Wait for everyone to get here so we are sur the model has been saved by process 0.
            if is_torch_tpu_available():
                xm.rendezvous("load_best_model_at_end")
1406
            elif args.local_rank != -1:
1407
1408
                dist.barrier()

1409
1410
1411
            logger.info(
                f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
            )
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423

            best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
            if os.path.exists(best_model_path):
                # We load the model state dict on the CPU to avoid an OOM error.
                state_dict = torch.load(best_model_path, map_location="cpu")
                # If the model is on the GPU, it still works!
                self._load_state_dict_in_model(state_dict)
            else:
                logger.warn(
                    f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
                    "on multiple nodes, you should activate `--save_on_each_node`."
                )
1424

1425
1426
1427
1428
1429
            if self.deepspeed:
                self.deepspeed.load_checkpoint(
                    self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
                )

1430
1431
1432
1433
        # add remaining tr_loss
        self._total_loss_scalar += tr_loss.item()
        train_loss = self._total_loss_scalar / self.state.global_step

1434
        metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
1435
1436
        self.store_flos()
        metrics["total_flos"] = self.state.total_flos
1437
        metrics["train_loss"] = train_loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1438

1439
        self.is_in_train = False
1440

1441
1442
        self._memory_tracker.stop_and_update_metrics(metrics)

1443
1444
1445
1446
1447
        self.log(metrics)

        self.control = self.callback_handler.on_train_end(args, self.state, self.control)

        return TrainOutput(self.state.global_step, train_loss, metrics)
1448

1449
1450
1451
1452
    def _load_state_dict_in_model(self, state_dict):
        load_result = self.model.load_state_dict(state_dict, strict=False)

        if len(load_result.missing_keys) != 0:
1453
1454
1455
            if self.model._keys_to_ignore_on_save is not None and set(load_result.missing_keys) == set(
                self.model._keys_to_ignore_on_save
            ):
1456
1457
1458
1459
1460
1461
                self.model.tie_weights()
            else:
                logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
        if len(load_result.unexpected_keys) != 0:
            logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.")

1462
    def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
Sylvain Gugger's avatar
Sylvain Gugger committed
1463
1464
1465
        if self.control.should_log:
            logs: Dict[str, float] = {}
            tr_loss_scalar = tr_loss.item()
1466
1467
1468
            # reset tr_loss to zero
            tr_loss -= tr_loss

1469
            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
1470
            logs["learning_rate"] = self._get_learning_rate()
1471

1472
            self._total_loss_scalar += tr_loss_scalar
1473
            self._globalstep_last_logged = self.state.global_step
Teven's avatar
Teven committed
1474
            self.store_flos()
Sylvain Gugger's avatar
Sylvain Gugger committed
1475
1476
1477
1478
1479

            self.log(logs)

        metrics = None
        if self.control.should_evaluate:
1480
            metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
Sylvain Gugger's avatar
Sylvain Gugger committed
1481
            self._report_to_hp_search(trial, epoch, metrics)
1482

Sylvain Gugger's avatar
Sylvain Gugger committed
1483
1484
1485
1486
        if self.control.should_save:
            self._save_checkpoint(model, trial, metrics=metrics)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
    def _load_rng_state(self, checkpoint):
        # Load RNG states from `checkpoint`
        if checkpoint is None:
            return

        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank != -1:
            rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that "
                    "wasn't launched in a distributed fashion, reproducibility is not guaranteed."
                )
                return
        else:
            rng_file = os.path.join(checkpoint, "rng_state.pth")
            if not os.path.isfile(os.path.join(checkpoint, rng_file)):
                logger.info(
                    "Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
                    "fashion, reproducibility is not guaranteed."
                )
                return

        checkpoint_rng_state = torch.load(rng_file)
        random.setstate(checkpoint_rng_state["python"])
        np.random.set_state(checkpoint_rng_state["numpy"])
        torch.random.set_rng_state(checkpoint_rng_state["cpu"])
        if torch.cuda.is_available():
            if self.args.local_rank != -1:
                torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
            else:
                torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
        if is_torch_tpu_available():
            xm.set_rng_state(checkpoint_rng_state["xla"])

Sylvain Gugger's avatar
Sylvain Gugger committed
1522
    def _save_checkpoint(self, model, trial, metrics=None):
1523
        # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
1524
        # want to save except FullyShardedDDP.
1525
        # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
1526

1527
        # Save model checkpoint
1528
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
1529

1530
        if self.hp_search_backend is not None and trial is not None:
1531
1532
            if self.hp_search_backend == HPSearchBackend.OPTUNA:
                run_id = trial.number
1533
            elif self.hp_search_backend == HPSearchBackend.RAY:
1534
1535
1536
                from ray import tune

                run_id = tune.get_trial_id()
1537
1538
            elif self.hp_search_backend == HPSearchBackend.SIGOPT:
                run_id = trial.id
1539
            run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
1540
            run_dir = os.path.join(self.args.output_dir, run_name)
1541
        else:
1542
            run_dir = self.args.output_dir
1543
            self.store_flos()
1544

1545
        output_dir = os.path.join(run_dir, checkpoint_folder)
1546
        self.save_model(output_dir)
1547
        if self.deepspeed:
1548
1549
            # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
            # config `stage3_gather_fp16_weights_on_model_save` is True
1550
            self.deepspeed.save_checkpoint(output_dir)
1551
1552

        # Save optimizer and scheduler
1553
        if self.sharded_ddp == ShardedDDPOption.SIMPLE:
1554
            self.optimizer.consolidate_state_dict()
1555

1556
1557
        if is_torch_tpu_available():
            xm.rendezvous("saving_optimizer_states")
1558
            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
1559
            with warnings.catch_warnings(record=True) as caught_warnings:
1560
                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1561
                reissue_pt_warnings(caught_warnings)
Sylvain Gugger's avatar
Sylvain Gugger committed
1562
        elif is_sagemaker_mp_enabled():
1563
1564
1565
1566
            if smp.dp_rank() == 0:
                # Consolidate the state dict on all processed of dp_rank 0
                opt_state_dict = self.optimizer.state_dict()
                # Save it and the scheduler on the main process
1567
                if self.args.should_save:
1568
                    torch.save(opt_state_dict, os.path.join(output_dir, OPTIMIZER_NAME))
1569
                    with warnings.catch_warnings(record=True) as caught_warnings:
1570
                        torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1571
                    reissue_pt_warnings(caught_warnings)
1572
                    if self.use_amp:
1573
                        torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
1574
        elif self.args.should_save and not self.deepspeed:
1575
            # deepspeed.save_checkpoint above saves model/optim/sched
1576
            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
1577
            with warnings.catch_warnings(record=True) as caught_warnings:
1578
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
1579
            reissue_pt_warnings(caught_warnings)
1580
            if self.use_amp:
1581
                torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
1582
1583

        # Determine the new best metric / best model checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
1584
        if metrics is not None and self.args.metric_for_best_model is not None:
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
            metric_to_check = self.args.metric_for_best_model
            if not metric_to_check.startswith("eval_"):
                metric_to_check = f"eval_{metric_to_check}"
            metric_value = metrics[metric_to_check]

            operator = np.greater if self.args.greater_is_better else np.less
            if (
                self.state.best_metric is None
                or self.state.best_model_checkpoint is None
                or operator(metric_value, self.state.best_metric)
            ):
                self.state.best_metric = metric_value
                self.state.best_model_checkpoint = output_dir

        # Save the Trainer state
1600
        if self.args.should_save:
1601
            self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
1602

1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
        # Save RNG state in non-distributed training
        rng_states = {
            "python": random.getstate(),
            "numpy": np.random.get_state(),
            "cpu": torch.random.get_rng_state(),
        }
        if torch.cuda.is_available():
            if self.args.local_rank == -1:
                # In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
                rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
            else:
                rng_states["cuda"] = torch.cuda.random.get_rng_state()

        if is_torch_tpu_available():
            rng_states["xla"] = xm.get_rng_state()

1619
1620
1621
        # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
        # not yet exist.
        os.makedirs(output_dir, exist_ok=True)
1622
1623
1624
1625
1626
1627
        local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank
        if local_rank == -1:
            torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
        else:
            torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth"))

1628
1629
1630
        if self.args.push_to_hub:
            self._push_from_checkpoint(output_dir)

1631
        # Maybe delete some older checkpoints.
1632
        if self.args.should_save:
1633
1634
            self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)

1635
    def _load_optimizer_and_scheduler(self, checkpoint):
Sylvain Gugger's avatar
Sylvain Gugger committed
1636
        """If optimizer and scheduler states exist, load them."""
1637
        if checkpoint is None:
1638
1639
            return

1640
        if self.deepspeed:
1641
            # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
1642
1643
            return

1644
1645
        if os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME)) and os.path.isfile(
            os.path.join(checkpoint, SCHEDULER_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
1646
1647
1648
1649
        ):
            # Load in optimizer and scheduler states
            if is_torch_tpu_available():
                # On TPU we have to take some extra precautions to properly load the states on the right device.
1650
                optimizer_state = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1651
                with warnings.catch_warnings(record=True) as caught_warnings:
1652
                    lr_scheduler_state = torch.load(os.path.join(checkpoint, SCHEDULER_NAME), map_location="cpu")
Sylvain Gugger's avatar
Sylvain Gugger committed
1653
1654
1655
1656
1657
1658
1659
1660
                reissue_pt_warnings(caught_warnings)

                xm.send_cpu_data_to_device(optimizer_state, self.args.device)
                xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)

                self.optimizer.load_state_dict(optimizer_state)
                self.lr_scheduler.load_state_dict(lr_scheduler_state)
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1661
                map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device
Sylvain Gugger's avatar
Sylvain Gugger committed
1662
                self.optimizer.load_state_dict(
1663
                    torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
Sylvain Gugger's avatar
Sylvain Gugger committed
1664
1665
                )
                with warnings.catch_warnings(record=True) as caught_warnings:
1666
                    self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, SCHEDULER_NAME)))
Sylvain Gugger's avatar
Sylvain Gugger committed
1667
                reissue_pt_warnings(caught_warnings)
1668
1669
                if self.use_amp and os.path.isfile(os.path.join(checkpoint, SCALER_NAME)):
                    self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, SCALER_NAME)))
Sylvain Gugger's avatar
Sylvain Gugger committed
1670

1671
1672
1673
1674
1675
1676
1677
    def hyperparameter_search(
        self,
        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
        n_trials: int = 20,
        direction: str = "minimize",
        backend: Optional[Union["str", HPSearchBackend]] = None,
1678
        hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
1679
        **kwargs,
1680
1681
    ) -> BestRun:
        """
1682
1683
1684
        Launch an hyperparameter search using ``optuna`` or ``Ray Tune`` or ``SigOpt``. The optimized quantity is
        determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no
        metric is provided, the sum of all metrics otherwise.
1685

Sylvain Gugger's avatar
Sylvain Gugger committed
1686
1687
1688
1689
1690
1691
1692
        .. warning::

            To use this method, you need to have provided a ``model_init`` when initializing your
            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.

1693
1694
1695
1696
        Args:
            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
                A function that defines the hyperparameter search space. Will default to
                :func:`~transformers.trainer_utils.default_hp_space_optuna` or
1697
1698
                :func:`~transformers.trainer_utils.default_hp_space_ray` or
                :func:`~transformers.trainer_utils.default_hp_space_sigopt` depending on your backend.
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
                A function computing the objective to minimize or maximize from the metrics returned by the
                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
            n_trials (:obj:`int`, `optional`, defaults to 100):
                The number of trial runs to test.
            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
                several metrics.
            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
1709
1710
                The backend to use for hyperparameter search. Will default to optuna or Ray Tune or SigOpt, depending
                on which one is installed. If all are installed, will default to optuna.
1711
1712
1713
1714
            kwargs:
                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
                more information see:

Sylvain Gugger's avatar
Sylvain Gugger committed
1715
                - the documentation of `optuna.create_study
1716
                  <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
1717
1718
                - the documentation of `tune.run
                  <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
1719
                - the documentation of `sigopt <https://app.sigopt.com/docs/endpoints/experiments/create>`__
1720
1721

        Returns:
Tiger's avatar
Tiger committed
1722
            :class:`transformers.trainer_utils.BestRun`: All the information about the best run.
1723
1724
1725
1726
1727
1728
1729
1730
        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
                    "To install optuna run `pip install optuna`."
                    "To install ray run `pip install ray[tune]`."
1731
                    "To install sigopt run `pip install sigopt`."
1732
1733
1734
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
1735
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
1736
        if backend == HPSearchBackend.RAY and not is_ray_tune_available():
1737
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1738
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
1739
            )
1740
1741
        if backend == HPSearchBackend.SIGOPT and not is_sigopt_available():
            raise RuntimeError("You picked the sigopt backend, but it is not installed. Use `pip install sigopt`.")
1742
        self.hp_search_backend = backend
Sylvain Gugger's avatar
Sylvain Gugger committed
1743
1744
1745
1746
1747
        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

1748
        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
1749
        self.hp_name = hp_name
1750
1751
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

1752
1753
1754
1755
1756
1757
        backend_dict = {
            HPSearchBackend.OPTUNA: run_hp_search_optuna,
            HPSearchBackend.RAY: run_hp_search_ray,
            HPSearchBackend.SIGOPT: run_hp_search_sigopt,
        }
        best_run = backend_dict[backend](self, n_trials, direction, **kwargs)
1758
1759
1760
1761

        self.hp_search_backend = None
        return best_run

Sylvain Gugger's avatar
Sylvain Gugger committed
1762
    def log(self, logs: Dict[str, float]) -> None:
1763
1764
1765
1766
1767
1768
1769
1770
1771
        """
        Log :obj:`logs` on the various objects watching training.

        Subclass and override this method to inject custom behavior.

        Args:
            logs (:obj:`Dict[str, float]`):
                The values to log.
        """
1772
        if self.state.epoch is not None:
1773
            logs["epoch"] = round(self.state.epoch, 2)
1774

1775
1776
        output = {**logs, **{"step": self.state.global_step}}
        self.state.log_history.append(output)
1777
        self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
Julien Chaumond's avatar
Julien Chaumond committed
1778

1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
    def _prepare_input(self, data: Union[torch.Tensor, Any]) -> Union[torch.Tensor, Any]:
        """
        Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
        """
        if isinstance(data, dict):
            return type(data)(**{k: self._prepare_input(v) for k, v in data.items()})
        elif isinstance(data, (tuple, list)):
            return type(data)(self._prepare_input(v) for v in data)
        elif isinstance(data, torch.Tensor):
            kwargs = dict(device=self.args.device)
            if self.deepspeed and data.dtype != torch.int64:
                # NLP models inputs are int64 and those get adjusted to the right dtype of the
                # embedding. Other models such as wav2vec2's inputs are already float and thus
                # may need special handling to match the dtypes of the model
                kwargs.update(dict(dtype=self.args.hf_deepspeed_config.dtype()))
            return data.to(**kwargs)
        return data

sgugger's avatar
Fix CI  
sgugger committed
1797
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
1798
1799
1800
1801
        """
        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
1802
        inputs = self._prepare_input(inputs)
1803
1804
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
1805

1806
1807
        return inputs

1808
    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
1809
        """
1810
        Perform a training step on a batch of inputs.
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to train.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

        Return:
1824
            :obj:`torch.Tensor`: The tensor with training loss on this batch.
1825
1826
        """
        model.train()
1827
        inputs = self._prepare_inputs(inputs)
1828

Sylvain Gugger's avatar
Sylvain Gugger committed
1829
        if is_sagemaker_mp_enabled():
1830
1831
            scaler = self.scaler if self.use_amp else None
            loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler)
Sylvain Gugger's avatar
Sylvain Gugger committed
1832
1833
            return loss_mb.reduce_mean().detach().to(self.args.device)

1834
        if self.use_amp:
1835
            with autocast():
Sylvain Gugger's avatar
Sylvain Gugger committed
1836
                loss = self.compute_loss(model, inputs)
1837
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1838
            loss = self.compute_loss(model, inputs)
1839

Julien Chaumond's avatar
Julien Chaumond committed
1840
1841
        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training
1842

1843
1844
        if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
            # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
Julien Chaumond's avatar
Julien Chaumond committed
1845
1846
            loss = loss / self.args.gradient_accumulation_steps

1847
        if self.use_amp:
1848
            self.scaler.scale(loss).backward()
1849
        elif self.use_apex:
1850
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
Julien Chaumond's avatar
Julien Chaumond committed
1851
                scaled_loss.backward()
1852
        elif self.deepspeed:
1853
1854
            # loss gets scaled under gradient_accumulation_steps in deepspeed
            loss = self.deepspeed.backward(loss)
Julien Chaumond's avatar
Julien Chaumond committed
1855
1856
1857
        else:
            loss.backward()

1858
        return loss.detach()
Julien Chaumond's avatar
Julien Chaumond committed
1859

1860
    def compute_loss(self, model, inputs, return_outputs=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
1861
1862
1863
1864
1865
        """
        How the loss is computed by Trainer. By default, all models return the loss in the first element.

        Subclass and override for custom behavior.
        """
1866
1867
1868
1869
        if self.label_smoother is not None and "labels" in inputs:
            labels = inputs.pop("labels")
        else:
            labels = None
Sylvain Gugger's avatar
Sylvain Gugger committed
1870
1871
        outputs = model(**inputs)
        # Save past state if it exists
1872
        # TODO: this needs to be fixed and made cleaner later.
Sylvain Gugger's avatar
Sylvain Gugger committed
1873
1874
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]
Sylvain Gugger's avatar
Sylvain Gugger committed
1875

1876
        if labels is not None:
1877
            loss = self.label_smoother(outputs, labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
1878
1879
        else:
            # We don't use .loss here since the model may return tuples instead of ModelOutput.
1880
1881
1882
            loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]

        return (loss, outputs) if return_outputs else loss
Sylvain Gugger's avatar
Sylvain Gugger committed
1883

1884
1885
    def is_local_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1886
1887
        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
        machines) main process.
1888
        """
1889
        return self.args.local_process_index == 0
Lysandre Debut's avatar
Lysandre Debut committed
1890

1891
1892
    def is_world_process_zero(self) -> bool:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1893
1894
        Whether or not this process is the global main process (when training in a distributed fashion on several
        machines, this is only going to be :obj:`True` for one process).
Julien Chaumond's avatar
Julien Chaumond committed
1895
        """
1896
1897
1898
        # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
        # process index.
        if is_sagemaker_mp_enabled():
Sylvain Gugger's avatar
Sylvain Gugger committed
1899
            return smp.rank() == 0
Lysandre Debut's avatar
Lysandre Debut committed
1900
        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
1901
            return self.args.process_index == 0
Julien Chaumond's avatar
Julien Chaumond committed
1902
1903
1904

    def save_model(self, output_dir: Optional[str] = None):
        """
1905
        Will save the model, so you can reload it using :obj:`from_pretrained()`.
Julien Chaumond's avatar
Julien Chaumond committed
1906

1907
        Will only save from the main process.
Julien Chaumond's avatar
Julien Chaumond committed
1908
        """
1909
1910
1911
1912

        if output_dir is None:
            output_dir = self.args.output_dir

1913
        if is_torch_tpu_available():
1914
            self._save_tpu(output_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
1915
1916
1917
        elif is_sagemaker_mp_enabled():
            # Calling the state_dict needs to be done on the wrapped model and on all processes.
            state_dict = self.model_wrapped.state_dict()
1918
            if self.args.should_save:
Sylvain Gugger's avatar
Sylvain Gugger committed
1919
                self._save(output_dir, state_dict=state_dict)
1920
1921
1922
1923
        elif (
            ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
        ):
            state_dict = self.model.state_dict()
1924

1925
            if self.args.should_save:
1926
                self._save(output_dir, state_dict=state_dict)
1927
1928
1929
        elif self.deepspeed:

            # this takes care of everything as long as we aren't under zero3
1930
            if self.args.should_save:
1931
1932
1933
1934
1935
1936
1937
                self._save(output_dir)

            if is_deepspeed_zero3_enabled():
                # It's too complicated to try to override different places where the weights dump gets
                # saved, so since under zero3 the file is bogus, simply delete it. The user should
                # either user deepspeed checkpoint to resume or to recover full weights use
                # zero_to_fp32.py stored in the checkpoint.
1938
                if self.args.should_save:
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
                    file = os.path.join(output_dir, WEIGHTS_NAME)
                    if os.path.isfile(file):
                        # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
                        os.remove(file)

                # now save the real model if stage3_gather_fp16_weights_on_model_save=True
                # if false it will not be saved.
                # This must be called on all ranks
                self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME)

1949
        elif self.args.should_save:
1950
            self._save(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
1951

1952
1953
    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
1954
        logger.info(f"Saving model checkpoint to {output_dir}")
1955
1956
1957

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
1958
            torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
1959
1960
1961
1962

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        xm.rendezvous("saving_checkpoint")
1963
        if not isinstance(self.model, PreTrainedModel):
1964
1965
1966
            if isinstance(unwrap_model(self.model), PreTrainedModel):
                unwrap_model(self.model).save_pretrained(
                    output_dir,
1967
                    save_config=self.args.should_save,
1968
1969
1970
                    state_dict=self.model.state_dict(),
                    save_function=xm.save,
                )
1971
1972
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1973
1974
                state_dict = self.model.state_dict()
                xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1975
        else:
1976
1977
            self.model.save_pretrained(output_dir, save_config=self.args.should_save, save_function=xm.save)
        if self.tokenizer is not None and self.args.should_save:
1978
            self.tokenizer.save_pretrained(output_dir)
1979

1980
    def _save(self, output_dir: Optional[str] = None, state_dict=None):
1981
        # If we are executing this function, we are the process zero, so we don't check for that.
Julien Chaumond's avatar
Julien Chaumond committed
1982
1983
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
1984
        logger.info(f"Saving model checkpoint to {output_dir}")
Julien Chaumond's avatar
Julien Chaumond committed
1985
1986
1987
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
1988
            if isinstance(unwrap_model(self.model), PreTrainedModel):
1989
1990
1991
                if state_dict is None:
                    state_dict = self.model.state_dict()
                unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
1992
1993
            else:
                logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
1994
1995
                if state_dict is None:
                    state_dict = self.model.state_dict()
1996
                torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
1997
        else:
1998
            self.model.save_pretrained(output_dir, state_dict=state_dict)
1999
        if self.tokenizer is not None:
2000
            self.tokenizer.save_pretrained(output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
2001
2002

        # Good practice: save your training arguments together with the trained model
2003
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
2004

2005
    def store_flos(self):
2006
        # Storing the number of floating-point operations that went into the model
2007
2008
2009
2010
        if self.args.local_rank != -1:
            self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item()
            self.current_flos = 0
        else:
Teven's avatar
Teven committed
2011
            self.state.total_flos += self.current_flos
2012
            self.current_flos = 0
Julien Chaumond's avatar
Julien Chaumond committed
2013

2014
2015
2016
    def _sorted_checkpoints(
        self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
    ) -> List[str]:
Julien Chaumond's avatar
Julien Chaumond committed
2017
2018
        ordering_and_checkpoint_path = []

2019
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")]
Julien Chaumond's avatar
Julien Chaumond committed
2020
2021
2022
2023
2024

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
2025
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
2026
                if regex_match is not None and regex_match.groups() is not None:
Julien Chaumond's avatar
Julien Chaumond committed
2027
2028
2029
2030
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
2031
2032
        # Make sure we don't delete the best model.
        if self.state.best_model_checkpoint is not None:
2033
            best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
2034
2035
            for i in range(best_model_index, len(checkpoints_sorted) - 2):
                checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
Julien Chaumond's avatar
Julien Chaumond committed
2036
2037
        return checkpoints_sorted

2038
    def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
2039
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
Julien Chaumond's avatar
Julien Chaumond committed
2040
2041
2042
            return

        # Check if we should delete older checkpoint(s)
2043
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
Julien Chaumond's avatar
Julien Chaumond committed
2044
2045
2046
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

2047
        # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
        # we don't do to allow resuming.
        save_total_limit = self.args.save_total_limit
        if (
            self.state.best_model_checkpoint is not None
            and self.args.save_total_limit == 1
            and checkpoints_sorted[-1] != self.state.best_model_checkpoint
        ):
            save_total_limit = 2

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
Julien Chaumond's avatar
Julien Chaumond committed
2058
2059
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
2060
            logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
Julien Chaumond's avatar
Julien Chaumond committed
2061
2062
            shutil.rmtree(checkpoint)

2063
    def evaluate(
2064
2065
2066
2067
        self,
        eval_dataset: Optional[Dataset] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
2068
    ) -> Dict[str, float]:
Julien Chaumond's avatar
Julien Chaumond committed
2069
        """
2070
        Run evaluation and returns metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2071

Sylvain Gugger's avatar
Sylvain Gugger committed
2072
2073
        The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
        (pass it to the init :obj:`compute_metrics` argument).
Julien Chaumond's avatar
Julien Chaumond committed
2074

2075
2076
        You can also subclass and override this method to inject custom behavior.

Julien Chaumond's avatar
Julien Chaumond committed
2077
        Args:
2078
            eval_dataset (:obj:`Dataset`, `optional`):
2079
                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
Sylvain Gugger's avatar
Sylvain Gugger committed
2080
2081
                columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the
                :obj:`__len__` method.
2082
2083
2084
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2085
2086
2087
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`):
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
                "eval_bleu" if the prefix is "eval" (default)
2088

Julien Chaumond's avatar
Julien Chaumond committed
2089
        Returns:
2090
2091
            A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
            dictionary also contains the epoch number which comes from the training state.
Julien Chaumond's avatar
Julien Chaumond committed
2092
        """
2093
2094
2095
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2096
        eval_dataloader = self.get_eval_dataloader(eval_dataset)
2097
        start_time = time.time()
Julien Chaumond's avatar
Julien Chaumond committed
2098

2099
2100
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2101
2102
2103
2104
2105
            eval_dataloader,
            description="Evaluation",
            # No point gathering the predictions if there are no metrics, otherwise we defer to
            # self.args.prediction_loss_only
            prediction_loss_only=True if self.compute_metrics is None else None,
2106
            ignore_keys=ignore_keys,
2107
            metric_key_prefix=metric_key_prefix,
2108
        )
Lysandre Debut's avatar
Lysandre Debut committed
2109

2110
2111
2112
2113
2114
2115
2116
2117
2118
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2119

2120
        self.log(output.metrics)
2121

2122
        if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
Lysandre Debut's avatar
Lysandre Debut committed
2123
2124
2125
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

Sylvain Gugger's avatar
Sylvain Gugger committed
2126
        self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
2127
2128
2129

        self._memory_tracker.stop_and_update_metrics(output.metrics)

Julien Chaumond's avatar
Julien Chaumond committed
2130
2131
        return output.metrics

2132
    def predict(
Bhadresh Savani's avatar
Bhadresh Savani committed
2133
        self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
2134
    ) -> PredictionOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2135
        """
2136
        Run prediction and returns predictions and potential metrics.
Julien Chaumond's avatar
Julien Chaumond committed
2137

Sylvain Gugger's avatar
Sylvain Gugger committed
2138
2139
        Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
        will also return metrics, like in :obj:`evaluate()`.
2140
2141
2142

        Args:
            test_dataset (:obj:`Dataset`):
2143
                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
2144
                ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__`
2145
2146
2147
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
Bhadresh Savani's avatar
Bhadresh Savani committed
2148
            metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`):
2149
                An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
Bhadresh Savani's avatar
Bhadresh Savani committed
2150
                "test_bleu" if the prefix is "test" (default)
2151

2152
2153
2154
2155
2156
2157
        .. note::

            If your predictions or labels have different sequence length (for instance because you're doing dynamic
            padding in a token classification task) the predictions will be padded (on the right) to allow for
            concatenation into one array. The padding index is -100.

Sylvain Gugger's avatar
Sylvain Gugger committed
2158
2159
2160
2161
2162
2163
        Returns: `NamedTuple` A namedtuple with the following keys:

            - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
            - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
            - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
              contained labels).
Julien Chaumond's avatar
Julien Chaumond committed
2164
        """
2165
2166
2167
        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

Julien Chaumond's avatar
Julien Chaumond committed
2168
        test_dataloader = self.get_test_dataloader(test_dataset)
2169
        start_time = time.time()
2170

2171
2172
        eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
        output = eval_loop(
2173
2174
            test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
        )
2175
2176
2177
2178
2179
2180
2181
2182
2183
        total_batch_size = self.args.eval_batch_size * self.args.world_size
        output.metrics.update(
            speed_metrics(
                metric_key_prefix,
                start_time,
                num_samples=output.num_samples,
                num_steps=math.ceil(output.num_samples / total_batch_size),
            )
        )
2184
2185
2186

        self._memory_tracker.stop_and_update_metrics(output.metrics)

2187
        return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
Julien Chaumond's avatar
Julien Chaumond committed
2188

2189
    def evaluation_loop(
2190
2191
2192
2193
2194
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
2195
        metric_key_prefix: str = "eval",
2196
    ) -> EvalLoopOutput:
Julien Chaumond's avatar
Julien Chaumond committed
2197
        """
2198
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Julien Chaumond's avatar
Julien Chaumond committed
2199
2200
2201

        Works both with or without labels.
        """
2202
2203
2204
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )
Julien Chaumond's avatar
Julien Chaumond committed
2205

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None
2220

2221
        model = self._wrap_model(self.model, training=False)
Julien Chaumond's avatar
Julien Chaumond committed
2222

2223
        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2224
        # ``train`` is running, halve it first and then put on device
2225
2226
2227
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

2228
        batch_size = dataloader.batch_size
2229

2230
        logger.info(f"***** Running {description} *****")
2231
2232
2233
2234
        if isinstance(dataloader.dataset, collections.abc.Sized):
            logger.info(f"  Num examples = {self.num_examples(dataloader)}")
        else:
            logger.info("  Num examples: Unknown")
2235
        logger.info(f"  Batch size = {batch_size}")
2236

Julien Chaumond's avatar
Julien Chaumond committed
2237
2238
        model.eval()

2239
2240
2241
2242
        self.callback_handler.eval_dataloader = dataloader
        # Do this before wrapping.
        eval_dataset = dataloader.dataset

2243
        if is_torch_tpu_available():
2244
2245
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

2246
        if self.args.past_index >= 0:
2247
            self._past = None
2248

2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
        # Initialize containers
        # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
        losses_host = None
        preds_host = None
        labels_host = None
        # losses/preds/labels on CPU (final containers)
        all_losses = None
        all_preds = None
        all_labels = None
        # Will be useful when we have an iterable dataset so don't know its length.

        observed_num_examples = 0
        # Main evaluation loop
2262
        for step, inputs in enumerate(dataloader):
2263
2264
2265
2266
            # Update the observed num examples
            observed_batch_size = find_batch_size(inputs)
            if observed_batch_size is not None:
                observed_num_examples += observed_batch_size
2267
2268
2269
                # For batch samplers, batch_size is not known by the dataloader in advance.
                if batch_size is None:
                    batch_size = observed_batch_size
2270
2271

            # Prediction step
2272
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
2273
2274

            # Update containers on host
2275
            if loss is not None:
2276
                losses = self._nested_gather(loss.repeat(batch_size))
2277
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
2278
            if logits is not None:
2279
2280
                logits = self._pad_across_processes(logits)
                logits = self._nested_gather(logits)
2281
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
2282
            if labels is not None:
2283
2284
                labels = self._pad_across_processes(labels)
                labels = self._nested_gather(labels)
2285
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
Sylvain Gugger's avatar
Sylvain Gugger committed
2286
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)
Julien Chaumond's avatar
Julien Chaumond committed
2287

2288
2289
            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
                if losses_host is not None:
                    losses = nested_numpify(losses_host)
                    all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
                if preds_host is not None:
                    logits = nested_numpify(preds_host)
                    all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
                if labels_host is not None:
                    labels = nested_numpify(labels_host)
                    all_labels = (
                        labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
                    )
2301
2302
2303
2304

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

2305
2306
2307
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")
Julien Chaumond's avatar
Julien Chaumond committed
2308

2309
        # Gather all remaining tensors and put them back on the CPU
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
        if losses_host is not None:
            losses = nested_numpify(losses_host)
            all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
        if preds_host is not None:
            logits = nested_numpify(preds_host)
            all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
        if labels_host is not None:
            labels = nested_numpify(labels_host)
            all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)

        # Number of samples
        if not isinstance(eval_dataset, IterableDataset):
            num_samples = len(eval_dataset)
2323
2324
2325
        # The instance check is weird and does not actually check for the type, but whether the dataset has the right
        # methods. Therefore we need to make sure it also has the attribute.
        elif isinstance(eval_dataset, IterableDatasetShard) and hasattr(eval_dataset, "num_examples"):
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
            num_samples = eval_dataset.num_examples
        else:
            num_samples = observed_num_examples

        # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
        # samplers has been rounded to a multiple of batch_size, so we truncate.
        if all_losses is not None:
            all_losses = all_losses[:num_samples]
        if all_preds is not None:
            all_preds = nested_truncate(all_preds, num_samples)
        if all_labels is not None:
            all_labels = nested_truncate(all_labels, num_samples)

        # Metrics!
        if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
Julien Chaumond's avatar
Julien Chaumond committed
2342
2343
        else:
            metrics = {}
2344

2345
2346
2347
        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

2348
2349
        if all_losses is not None:
            metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
2350

2351
        # Prefix all keys with metric_key_prefix + '_'
2352
        for key in list(metrics.keys()):
2353
2354
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
Julien Chaumond's avatar
Julien Chaumond committed
2355

2356
        return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
2357

2358
    def _nested_gather(self, tensors, name=None):
2359
2360
2361
2362
2363
2364
2365
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
2366
2367
            if name is None:
                name = "nested_gather"
2368
            tensors = nested_xla_mesh_reduce(tensors, name)
Sylvain Gugger's avatar
Sylvain Gugger committed
2369
2370
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
2371
2372
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)
2373
        return tensors
2374

2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
    # Copied from Accelerate.
    def _pad_across_processes(self, tensor, pad_index=-100):
        """
        Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
        they can safely be gathered.
        """
        if isinstance(tensor, (list, tuple)):
            return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
        elif isinstance(tensor, dict):
            return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
        elif not isinstance(tensor, torch.Tensor):
            raise TypeError(
                f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
            )

        if len(tensor.shape) < 2:
            return tensor
        # Gather all sizes
        size = torch.tensor(tensor.shape, device=tensor.device)[None]
        sizes = self._nested_gather(size).cpu()

        max_size = max(s[1] for s in sizes)
        if tensor.shape[1] == max_size:
            return tensor

        # Then pad to the maximum size
        old_size = tensor.shape
        new_size = list(old_size)
        new_size[1] = max_size
        new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
        new_tensor[:, : old_size[1]] = tensor
        return new_tensor
2407

2408
    def prediction_step(
2409
2410
2411
2412
2413
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
2414
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.
2430
2431
2432
            ignore_keys (:obj:`Lst[str]`, `optional`):
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions.
2433
2434

        Return:
2435
2436
            Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
            logits and labels (each being optional).
2437
        """
2438
        has_labels = all(inputs.get(k) is not None for k in self.label_names)
2439
        inputs = self._prepare_inputs(inputs)
2440
2441
2442
2443
2444
        if ignore_keys is None:
            if hasattr(self.model, "config"):
                ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []
2445

2446
2447
2448
2449
2450
2451
2452
2453
        # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
        if has_labels:
            labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

2454
        with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
            if is_sagemaker_mp_enabled():
                raw_outputs = smp_forward_only(model, inputs)
                if has_labels:
                    if isinstance(raw_outputs, dict):
                        loss_mb = raw_outputs["loss"]
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        loss_mb = raw_outputs[0]
                        logits_mb = raw_outputs[1:]

                    loss = loss_mb.reduce_mean().detach().cpu()
                    logits = smp_nested_concat(logits_mb)
2467
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2468
2469
2470
2471
2472
2473
                    loss = None
                    if isinstance(raw_outputs, dict):
                        logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
                    else:
                        logits_mb = raw_outputs
                    logits = smp_nested_concat(logits_mb)
2474
            else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2475
2476
2477
2478
2479
2480
2481
                if has_labels:
                    loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
                    loss = loss.mean().detach()
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
                    else:
                        logits = outputs[1:]
2482
                else:
Sylvain Gugger's avatar
Sylvain Gugger committed
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
                    loss = None
                    if self.use_amp:
                        with autocast():
                            outputs = model(**inputs)
                    else:
                        outputs = model(**inputs)
                    if isinstance(outputs, dict):
                        logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
                    else:
                        logits = outputs
                    # TODO: this needs to be fixed and made cleaner later.
                    if self.args.past_index >= 0:
                        self._past = outputs[self.args.past_index - 1]
2496
2497
2498
2499

        if prediction_loss_only:
            return (loss, None, None)

2500
        logits = nested_detach(logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
2501
2502
2503
2504
        if len(logits) == 1:
            logits = logits[0]

        return (loss, logits, labels)
2505
2506
2507

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2508
2509
2510
        For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of
        floating point operations for every backward + forward pass. If using another model, either implement such a
        method in the model or subclass and override this method.
2511
2512
2513
2514
2515
2516
2517
2518

        Args:
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """
2519
2520
        if hasattr(self.model, "floating_point_ops"):
            return self.model.floating_point_ops(inputs)
2521
2522
        else:
            return 0
2523

2524
2525
    def init_git_repo(self):
        """
2526
        Initializes a git repo in :obj:`self.args.hub_model_id`.
2527
        """
2528
        if not self.is_world_process_zero():
2529
            return
2530
2531
2532
2533
2534
2535
        use_auth_token = True if self.args.hub_token is None else self.args.hub_token
        if self.args.hub_model_id is None:
            repo_name = get_full_repo_name(Path(self.args.output_dir).name, token=self.args.hub_token)
        else:
            repo_name = self.args.hub_model_id

2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
        try:
            self.repo = Repository(
                self.args.output_dir,
                clone_from=repo_name,
                use_auth_token=use_auth_token,
            )
        except EnvironmentError:
            if self.args.overwrite_output_dir:
                # Try again after wiping output_dir
                shutil.rmtree(self.args.output_dir)
                self.repo = Repository(
                    self.args.output_dir,
                    clone_from=repo_name,
                    use_auth_token=use_auth_token,
                )
            else:
                raise

        self.repo.git_pull()
2555
2556

        # By default, ignore the checkpoint folders
2557
2558
2559
2560
        if (
            not os.path.exists(os.path.join(self.args.output_dir, ".gitignore"))
            and self.args.hub_strategy != HubStrategy.ALL_CHECKPOINTS
        ):
2561
2562
2563
            with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
                writer.writelines(["checkpoint-*/"])

2564
2565
        self.push_in_progress = None

Sylvain Gugger's avatar
Sylvain Gugger committed
2566
2567
2568
2569
2570
2571
2572
    def create_model_card(
        self,
        language: Optional[str] = None,
        license: Optional[str] = None,
        tags: Optional[str] = None,
        model_name: Optional[str] = None,
        finetuned_from: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2573
        tasks: Optional[str] = None,
Sylvain Gugger's avatar
Sylvain Gugger committed
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
        dataset_tags: Optional[Union[str, List[str]]] = None,
        dataset: Optional[Union[str, List[str]]] = None,
        dataset_args: Optional[Union[str, List[str]]] = None,
    ):
        training_summary = TrainingSummary.from_trainer(
            self,
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
Sylvain Gugger's avatar
Sylvain Gugger committed
2585
            tasks=tasks,
Sylvain Gugger's avatar
Sylvain Gugger committed
2586
2587
2588
2589
2590
2591
2592
2593
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
        )
        model_card = training_summary.to_model_card()
        with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
            f.write(model_card)

2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
    def _push_from_checkpoint(self, checkpoint_folder):
        # Only push from one node.
        if not self.is_world_process_zero() or self.args.hub_strategy == HubStrategy.END:
            return
        # If we haven't finished the last push, we don't do this one.
        if self.push_in_progress is not None and not self.push_in_progress.is_done:
            return

        output_dir = self.args.output_dir
        # To avoid a new synchronization of all model weights, we just copy the file from the checkpoint folder
        modeling_files = [CONFIG_NAME, WEIGHTS_NAME]
        for modeling_file in modeling_files:
            if os.path.isfile(os.path.join(checkpoint_folder, modeling_file)):
                shutil.copy(os.path.join(checkpoint_folder, modeling_file), os.path.join(output_dir, modeling_file))
        # Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)
        # Same for the training arguments
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

        try:
            if self.args.hub_strategy == HubStrategy.CHECKPOINT:
                # Temporarily move the checkpoint just saved for the push
                tmp_checkpoint = os.path.join(output_dir, "last-checkpoint")
                # We have to remove the "last-checkpoint" dir if it exists, otherwise the checkpoint is moved as a
                # subfolder.
                if os.path.isdir(tmp_checkpoint):
                    shutil.rmtree(tmp_checkpoint)
                shutil.move(checkpoint_folder, tmp_checkpoint)

            if self.args.save_strategy == IntervalStrategy.STEPS:
                commit_message = f"Training in progress, step {self.state.global_step}"
            else:
                commit_message = f"Training in progress, epoch {int(self.state.epoch)}"
            _, self.push_in_progress = self.repo.push_to_hub(commit_message=commit_message, blocking=False)
        finally:
            if self.args.hub_strategy == HubStrategy.CHECKPOINT:
                # Move back the checkpoint to its place
                shutil.move(tmp_checkpoint, checkpoint_folder)

    def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
Sylvain Gugger's avatar
Sylvain Gugger committed
2635
        """
2636
        Upload `self.model` and `self.tokenizer` to the 馃 model hub on the repo `self.args.hub_model_id`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2637
2638

        Parameters:
2639
            commit_message (:obj:`str`, `optional`, defaults to :obj:`"End of training"`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2640
                Message to commit while pushing.
2641
2642
            blocking (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether the function should return only when the :obj:`git push` has finished.
Sylvain Gugger's avatar
Sylvain Gugger committed
2643
2644
            kwargs:
                Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2645
2646

        Returns:
2647
2648
            The url of the commit of your model in the given repository if :obj:`blocking=False`, a tuple with the url
            of the commit and an object to track the progress of the commit if :obj:`blocking=True`
Sylvain Gugger's avatar
Sylvain Gugger committed
2649
2650
        """

2651
        if self.args.should_save:
2652
2653
2654
2655
            if self.args.hub_model_id is None:
                model_name = Path(self.args.output_dir).name
            else:
                model_name = self.args.hub_model_id.split("/")[-1]
2656
2657
        # Needs to be executed on all processes for TPU training, but will only save on the processed determined by
        # self.args.should_save.
2658
        self.save_model()
2659
2660
2661
2662
2663

        # Only push from one node.
        if not self.is_world_process_zero():
            return

2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
        git_head_commit_url = self.repo.push_to_hub(commit_message=commit_message, blocking=blocking)
        # push separately the model card to be independant from the rest of the model
        if self.args.should_save:
            self.create_model_card(model_name=model_name, **kwargs)
            try:
                self.repo.push_to_hub(commit_message="update model card README.md", blocking=blocking)
            except EnvironmentError as exc:
                logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")

        return git_head_commit_url
Sylvain Gugger's avatar
Sylvain Gugger committed
2674

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
    #
    # Deprecated code
    #

    def prediction_loop(
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[List[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> PredictionOutput:
        """
        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.

        Works both with or without labels.
        """
        if not isinstance(dataloader.dataset, collections.abc.Sized):
            raise ValueError("dataset must implement __len__")
        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )

        # if eval is called w/o train init deepspeed here
        if self.args.deepspeed and not self.deepspeed:

            # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
            # from the checkpoint eventually
            deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
            self.model = deepspeed_engine.module
            self.model_wrapped = deepspeed_engine
            self.deepspeed = deepspeed_engine
            # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
            # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
            # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
            deepspeed_engine.optimizer.optimizer = None
            deepspeed_engine.lr_scheduler = None

        model = self._wrap_model(self.model, training=False)

        # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while
2716
        # ``train`` is running, halve it first and then put on device
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
        if not self.is_in_train and self.args.fp16_full_eval:
            model = model.half().to(self.args.device)

        batch_size = dataloader.batch_size
        num_examples = self.num_examples(dataloader)
        logger.info(f"***** Running {description} *****")
        logger.info(f"  Num examples = {num_examples}")
        logger.info(f"  Batch size = {batch_size}")
        losses_host: torch.Tensor = None
        preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
        labels_host: Union[torch.Tensor, List[torch.Tensor]] = None

        world_size = max(1, self.args.world_size)

        eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
        if not prediction_loss_only:
            # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
            # a batch size to the sampler)
            make_multiple_of = None
            if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
                make_multiple_of = dataloader.sampler.batch_size
            preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
            labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)

        model.eval()

        if is_torch_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

        if self.args.past_index >= 0:
            self._past = None

        self.callback_handler.eval_dataloader = dataloader

        for step, inputs in enumerate(dataloader):
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
            if loss is not None:
                losses = loss.repeat(batch_size)
                losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
            if logits is not None:
                preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
            if labels is not None:
                labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
            self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control)

            # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
            if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0:
                eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
                if not prediction_loss_only:
                    preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
                    labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

                # Set back to None to begin a new accumulation
                losses_host, preds_host, labels_host = None, None, None

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")

        # Gather all remaining tensors and put them back on the CPU
        eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
        if not prediction_loss_only:
            preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
            labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))

        eval_loss = eval_losses_gatherer.finalize()
        preds = preds_gatherer.finalize() if not prediction_loss_only else None
        label_ids = labels_gatherer.finalize() if not prediction_loss_only else None

        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}

        # To be JSON-serializable, we need to remove numpy types or zero-d tensors
        metrics = denumpify_detensorize(metrics)

        if eval_loss is not None:
            metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()

        # Prefix all keys with metric_key_prefix + '_'
        for key in list(metrics.keys()):
            if not key.startswith(f"{metric_key_prefix}_"):
                metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)

    def _gather_and_numpify(self, tensors, name):
        """
        Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
        concatenating them to `gathered`
        """
        if tensors is None:
            return
        if is_torch_tpu_available():
            tensors = nested_xla_mesh_reduce(tensors, name)
        elif is_sagemaker_mp_enabled():
            tensors = smp_gather(tensors)
        elif self.args.local_rank != -1:
            tensors = distributed_concat(tensors)

        return nested_numpify(tensors)