"sgl-router/vscode:/vscode.git/clone" did not exist on "0e82fd3df4b2f36e3352b72ec2a441d9efed3a5f"
check_repo.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "SwitchTransformersStack",
43
44
45
    "TFDPRSpanPredictor",
]

46
47
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
48
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
49
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
50
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
51
52
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
53
54
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
55
56
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
57
58
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
59
    "OPTDecoder",  # Building part of bigger (tested) model.
60
61
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
62
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
63
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
64
65
66
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
67
68
69
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
70
71
72
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
73
74
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
75
76
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
77
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
78
79
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
80
81
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
82
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
83
    "BartEncoder",  # Building part of bigger (tested) model.
84
    "BertLMHeadModel",  # Needs to be setup as decoder.
85
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
86
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
87
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
88
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
89
    "MBartEncoder",  # Building part of bigger (tested) model.
90
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
91
92
93
94
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
95
96
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
97
    "PegasusEncoder",  # Building part of bigger (tested) model.
98
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
99
100
101
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
102
    "DPREncoder",  # Building part of bigger (tested) model.
103
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
104
105
106
107
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
108
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
109
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
110
    "TFDPREncoder",  # Building part of bigger (tested) model.
111
112
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
113
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
114
115
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
116
    "SeparableConv1D",  # Building part of bigger (tested) model.
117
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
118
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
119
    "OPTDecoderWrapper",
120
    "TFSegformerDecodeHead",  # Not a regular model.
121
122
123
124
125
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
141
142
]

143
144
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
145
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
146
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
147
148
149
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
150
    "EsmForProteinFolding",
151
    "TimeSeriesTransformerForPrediction",
152
153
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
154
155
156
157
158
159
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
160
    "DPTForDepthEstimation",
161
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
162
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
163
164
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
165
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
166
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
167
168
169
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
170
171
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
172
    "SegformerDecodeHead",
173
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
174
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
175
176
177
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
178
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
179
    "CLIPTextModel",
180
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
181
    "CLIPVisionModel",
182
    "CLIPVisionModelWithProjection",
183
184
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
185
186
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
187
188
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
189
190
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
191
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
192
    "DetrForSegmentation",
193
    "ConditionalDetrForSegmentation",
194
195
    "DPRReader",
    "FlaubertForQuestionAnswering",
196
197
198
199
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
200
    "GPT2DoubleHeadsModel",
201
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
202
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
203
204
205
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
206
    "OpenAIGPTDoubleHeadsModel",
207
208
209
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
210
211
212
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
213
214
215
216
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
217
    "TFDPRReader",
218
    "TFGPT2DoubleHeadsModel",
219
    "TFLayoutLMForQuestionAnswering",
220
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
221
222
223
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
224
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
225
    "HubertForCTC",
226
227
    "SEWForCTC",
    "SEWDForCTC",
228
229
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
230
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
231
232
233
234
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
235
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
236
    "TFHubertForCTC",
237
    "MaskFormerForInstanceSegmentation",
NielsRogge's avatar
NielsRogge committed
238
239
    "XCLIPVisionModel",
    "XCLIPTextModel",
240
241
]

242
243
244
245
246
247
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
248
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
249
        ("donut-swin", "donut"),
250
251
252
253
    ]
)


254
255
256
257
258
259
260
261
262
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


283
284
285
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
286
    """Get the model modules inside the transformers library."""
287
288
289
290
291
292
293
294
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
295
        "modeling_flax_auto",
296
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
297
        "modeling_flax_utils",
298
        "modeling_speech_encoder_decoder",
299
        "modeling_flax_speech_encoder_decoder",
300
        "modeling_flax_vision_encoder_decoder",
301
302
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
303
        "modeling_tf_encoder_decoder",
304
305
306
307
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
308
        "modeling_tf_vision_encoder_decoder",
309
        "modeling_vision_encoder_decoder",
310
311
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
315
316
317
318
319
320
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
321
322
323
    return modules


324
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
325
    """Get the objects in module that are models."""
326
    models = []
327
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
328
    for attr_name in dir(module):
329
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
330
331
332
333
334
335
336
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


367
368
369
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
370
371
372
373
374
375
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

376
377
378
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
379
        "test_modeling_flax_encoder_decoder",
380
        "test_modeling_flax_speech_encoder_decoder",
381
382
        "test_modeling_marian",
        "test_modeling_tf_common",
383
        "test_modeling_tf_encoder_decoder",
384
385
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

403
404
405
406
407
408
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
409
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
410
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
411
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
412
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
413
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
414
415
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
416
    if len(all_models) > 0:
417
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
418
419
420
421
422
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
423
424
425
426
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
427
    """Check models defined in module are tested in test_file."""
428
    # XxxPreTrainedModel are not tested
429
430
431
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
432
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
452
    """Check all models are properly tested."""
453
454
455
456
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
457
458
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
459
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
460
461
462
463
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
464
465
466
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
467
468
469
470
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


471
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
472
    """Return the list of all models in at least one auto class."""
473
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
474
475
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
476
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
477
478
479
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
480
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
481
482
483
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
484
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
485
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
486
    return [cls for cls in result]
487
488


489
490
491
492
493
494
495
496
497
498
499
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


500
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
501
    """Check models defined in module are each in an auto class."""
502
503
504
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
505
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
506
507
508
509
510
511
512
513
514
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
515
    """Check all models are each in an auto class."""
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
537
538
539
540
541
542
543
544
545
546
547
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
548
549
550
551
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
552
    """Check that in the test file `filename` the slow decorator is always last."""
553
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
570
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
571
572
573
574
575
576
577
578
579
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
580
581
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
582
583
584
        )


585
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
586
    """Parse the content of all doc files to detect which classes and functions it documents"""
587
588
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
589
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
590
591
592
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
595
596
597
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
598
599
600
601
602
603
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
604
    "BartPretrainedModel",
605
606
    "DataCollator",
    "DataCollatorForSOP",
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
622
    "TFBartPretrainedModel",
623
624
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
625
    "Wav2Vec2ForMaskedLM",
626
    "Wav2Vec2Tokenizer",
627
628
629
630
631
632
633
634
635
636
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
637
638
    "TFTrainer",
    "TFTrainingArguments",
639
640
641
642
643
644
645
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
646
    "CharacterTokenizer",  # Internal, should never have been in the main init.
647
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
648
    "DummyObject",  # Just picked by mistake sometimes.
649
    "MecabTokenizer",  # Internal, should never have been in the main init.
650
651
652
653
654
655
656
657
658
659
660
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
661
    "requires_backends",  # Internal function
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
713
    """Check all models are properly documented."""
714
    documented_objs = find_all_documented_objects()
715
716
717
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
718
719
720
721
722
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
723
    check_docstrings_are_in_md()
724
725
726
727
728
729
730
731
732
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
733
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
779
        with open(file, encoding="utf-8") as f:
780
781
782
783
784
785
786
787
788
789
790
791
792
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
793
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
794
795
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
796
797


798
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
799
    """Check all models are properly tested and documented."""
800
801
    print("Checking all models are included.")
    check_model_list()
802
803
    print("Checking all models are public.")
    check_models_are_in_init()
804
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
805
    check_all_decorator_order()
806
    check_all_models_are_tested()
807
    print("Checking all objects are properly documented.")
808
    check_all_objects_are_documented()
809
810
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
811
812
813
814


if __name__ == "__main__":
    check_repo_quality()