check_repo.py 32.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
42
43
44
    "T5Stack",
    "TFDPRSpanPredictor",
]

45
46
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
47
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
48
    # models to ignore for not tested
49
50
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
51
52
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
53
    "OPTDecoder",  # Building part of bigger (tested) model.
54
55
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
56
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
57
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
58
59
60
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
61
62
63
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
64
65
66
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
67
68
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
69
70
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
71
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
72
73
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
74
75
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
76
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
77
    "BartEncoder",  # Building part of bigger (tested) model.
78
    "BertLMHeadModel",  # Needs to be setup as decoder.
79
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
80
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
81
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
82
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
83
    "MBartEncoder",  # Building part of bigger (tested) model.
84
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
85
86
87
88
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
89
90
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
91
    "PegasusEncoder",  # Building part of bigger (tested) model.
92
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
93
94
95
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
96
    "DPREncoder",  # Building part of bigger (tested) model.
97
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
98
99
100
101
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
102
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
103
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
104
    "TFDPREncoder",  # Building part of bigger (tested) model.
105
106
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
107
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
108
    "SeparableConv1D",  # Building part of bigger (tested) model.
109
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
110
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
111
    "OPTDecoderWrapper",
112
    "TFSegformerDecodeHead",  # Not a regular model.
113
114
115
116
117
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
133
134
]

135
136
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
137
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
138
    # models to ignore for model xxx mapping
139
    "TimeSeriesTransformerForPrediction",
Jason Phang's avatar
Jason Phang committed
140
141
142
143
144
145
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
146
    "DPTForDepthEstimation",
147
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
148
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
149
150
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
151
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
152
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
153
154
155
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
156
157
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
158
    "SegformerDecodeHead",
159
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
160
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
161
162
163
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
164
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
165
166
    "CLIPTextModel",
    "CLIPVisionModel",
167
168
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
169
170
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
171
172
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
173
174
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
175
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
176
    "DetrForSegmentation",
177
    "ConditionalDetrForSegmentation",
178
179
    "DPRReader",
    "FlaubertForQuestionAnswering",
180
181
182
183
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
184
    "GPT2DoubleHeadsModel",
185
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
186
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
187
188
189
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
190
    "OpenAIGPTDoubleHeadsModel",
191
192
193
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
194
195
196
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
197
198
199
200
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
201
    "TFDPRReader",
202
    "TFGPT2DoubleHeadsModel",
203
    "TFLayoutLMForQuestionAnswering",
204
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
205
206
207
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
208
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
209
    "HubertForCTC",
210
211
    "SEWForCTC",
    "SEWDForCTC",
212
213
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
214
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
215
216
217
218
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
219
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
220
    "TFHubertForCTC",
221
    "MaskFormerForInstanceSegmentation",
NielsRogge's avatar
NielsRogge committed
222
223
    "XCLIPVisionModel",
    "XCLIPTextModel",
224
225
]

226
227
228
229
230
231
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
232
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
233
        ("donut-swin", "donut"),
234
235
236
237
    ]
)


238
239
240
241
242
243
244
245
246
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


267
268
269
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
270
    """Get the model modules inside the transformers library."""
271
272
273
274
275
276
277
278
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
279
        "modeling_flax_auto",
280
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
281
        "modeling_flax_utils",
282
        "modeling_speech_encoder_decoder",
283
        "modeling_flax_speech_encoder_decoder",
284
        "modeling_flax_vision_encoder_decoder",
285
286
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
287
        "modeling_tf_encoder_decoder",
288
289
290
291
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
292
        "modeling_tf_vision_encoder_decoder",
293
        "modeling_vision_encoder_decoder",
294
295
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
298
299
300
301
302
303
304
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
305
306
307
    return modules


308
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
309
    """Get the objects in module that are models."""
310
    models = []
311
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
312
    for attr_name in dir(module):
313
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
314
315
316
317
318
319
320
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


351
352
353
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
354
355
356
357
358
359
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

360
361
362
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
363
        "test_modeling_flax_encoder_decoder",
364
        "test_modeling_flax_speech_encoder_decoder",
365
366
        "test_modeling_marian",
        "test_modeling_tf_common",
367
        "test_modeling_tf_encoder_decoder",
368
369
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

387
388
389
390
391
392
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
393
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
394
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
395
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
396
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
397
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
398
399
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
400
    if len(all_models) > 0:
401
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
404
405
406
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
407
408
409
410
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
411
    """Check models defined in module are tested in test_file."""
412
    # XxxPreTrainedModel are not tested
413
414
415
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
416
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
436
    """Check all models are properly tested."""
437
438
439
440
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
441
442
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
443
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
444
445
446
447
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
448
449
450
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
451
452
453
454
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


455
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
456
    """Return the list of all models in at least one auto class."""
457
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
458
459
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
460
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
461
462
463
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
464
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
465
466
467
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
468
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
469
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
470
    return [cls for cls in result]
471
472


473
474
475
476
477
478
479
480
481
482
483
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


484
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
485
    """Check models defined in module are each in an auto class."""
486
487
488
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
489
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
490
491
492
493
494
495
496
497
498
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
499
    """Check all models are each in an auto class."""
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
521
522
523
524
525
526
527
528
529
530
531
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
532
533
534
535
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
536
    """Check that in the test file `filename` the slow decorator is always last."""
537
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
554
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
557
558
559
560
561
562
563
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
564
565
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
566
567
568
        )


569
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
570
    """Parse the content of all doc files to detect which classes and functions it documents"""
571
572
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
573
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
574
575
576
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
577
578
579
580
581
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
582
583
584
585
586
587
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
588
    "BartPretrainedModel",
589
590
    "DataCollator",
    "DataCollatorForSOP",
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
606
    "TFBartPretrainedModel",
607
608
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
609
    "Wav2Vec2ForMaskedLM",
610
    "Wav2Vec2Tokenizer",
611
612
613
614
615
616
617
618
619
620
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
621
622
    "TFTrainer",
    "TFTrainingArguments",
623
624
625
626
627
628
629
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
630
    "CharacterTokenizer",  # Internal, should never have been in the main init.
631
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
632
    "DummyObject",  # Just picked by mistake sometimes.
633
    "MecabTokenizer",  # Internal, should never have been in the main init.
634
635
636
637
638
639
640
641
642
643
644
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
645
    "requires_backends",  # Internal function
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
697
    """Check all models are properly documented."""
698
    documented_objs = find_all_documented_objects()
699
700
701
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
702
703
704
705
706
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
707
    check_docstrings_are_in_md()
708
709
710
711
712
713
714
715
716
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
717
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
763
        with open(file, encoding="utf-8") as f:
764
765
766
767
768
769
770
771
772
773
774
775
776
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
777
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
778
779
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
780
781


782
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
783
    """Check all models are properly tested and documented."""
784
785
    print("Checking all models are included.")
    check_model_list()
786
787
    print("Checking all models are public.")
    check_models_are_in_init()
788
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
789
    check_all_decorator_order()
790
    check_all_models_are_tested()
791
    print("Checking all objects are properly documented.")
792
    check_all_objects_are_documented()
793
794
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
795
796
797
798


if __name__ == "__main__":
    check_repo_quality()