test_modeling_common.py 53.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
24

25
from transformers import is_torch_available
26
from transformers.file_utils import WEIGHTS_NAME
27
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_torch_available():
31
    import numpy as np
32
    import torch
thomwolf's avatar
thomwolf committed
33

34
    from transformers import (
35
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
36
37
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
39
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
40
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
41
42
43
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
44
        MODEL_MAPPING,
45
46
47
48
49
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
50
    )
thomwolf's avatar
thomwolf committed
51

52

53
54
55
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
56
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
57
            setattr(configs_no_init, key, 1e-10)
58
59
    return configs_no_init

thomwolf's avatar
thomwolf committed
60

61
62
63
64
65
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
66
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
71
    test_missing_keys = True
72
    test_model_parallel = False
73
74
    is_encoder_decoder = False

75
76
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
77
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
78
            inputs_dict = {
79
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
80
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
81
                else v
82
83
                for k, v in inputs_dict.items()
            }
84
85
86
87
88
89
90
91
92
93
94

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
95
96
97
98
            elif model_class in [
                *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(),
            ]:
99
100
101
102
103
104
105
106
107
108
109
110
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
111
112
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
113
    def test_save_load(self):
114
115
116
117
118
119
120
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
121
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
122

123
            out_2 = outputs[0].cpu().numpy()
124
            out_2[np.isnan(out_2)] = 0
125

126
            with tempfile.TemporaryDirectory() as tmpdirname:
127
128
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
129
                model.to(torch_device)
130
                with torch.no_grad():
131
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
132

133
134
135
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
136
137
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
138

139
    def test_save_load__keys_to_ignore_on_save(self):
140
141
142
143
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
144
145
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
146
147
148
                continue

            # check the keys are in the original state_dict
149
            for k in _keys_to_ignore_on_save:
150
151
152
153
154
155
156
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
157
                for k in _keys_to_ignore_on_save:
158
159
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
160
    def test_initialization(self):
161
162
163
164
165
166
167
168
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
169
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
170
171
172
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
173

Patrick von Platen's avatar
Patrick von Platen committed
174
    def test_determinism(self):
175
176
177
178
179
180
181
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
182
183
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
184

185
186
187
188
189
190
191
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
237
        config.use_cache = False
238
239
240
241
242
243
244
245
246
247
248
249
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
250
    def test_attention_outputs(self):
251
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
252
253
        config.return_dict = True

sshleifer's avatar
sshleifer committed
254
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
255
256
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
257
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
258
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
262
263

        for model_class in self.all_model_classes:
264
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
265
            inputs_dict["output_hidden_states"] = False
266
            config.return_dict = True
267
268
269
270
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
271
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
272
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
273
274
275
276
277
278
279
280
281
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
282
283
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
284
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
285
286
287
288
289
290
291
292
293
294
295

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
296
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
297

298
            if self.is_encoder_decoder:
299
                correct_outlen = 5
300

301
302
303
304
305
306
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
307
308
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
309

Sam Shleifer's avatar
Sam Shleifer committed
310
311
                self.assertEqual(out_len, correct_outlen)

312
                # decoder attentions
313
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
314
                self.assertIsInstance(decoder_attentions, (list, tuple))
315
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
316
                self.assertListEqual(
317
318
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
319
                )
thomwolf's avatar
thomwolf committed
320

321
322
323
324
325
326
327
328
329
330
331
332
333
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

334
            # Check attention is always last and order is fine
335
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
336
            inputs_dict["output_hidden_states"] = True
337
338
339
340
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
341
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
342

Weizhen's avatar
Weizhen committed
343
344
345
346
347
348
349
350
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

351
352
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

353
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
364

Patrick von Platen's avatar
Patrick von Platen committed
365
    def test_torchscript(self):
366
367
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
368

Patrick von Platen's avatar
Patrick von Platen committed
369
    def test_torchscript_output_attentions(self):
370
371
372
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
373

Patrick von Platen's avatar
Patrick von Platen committed
374
    def test_torchscript_output_hidden_state(self):
375
376
377
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
378

379
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
380
        if not self.test_torchscript:
381
            return
382

383
384
385
386
387
388
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
389
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
390

391
            try:
392
                if model.config.is_encoder_decoder:
393
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
394
395
396
397
398
399
400
401
402
403
404
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
405
406
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
407

408
            with tempfile.TemporaryDirectory() as tmp_dir_name:
409
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
410

411
                try:
412
                    torch.jit.save(traced_model, pt_file_name)
413
414
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
415

416
417
418
419
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
420

421
422
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
423

424
425
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
426

427
428
429
430
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
431

432
            models_equal = True
433
434
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
435
436
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
437

438
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
439

Patrick von Platen's avatar
Patrick von Platen committed
440
441
    def test_headmasking(self):
        if not self.test_head_masking:
442
            return
443

444
445
446
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
447

448
        inputs_dict["output_attentions"] = True
449
450
451
452
453
454
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
455

456
457
458
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
459
460
461
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
462
463
464
465
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
466
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
467
468
            inputs["head_mask"] = head_mask

469
            outputs = model(**inputs, return_dict=True)
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
496
497
    def test_head_pruning(self):
        if not self.test_pruning:
498
499
500
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
501
502
503
504
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
505

506
507
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
508

509
            inputs_dict["output_attentions"] = True
510
511
512
513
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
514
515
516
517
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
518
519
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
520
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
521

522
            attentions = outputs[-1]
523

524
525
526
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
527

Patrick von Platen's avatar
Patrick von Platen committed
528
529
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
530
            return
LysandreJik's avatar
LysandreJik committed
531

532
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
533
534
535
536
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
537
538
539

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
540

541
            inputs_dict["output_attentions"] = True
542
543
544
545
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
546
547
548
549
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
550
            model.prune_heads(heads_to_prune)
551

552
            with tempfile.TemporaryDirectory() as temp_dir_name:
553
554
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
555
                model.to(torch_device)
556

557
            with torch.no_grad():
558
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
559
560
561
562
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
563

Patrick von Platen's avatar
Patrick von Platen committed
564
565
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
566
            return
567

568
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
569
570
571
572
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
573

574
575
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
576

577
            inputs_dict["output_attentions"] = True
578
            config.output_hidden_states = False
579

580
581
582
583
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
584
            config.pruned_heads = heads_to_prune
585

586
587
588
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
589

590
            with torch.no_grad():
591
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
592
            attentions = outputs[-1]
593

594
595
596
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
597

Patrick von Platen's avatar
Patrick von Platen committed
598
599
    def test_head_pruning_integration(self):
        if not self.test_pruning:
600
            return
601

602
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
603
604
605
606
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
607

608
609
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
610

611
            inputs_dict["output_attentions"] = True
612
            config.output_hidden_states = False
613

614
615
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
616

617
618
619
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
620

621
            with torch.no_grad():
622
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
623
            attentions = outputs[-1]
624

625
626
627
628
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
629

630
            with tempfile.TemporaryDirectory() as temp_dir_name:
631
632
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
633
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
634

635
            with torch.no_grad():
636
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
637
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
638

639
640
641
642
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
643

644
645
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
646

647
            with torch.no_grad():
648
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
649
            attentions = outputs[-1]
650

651
652
653
654
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
655

656
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
657

Patrick von Platen's avatar
Patrick von Platen committed
658
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
659
        def check_hidden_states_output(inputs_dict, config, model_class):
660
            model = model_class(config)
661
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
662
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
663

thomwolf's avatar
thomwolf committed
664
            with torch.no_grad():
665
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
666
667

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
668

Sylvain Gugger's avatar
Sylvain Gugger committed
669
670
671
672
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
673

Patrick von Platen's avatar
Patrick von Platen committed
674
675
676
677
678
679
680
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

681
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
682
683
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
684
            )
thomwolf's avatar
thomwolf committed
685

686
687
688
689
690
691
692
693
694
695
696
697
698
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
699
700
701
702
703
704
705
706
707
708
709
710
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
761
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
762
763
764
765
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
784
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
785
786
787
788
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
789
        if not self.test_resize_embeddings:
790
791
792
793
794
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
795
            model.to(torch_device)
796

Patrick von Platen's avatar
Patrick von Platen committed
797
798
799
            if self.model_tester.is_training is False:
                model.eval()

800
801
802
803
804
805
806
807
808
809
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
810
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
811
            model(**self._prepare_for_class(inputs_dict, model_class))
812
813
814
815
816
817
818

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

819
820
821
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
822
823
824
825

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
826
            model(**self._prepare_for_class(inputs_dict, model_class))
827

828
829
830
831
832
833
834
835
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
887
    def test_model_common_attributes(self):
888
889
890
891
892
893
894
895
896
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

897
    def test_correct_missing_keys(self):
898
899
        if not self.test_missing_keys:
            return
900
901
902
903
904
905
906
907
908
909
910
911
912
913
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

962
963
964
965
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
966
967
968
969
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

970
971
972
973
974
975
976
977
978
979
980
981
982
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
983
984
985
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
986
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1026
    def test_inputs_embeds(self):
1027
1028
1029
1030
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1031
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1032
            model.eval()
1033

1034
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1045
1046
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1047
                inputs["inputs_embeds"] = wte(input_ids)
1048
            else:
1049
1050
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1051

thomwolf's avatar
thomwolf committed
1052
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1053
                model(**inputs)[0]
1054

1055
1056
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1078
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1079

1080
1081
1082
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1083
            return
1084

1085
        # a candidate for testing_utils
1086
        def get_current_gpu_memory_use():
1087
1088
1089
1090
1091
1092
            """ returns a list of cuda memory allocations per GPU in MBs"""

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1093
1094
1095
1096
1097
1098
1099
1100
1101

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1102
1103
1104
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1105

1106
1107
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1108
1109
1110
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1111
1112
1113
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1114
            del model
1115
            gc.collect()
1116
1117
            torch.cuda.empty_cache()

1118
1119
1120
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1121
1122

            # Spread model layers over multiple devices
1123
            model = model_class(config)
1124
1125
1126
1127
1128
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1129
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1130

1131
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1132
1133
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1134
1135
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1136
1137
1138
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1139
            gc.collect()
1140
1141
1142
1143
1144
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1145
            return
1146
1147
1148
1149
1150
1151

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1152
            def cast_to_device(dictionary, device):
1153
1154
1155
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1156
                        output[k] = v.to(device)
1157
1158
1159
1160
1161
                    else:
                        output[k] = v

                return output

1162
1163
1164
1165
1166
1167
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1168
1169
1170
1171
1172
1173
1174
1175

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1204

1205
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1206
1207


thomwolf's avatar
thomwolf committed
1208
def ids_tensor(shape, vocab_size, rng=None, name=None):
1209
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1210
    if rng is None:
1211
        rng = global_rng
thomwolf's avatar
thomwolf committed
1212

thomwolf's avatar
thomwolf committed
1213
1214
1215
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1216

thomwolf's avatar
thomwolf committed
1217
1218
1219
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1220

1221
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1222
1223


1224
1225
1226
1227
1228
1229
1230
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1231
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1232
    """Creates a random float32 tensor"""
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1244
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1245
1246


1247
@require_torch
thomwolf's avatar
thomwolf committed
1248
class ModelUtilsTest(unittest.TestCase):
1249
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1250
    def test_model_from_pretrained(self):
1251
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1264
1265
1266
1267

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1268
1269
1270
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)