test_modeling_common.py 53.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import inspect
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
    import numpy as np
31
    import torch
thomwolf's avatar
thomwolf committed
32

33
    from transformers import (
34
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
35
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
37
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
40
41
42
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
43
        MODEL_MAPPING,
44
45
46
47
48
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
49
    )
thomwolf's avatar
thomwolf committed
50

51

52
53
54
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
55
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
56
            setattr(configs_no_init, key, 1e-10)
57
58
    return configs_no_init

thomwolf's avatar
thomwolf committed
59

60
61
62
63
64
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
65
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
70
    test_missing_keys = True
71
    test_model_parallel = False
72
73
    is_encoder_decoder = False

74
75
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
76
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
77
            inputs_dict = {
78
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
79
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
80
                else v
81
82
                for k, v in inputs_dict.items()
            }
83
84
85
86
87
88
89
90
91
92
93

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
94
95
96
97
            elif model_class in [
                *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(),
            ]:
98
99
100
101
102
103
104
105
106
107
108
109
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
110
111
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
112
    def test_save_load(self):
113
114
115
116
117
118
119
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
120
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
121

122
            out_2 = outputs[0].cpu().numpy()
123
            out_2[np.isnan(out_2)] = 0
124

125
            with tempfile.TemporaryDirectory() as tmpdirname:
126
127
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
128
                model.to(torch_device)
129
                with torch.no_grad():
130
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
131

132
133
134
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
135
136
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
137

138
    def test_save_load__keys_to_ignore_on_save(self):
139
140
141
142
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
143
144
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
145
146
147
                continue

            # check the keys are in the original state_dict
148
            for k in _keys_to_ignore_on_save:
149
150
151
152
153
154
155
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
156
                for k in _keys_to_ignore_on_save:
157
158
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
159
    def test_initialization(self):
160
161
162
163
164
165
166
167
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
168
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
169
170
171
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
172

Patrick von Platen's avatar
Patrick von Platen committed
173
    def test_determinism(self):
174
175
176
177
178
179
180
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
181
182
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
183

184
185
186
187
188
189
190
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
248
    def test_attention_outputs(self):
249
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
250
251
        config.return_dict = True

sshleifer's avatar
sshleifer committed
252
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
253
254
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
255
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
256
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
260
261

        for model_class in self.all_model_classes:
262
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
263
            inputs_dict["output_hidden_states"] = False
264
            config.return_dict = True
265
266
267
268
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
269
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
270
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
271
272
273
274
275
276
277
278
279
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
280
281
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
282
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
287
288
289
290
291
292
293

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
294
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
295

296
            if self.is_encoder_decoder:
297
                correct_outlen = 5
298

299
300
301
302
303
304
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
305
306
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
307

Sam Shleifer's avatar
Sam Shleifer committed
308
309
                self.assertEqual(out_len, correct_outlen)

310
                # decoder attentions
311
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
312
                self.assertIsInstance(decoder_attentions, (list, tuple))
313
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
314
                self.assertListEqual(
315
316
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
317
                )
thomwolf's avatar
thomwolf committed
318

319
320
321
322
323
324
325
326
327
328
329
330
331
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

332
            # Check attention is always last and order is fine
333
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
334
            inputs_dict["output_hidden_states"] = True
335
336
337
338
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
339
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
340

Weizhen's avatar
Weizhen committed
341
342
343
344
345
346
347
348
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

349
350
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

351
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
352
353
354
355
356
357
358
359
360
361
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
362

Patrick von Platen's avatar
Patrick von Platen committed
363
    def test_torchscript(self):
364
365
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
366

Patrick von Platen's avatar
Patrick von Platen committed
367
    def test_torchscript_output_attentions(self):
368
369
370
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
371

Patrick von Platen's avatar
Patrick von Platen committed
372
    def test_torchscript_output_hidden_state(self):
373
374
375
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
376

377
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
378
        if not self.test_torchscript:
379
            return
380

381
382
383
384
385
386
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
387
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
388

389
            try:
390
                if model.config.is_encoder_decoder:
391
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
392
393
394
395
396
397
398
399
400
401
402
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
403
404
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
405

406
            with tempfile.TemporaryDirectory() as tmp_dir_name:
407
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
408

409
                try:
410
                    torch.jit.save(traced_model, pt_file_name)
411
412
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
413

414
415
416
417
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
418

419
420
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
421

422
423
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
424

425
426
427
428
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
429

430
            models_equal = True
431
432
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
433
434
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
435

436
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
437

Patrick von Platen's avatar
Patrick von Platen committed
438
439
    def test_headmasking(self):
        if not self.test_head_masking:
440
            return
441

442
443
444
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
445

446
        inputs_dict["output_attentions"] = True
447
448
449
450
451
452
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
453

454
455
456
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
457
458
459
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
460
461
462
463
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
464
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
465
466
            inputs["head_mask"] = head_mask

467
            outputs = model(**inputs, return_dict=True)
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
494
495
    def test_head_pruning(self):
        if not self.test_pruning:
496
497
498
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
499
500
501
502
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
503

504
505
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
506

507
            inputs_dict["output_attentions"] = True
508
509
510
511
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
512
513
514
515
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
516
517
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
518
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
519

520
            attentions = outputs[-1]
521

522
523
524
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
525

Patrick von Platen's avatar
Patrick von Platen committed
526
527
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
528
            return
LysandreJik's avatar
LysandreJik committed
529

530
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
531
532
533
534
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
535
536
537

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
538

539
            inputs_dict["output_attentions"] = True
540
541
542
543
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
544
545
546
547
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
548
            model.prune_heads(heads_to_prune)
549

550
            with tempfile.TemporaryDirectory() as temp_dir_name:
551
552
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
553
                model.to(torch_device)
554

555
            with torch.no_grad():
556
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
557
558
559
560
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
561

Patrick von Platen's avatar
Patrick von Platen committed
562
563
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
564
            return
565

566
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
567
568
569
570
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
571

572
573
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
574

575
            inputs_dict["output_attentions"] = True
576
            config.output_hidden_states = False
577

578
579
580
581
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
582
            config.pruned_heads = heads_to_prune
583

584
585
586
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
587

588
            with torch.no_grad():
589
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
590
            attentions = outputs[-1]
591

592
593
594
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
595

Patrick von Platen's avatar
Patrick von Platen committed
596
597
    def test_head_pruning_integration(self):
        if not self.test_pruning:
598
            return
599

600
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
601
602
603
604
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
605

606
607
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
608

609
            inputs_dict["output_attentions"] = True
610
            config.output_hidden_states = False
611

612
613
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
614

615
616
617
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
618

619
            with torch.no_grad():
620
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
621
            attentions = outputs[-1]
622

623
624
625
626
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
627

628
            with tempfile.TemporaryDirectory() as temp_dir_name:
629
630
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
631
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
632

633
            with torch.no_grad():
634
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
635
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
636

637
638
639
640
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
641

642
643
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
644

645
            with torch.no_grad():
646
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
647
            attentions = outputs[-1]
648

649
650
651
652
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
653

654
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
655

Patrick von Platen's avatar
Patrick von Platen committed
656
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
657
        def check_hidden_states_output(inputs_dict, config, model_class):
658
            model = model_class(config)
659
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
660
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
661

thomwolf's avatar
thomwolf committed
662
            with torch.no_grad():
663
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
664
665

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
666

Sylvain Gugger's avatar
Sylvain Gugger committed
667
668
669
670
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
671

Patrick von Platen's avatar
Patrick von Platen committed
672
673
674
675
676
677
678
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

679
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
680
681
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
682
            )
thomwolf's avatar
thomwolf committed
683

684
685
686
687
688
689
690
691
692
693
694
695
696
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
697
698
699
700
701
702
703
704
705
706
707
708
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
759
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
760
761
762
763
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
782
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
783
784
785
786
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
787
        if not self.test_resize_embeddings:
788
789
790
791
792
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
793
            model.to(torch_device)
794

Patrick von Platen's avatar
Patrick von Platen committed
795
796
797
            if self.model_tester.is_training is False:
                model.eval()

798
799
800
801
802
803
804
805
806
807
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
808
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
809
            model(**self._prepare_for_class(inputs_dict, model_class))
810
811
812
813
814
815
816

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

817
818
819
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
820
821
822
823

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
824
            model(**self._prepare_for_class(inputs_dict, model_class))
825

826
827
828
829
830
831
832
833
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
885
    def test_model_common_attributes(self):
886
887
888
889
890
891
892
893
894
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

895
    def test_correct_missing_keys(self):
896
897
        if not self.test_missing_keys:
            return
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

960
961
962
963
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
964
965
966
967
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

968
969
970
971
972
973
974
975
976
977
978
979
980
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
981
982
983
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
984
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1024
    def test_inputs_embeds(self):
1025
1026
1027
1028
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1029
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1030
            model.eval()
1031

1032
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1043
1044
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1045
                inputs["inputs_embeds"] = wte(input_ids)
1046
            else:
1047
1048
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1049

thomwolf's avatar
thomwolf committed
1050
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1051
                model(**inputs)[0]
1052

1053
1054
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1076
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1077

1078
1079
1080
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1081
            return
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

        import subprocess

        def get_current_gpu_memory_use():
            run_process = subprocess.Popen(
                "nvidia-smi --query-gpu=memory.used --format=csv,nounits,noheader", shell=True, stdout=subprocess.PIPE
            )

            memory_usage = run_process.stdout.read().decode("utf-8").strip()
            per_device_memory = [int(memory) for memory in memory_usage.split("\n")]
            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

            # Retrieve initial memory usage (should be close to 0)
            initial_memory = get_current_gpu_memory_use()

            # Put model on device
            model = model_class(config.from_pretrained("gpt2"))
            model.to("cuda:0")

            # Retrieve the memory after the model is put on the device
            memory_after_model_load = get_current_gpu_memory_use()

            del model
            torch.cuda.empty_cache()

            # The memory use on that device should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], initial_memory[0])

            # Spread model layers over multiple devices
            model = model_class(config.from_pretrained("gpt2"))
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
                self.assertGreater(memory_after_parallelization[n], initial_memory[n])

            # Assert that the memory use of the first device is lower than it was when the entire model was loaded on it
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

            # Assert that the memory use of the second device is higher than it was when the entire model was loaded
            # on the other device.
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1138
            return
1139
1140
1141
1142
1143
1144

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1145
            def cast_to_device(dictionary, device):
1146
1147
1148
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1149
                        output[k] = v.to(device)
1150
1151
1152
1153
1154
                    else:
                        output[k] = v

                return output

1155
1156
1157
1158
1159
1160
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1161
1162
1163
1164
1165
1166
1167
1168

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1197

1198
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1199
1200


thomwolf's avatar
thomwolf committed
1201
def ids_tensor(shape, vocab_size, rng=None, name=None):
1202
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1203
    if rng is None:
1204
        rng = global_rng
thomwolf's avatar
thomwolf committed
1205

thomwolf's avatar
thomwolf committed
1206
1207
1208
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1209

thomwolf's avatar
thomwolf committed
1210
1211
1212
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1213

1214
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1215
1216


1217
1218
1219
1220
1221
1222
1223
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1224
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1225
    """Creates a random float32 tensor"""
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1237
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1238
1239


1240
@require_torch
thomwolf's avatar
thomwolf committed
1241
class ModelUtilsTest(unittest.TestCase):
1242
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1243
    def test_model_from_pretrained(self):
1244
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1257
1258
1259
1260

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1261
1262
1263
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)