sd.py 30.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
from enum import Enum
3
import logging
comfyanonymous's avatar
comfyanonymous committed
4

5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
comfyanonymous's avatar
comfyanonymous committed
7
from .ldm.cascade.stage_a import StageA
8
from .ldm.cascade.stage_c_coder import StageC_coder
9
from .ldm.audio.autoencoder import AudioOobleckVAE
10
import yaml
comfyanonymous's avatar
comfyanonymous committed
11

12
13
import comfy.utils

14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
17
from . import model_detection
18

19
20
from . import sd1_clip
from . import sd2_clip
21
from . import sdxl_clip
22
23
import comfy.text_encoders.sd3_clip
import comfy.text_encoders.sa_t5
24
import comfy.text_encoders.aura_t5
comfyanonymous's avatar
comfyanonymous committed
25

26
import comfy.model_patcher
27
import comfy.lora
28
import comfy.t2i_adapter.adapter
29
import comfy.supported_models_base
30
import comfy.taesd.taesd
31

32
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
33
34
35
36
37
38
    key_map = {}
    if model is not None:
        key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
    if clip is not None:
        key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)

39
    loaded = comfy.lora.load_lora(lora, key_map)
40
41
42
43
44
45
46
47
48
49
50
51
52
    if model is not None:
        new_modelpatcher = model.clone()
        k = new_modelpatcher.add_patches(loaded, strength_model)
    else:
        k = ()
        new_modelpatcher = None

    if clip is not None:
        new_clip = clip.clone()
        k1 = new_clip.add_patches(loaded, strength_clip)
    else:
        k1 = ()
        new_clip = None
53
54
55
56
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
57
            logging.warning("NOT LOADED {}".format(x))
58
59

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
60
61
62


class CLIP:
63
    def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}):
64
65
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
66
        params = target.params.copy()
67
68
        clip = target.clip
        tokenizer = target.tokenizer
69

70
71
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
72
        params['device'] = offload_device
73
74
        dtype = model_management.text_encoder_dtype(load_device)
        params['dtype'] = dtype
75
76

        self.cond_stage_model = clip(**(params))
77

78
79
80
81
        for dt in self.cond_stage_model.dtypes:
            if not model_management.supports_cast(load_device, dt):
                load_device = offload_device

82
        self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
83
        self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
84
        self.layer_idx = None
85
        logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device))
86
87
88
89
90
91

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
92
        n.layer_idx = self.layer_idx
93
94
        return n

95
96
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
97

98
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
99
        self.layer_idx = layer_idx
100

101
102
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
103

104
    def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False):
105
106
        self.cond_stage_model.reset_clip_options()

107
        if self.layer_idx is not None:
108
109
110
111
            self.cond_stage_model.set_clip_options({"layer": self.layer_idx})

        if return_pooled == "unprojected":
            self.cond_stage_model.set_clip_options({"projected_pooled": False})
112

113
        self.load_model()
114
115
116
117
118
119
120
121
122
        o = self.cond_stage_model.encode_token_weights(tokens)
        cond, pooled = o[:2]
        if return_dict:
            out = {"cond": cond, "pooled_output": pooled}
            if len(o) > 2:
                for k in o[2]:
                    out[k] = o[2][k]
            return out

123
        if return_pooled:
124
125
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
126

127
    def encode(self, text):
128
        tokens = self.tokenize(text)
129
130
        return self.encode_from_tokens(tokens)

131
132
133
134
135
    def load_sd(self, sd, full_model=False):
        if full_model:
            return self.cond_stage_model.load_state_dict(sd, strict=False)
        else:
            return self.cond_stage_model.load_sd(sd)
136

137
    def get_sd(self):
138
139
140
141
142
        sd_clip = self.cond_stage_model.state_dict()
        sd_tokenizer = self.tokenizer.state_dict()
        for k in sd_tokenizer:
            sd_clip[k] = sd_tokenizer[k]
        return sd_clip
143

144
145
146
    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher
147

148
149
150
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
151
class VAE:
152
    def __init__(self, sd=None, device=None, config=None, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
153
154
155
        if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
            sd = diffusers_convert.convert_vae_state_dict(sd)

156
157
        self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
        self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
comfyanonymous's avatar
comfyanonymous committed
158
        self.downscale_ratio = 8
159
        self.upscale_ratio = 8
160
        self.latent_channels = 4
161
        self.output_channels = 3
comfyanonymous's avatar
comfyanonymous committed
162
163
        self.process_input = lambda image: image * 2.0 - 1.0
        self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
164
        self.working_dtypes = [torch.bfloat16, torch.float32]
165

comfyanonymous's avatar
comfyanonymous committed
166
        if config is None:
comfyanonymous's avatar
comfyanonymous committed
167
168
169
170
171
172
173
174
175
            if "decoder.mid.block_1.mix_factor" in sd:
                encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
                decoder_config = encoder_config.copy()
                decoder_config["video_kernel_size"] = [3, 1, 1]
                decoder_config["alpha"] = 0.0
                self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
                                                            encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
                                                            decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
            elif "taesd_decoder.1.weight" in sd:
comfyanonymous's avatar
comfyanonymous committed
176
177
                self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
                self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
comfyanonymous's avatar
comfyanonymous committed
178
179
180
            elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
                self.first_stage_model = StageA()
                self.downscale_ratio = 4
181
                self.upscale_ratio = 4
comfyanonymous's avatar
comfyanonymous committed
182
183
184
185
186
                #TODO
                #self.memory_used_encode
                #self.memory_used_decode
                self.process_input = lambda image: image
                self.process_output = lambda image: image
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
                self.first_stage_model = StageC_coder()
                self.downscale_ratio = 32
                self.latent_channels = 16
                new_sd = {}
                for k in sd:
                    new_sd["encoder.{}".format(k)] = sd[k]
                sd = new_sd
            elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
                self.first_stage_model = StageC_coder()
                self.latent_channels = 16
                new_sd = {}
                for k in sd:
                    new_sd["previewer.{}".format(k)] = sd[k]
                sd = new_sd
            elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
                self.first_stage_model = StageC_coder()
                self.downscale_ratio = 32
                self.latent_channels = 16
206
            elif "decoder.conv_in.weight" in sd:
207
208
                #default SD1.x/SD2.x VAE parameters
                ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
209

210
                if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
211
212
                    ddconfig['ch_mult'] = [1, 2, 4]
                    self.downscale_ratio = 4
213
                    self.upscale_ratio = 4
214

215
216
217
218
219
220
221
                self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
                if 'quant_conv.weight' in sd:
                    self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
                else:
                    self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
                                                                encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
                                                                decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
222
            elif "decoder.layers.1.layers.0.beta" in sd:
223
                self.first_stage_model = AudioOobleckVAE()
224
225
                self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
                self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
226
227
228
229
230
231
                self.latent_channels = 64
                self.output_channels = 2
                self.upscale_ratio = 2048
                self.downscale_ratio =  2048
                self.process_output = lambda audio: audio
                self.process_input = lambda audio: audio
232
                self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
233
234
235
236
            else:
                logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
                self.first_stage_model = None
                return
comfyanonymous's avatar
comfyanonymous committed
237
        else:
238
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
239
        self.first_stage_model = self.first_stage_model.eval()
comfyanonymous's avatar
comfyanonymous committed
240
241
242

        m, u = self.first_stage_model.load_state_dict(sd, strict=False)
        if len(m) > 0:
243
            logging.warning("Missing VAE keys {}".format(m))
comfyanonymous's avatar
comfyanonymous committed
244
245

        if len(u) > 0:
comfyanonymous's avatar
comfyanonymous committed
246
            logging.debug("Leftover VAE keys {}".format(u))
247

248
        if device is None:
249
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
250
        self.device = device
251
        offload_device = model_management.vae_offload_device()
252
        if dtype is None:
253
            dtype = model_management.vae_dtype(self.device, self.working_dtypes)
254
        self.vae_dtype = dtype
255
        self.first_stage_model.to(self.vae_dtype)
256
        self.output_device = model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
257

258
        self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
259
        logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
260

261
    def vae_encode_crop_pixels(self, pixels):
262
263
264
265
266
267
        dims = pixels.shape[1:-1]
        for d in range(len(dims)):
            x = (dims[d] // self.downscale_ratio) * self.downscale_ratio
            x_offset = (dims[d] % self.downscale_ratio) // 2
            if x != dims[d]:
                pixels = pixels.narrow(d + 1, x_offset, x)
268
269
        return pixels

270
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
271
272
273
274
        steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
275

comfyanonymous's avatar
comfyanonymous committed
276
277
        decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
        output = self.process_output(
278
279
280
            (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
            comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
             comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
comfyanonymous's avatar
comfyanonymous committed
281
            / 3.0)
282
283
        return output

284
285
286
    def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
        decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
        return comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)
287

288
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
289
290
291
292
        steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
293

comfyanonymous's avatar
comfyanonymous committed
294
        encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
comfyanonymous's avatar
comfyanonymous committed
295
296
297
        samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
298
299
300
        samples /= 3.0
        return samples

301
302
303
304
    def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
        encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
        return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)

305
306
    def decode(self, samples_in):
        try:
307
            memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
308
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
309
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
310
            batch_number = int(free_memory / memory_used)
311
312
            batch_number = max(1, batch_number)

313
            pixel_samples = torch.empty((samples_in.shape[0], self.output_channels) + tuple(map(lambda a: a * self.upscale_ratio, samples_in.shape[2:])), device=self.output_device)
314
            for x in range(0, samples_in.shape[0], batch_number):
315
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
316
                pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
317
        except model_management.OOM_EXCEPTION as e:
318
            logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
319
320
321
322
            if len(samples_in.shape) == 3:
                pixel_samples = self.decode_tiled_1d(samples_in)
            else:
                pixel_samples = self.decode_tiled_(samples_in)
323

324
        pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
325
326
        return pixel_samples

327
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
328
        model_management.load_model_gpu(self.patcher)
329
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
330
331
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
332
    def encode(self, pixel_samples):
333
        pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
334
335
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
336
            memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
337
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
338
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
339
            batch_number = int(free_memory / memory_used)
340
            batch_number = max(1, batch_number)
341
            samples = torch.empty((pixel_samples.shape[0], self.latent_channels) + tuple(map(lambda a: a // self.downscale_ratio, pixel_samples.shape[2:])), device=self.output_device)
342
            for x in range(0, pixel_samples.shape[0], batch_number):
comfyanonymous's avatar
comfyanonymous committed
343
                pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device)
344
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
345

346
        except model_management.OOM_EXCEPTION as e:
347
            logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
348
349
350
351
            if len(pixel_samples.shape) == 3:
                samples = self.encode_tiled_1d(pixel_samples)
            else:
                samples = self.encode_tiled_(pixel_samples)
352

comfyanonymous's avatar
comfyanonymous committed
353
354
        return samples

comfyanonymous's avatar
comfyanonymous committed
355
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
356
        pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
357
        model_management.load_model_gpu(self.patcher)
358
359
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
360
        return samples
361

362
363
364
    def get_sd(self):
        return self.first_stage_model.state_dict()

365
366
367
368
369
370
371
372
373
class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
374
    model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
375
376
    keys = model_data.keys()
    if "style_embedding" in keys:
377
        model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
378
379
380
381
382
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)

383
384
385
class CLIPType(Enum):
    STABLE_DIFFUSION = 1
    STABLE_CASCADE = 2
386
    SD3 = 3
387
    STABLE_AUDIO = 4
388

389
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION):
390
391
    clip_data = []
    for p in ckpt_paths:
392
        clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
393

comfyanonymous's avatar
comfyanonymous committed
394
395
396
    class EmptyClass:
        pass

397
398
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
399
            clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "")
400
401
402
        else:
            if "text_projection" in clip_data[i]:
                clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
403

comfyanonymous's avatar
comfyanonymous committed
404
405
    clip_target = EmptyClass()
    clip_target.params = {}
406
407
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
408
409
410
411
412
413
            if clip_type == CLIPType.STABLE_CASCADE:
                clip_target.clip = sdxl_clip.StableCascadeClipModel
                clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
            else:
                clip_target.clip = sdxl_clip.SDXLRefinerClipModel
                clip_target.tokenizer = sdxl_clip.SDXLTokenizer
414
415
416
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
417
        elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in clip_data[0]:
comfyanonymous's avatar
comfyanonymous committed
418
419
420
            weight = clip_data[0]["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
            dtype_t5 = weight.dtype
            if weight.shape[-1] == 4096:
421
422
                clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, dtype_t5=dtype_t5)
                clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
423
424
425
            elif weight.shape[-1] == 2048:
                clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
                clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
426
        elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
427
428
            clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
            clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
429
430
431
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
comfyanonymous's avatar
comfyanonymous committed
432
    elif len(clip_data) == 2:
433
        if clip_type == CLIPType.SD3:
434
435
            clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=True, t5=False)
            clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
436
437
438
        else:
            clip_target.clip = sdxl_clip.SDXLClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
439
    elif len(clip_data) == 3:
440
441
        clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
        clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
comfyanonymous's avatar
comfyanonymous committed
442
443

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
444
445
446
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
447
            logging.warning("clip missing: {}".format(m))
448
449

        if len(u) > 0:
comfyanonymous's avatar
comfyanonymous committed
450
            logging.debug("clip unexpected: {}".format(u))
451
    return clip
comfyanonymous's avatar
comfyanonymous committed
452

453
def load_gligen(ckpt_path):
454
    data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
455
456
457
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
458
    return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
459

comfyanonymous's avatar
comfyanonymous committed
460
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
461
462
    logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.")
    model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True)
463
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
464
465
466
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
467
468
469
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
comfyanonymous's avatar
comfyanonymous committed
470
471
472

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
473
474
475
476
477
            m = model.clone()
            class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION):
                pass
            m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config))
            model = m
478

479
480
481
    layer_idx = clip_config.get("params", {}).get("layer_idx", None)
    if layer_idx is not None:
        clip.clip_layer(layer_idx)
482

483
    return (model, clip, vae)
484

485
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
486
    sd = comfy.utils.load_torch_file(ckpt_path)
487
488
    sd_keys = sd.keys()
    clip = None
489
    clipvision = None
490
    vae = None
491
    model = None
492
    model_patcher = None
493
    clip_target = None
494

495
496
    diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
    parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
497
    load_device = model_management.get_torch_device()
498

499
    model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
500
501
502
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))

comfyanonymous's avatar
comfyanonymous committed
503
504
505
    unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
    model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
506

507
    if model_config.clip_vision_prefix is not None:
508
        if output_clipvision:
509
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
510

511
    if output_model:
512
        inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
513
        offload_device = model_management.unet_offload_device()
514
515
        model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
        model.load_model_weights(sd, diffusion_model_prefix)
516

517
    if output_vae:
518
        vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
519
        vae_sd = model_config.process_vae_state_dict(vae_sd)
comfyanonymous's avatar
comfyanonymous committed
520
        vae = VAE(sd=vae_sd)
521

522
    if output_clip:
523
        clip_target = model_config.clip_target(state_dict=sd)
comfyanonymous's avatar
comfyanonymous committed
524
        if clip_target is not None:
525
526
            clip_sd = model_config.process_clip_state_dict(sd)
            if len(clip_sd) > 0:
527
                clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd)
528
529
                m, u = clip.load_sd(clip_sd, full_model=True)
                if len(m) > 0:
530
531
532
533
534
                    m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
                    if len(m_filter) > 0:
                        logging.warning("clip missing: {}".format(m))
                    else:
                        logging.debug("clip missing: {}".format(m))
535
536

                if len(u) > 0:
comfyanonymous's avatar
comfyanonymous committed
537
                    logging.debug("clip unexpected {}:".format(u))
538
            else:
539
                logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
comfyanonymous's avatar
comfyanonymous committed
540

541
542
    left_over = sd.keys()
    if len(left_over) > 0:
comfyanonymous's avatar
comfyanonymous committed
543
        logging.debug("left over keys: {}".format(left_over))
544

545
    if output_model:
546
        model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
547
        if inital_load_device != torch.device("cpu"):
comfyanonymous's avatar
comfyanonymous committed
548
            logging.info("loaded straight to GPU")
549
            model_management.load_model_gpu(model_patcher)
comfyanonymous's avatar
comfyanonymous committed
550
551

    return (model_patcher, clip, vae, clipvision)
552

553

554
555
556
557
558
559
560
561
def load_unet_state_dict(sd): #load unet in diffusers or regular format

    #Allow loading unets from checkpoint files
    diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
    temp_sd = comfy.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True)
    if len(temp_sd) > 0:
        sd = temp_sd

562
    parameters = comfy.utils.calculate_parameters(sd)
563
    unet_dtype = model_management.unet_dtype(model_params=parameters)
564
    load_device = model_management.get_torch_device()
565
    model_config = model_detection.model_config_from_unet(sd, "")
566

567
    if model_config is not None:
568
        new_sd = sd
569
    else:
570
        new_sd = model_detection.convert_diffusers_mmdit(sd, "")
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        if new_sd is not None: #diffusers mmdit
            model_config = model_detection.model_config_from_unet(new_sd, "")
            if model_config is None:
                return None
        else: #diffusers unet
            model_config = model_detection.model_config_from_diffusers_unet(sd)
            if model_config is None:
                return None

            diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)

            new_sd = {}
            for k in diffusers_keys:
                if k in sd:
                    new_sd[diffusers_keys[k]] = sd.pop(k)
                else:
                    logging.warning("{} {}".format(diffusers_keys[k], k))
comfyanonymous's avatar
comfyanonymous committed
588

589
    offload_device = model_management.unet_offload_device()
comfyanonymous's avatar
comfyanonymous committed
590
591
592
    unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
    model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
593
594
595
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
596
597
    left_over = sd.keys()
    if len(left_over) > 0:
comfyanonymous's avatar
comfyanonymous committed
598
        logging.info("left over keys in unet: {}".format(left_over))
599
    return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
600

601
602
603
604
def load_unet(unet_path):
    sd = comfy.utils.load_torch_file(unet_path)
    model = load_unet_state_dict(sd)
    if model is None:
605
        logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
606
607
608
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
    return model

609
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
610
611
612
613
614
615
    clip_sd = None
    load_models = [model]
    if clip is not None:
        load_models.append(clip.load_model())
        clip_sd = clip.get_sd()

616
    model_management.load_models_gpu(load_models, force_patch_weights=True)
617
618
    clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
    sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd)
619
620
    for k in extra_keys:
        sd[k] = extra_keys[k]
621

622
    for k in sd:
623
624
625
        t = sd[k]
        if not t.is_contiguous():
            sd[k] = t.contiguous()
626

627
    comfy.utils.save_torch_file(sd, output_path, metadata=metadata)