samplers.py 24.1 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
13
14
15

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
16
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
24
25
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

comfyanonymous's avatar
comfyanonymous committed
26
27
28

#The main sampling function shared by all the samplers
#Returns predicted noise
29
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
30
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
31
32
33
34
35
36
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
37

38
39
40
41
            adm_cond = None
            if 'adm' in cond[1]:
                adm_cond = cond[1]['adm']

42
43
44
45
46
47
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
48
                    mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
49
50
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
51
                    mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
52
53
            if area[3] != 0:
                for t in range(rr):
54
                    mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
55
56
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
57
                    mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
65
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
66

67
68
69
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
70
71
72
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
                    gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
                else:
                    gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
88
89

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
90
91
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
98
99
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
                if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
                    return False
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
100
101
102
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
103
104
            return True

comfyanonymous's avatar
comfyanonymous committed
105
106
107
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
108
109

            #control
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

116
117
118
119
120
121
122
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
123
124
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
125
126
127
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
128
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132
133
            for x in c_list:
                if 'c_crossattn' in x:
                    c_crossattn.append(x['c_crossattn'])
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
134
135
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
136
137
138
139
140
            out = {}
            if len(c_crossattn) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn)]
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
141
142
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
143
144
            return out

145
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
146
147
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
148
149
150
151
152
153

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
154

155
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
156
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
157
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
158
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
159
                    continue
160
161
162

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
163
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
164
165
166
167
168
169
170
171
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
172
                to_batch_temp = []
173
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
174
175
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
176
177
178
179
180
181
182
183
184

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
185
186
187
188
189
190

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
191
                control = None
192
                patches = None
193
194
195
196
197
198
199
200
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
201
                    control = p[4]
202
                    patches = p[5]
203
204
205

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
206
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
207
                timestep_ = torch.cat([timestep] * batch_chunks)
208

comfyanonymous's avatar
comfyanonymous committed
209
                if control is not None:
210
                    c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
211

212
                transformer_options = {}
213
                if 'transformer_options' in model_options:
214
215
216
217
218
219
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
                    transformer_options["patches"] = patches

                c['transformer_options'] = transformer_options
220

comfyanonymous's avatar
comfyanonymous committed
221
                output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
222
                del input_x
223

224
225
                model_management.throw_exception_if_processing_interrupted()

226
227
228
229
230
231
232
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
233
234
235
236
                del mult

            out_cond /= out_count
            del out_count
237
238
239
240
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
241
242


243
        max_total_area = model_management.maximum_batch_area()
244
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
245
246
247
248
        if "sampler_cfg_function" in model_options:
            return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
249

comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
264
265
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
        return out


class KSamplerX0Inpaint(torch.nn.Module):
270
271
272
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
273
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
274
275
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
276
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
277
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
278
279
280
281
282
283
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
284

comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
289
290
291
292
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
293
294
295
296
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
297
298
299
300
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
301
302
303
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
304
305
306
307
308
309
310
311
312
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
342

343
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
344
345
346
347
348
349
350
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
351
352
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
353
354
355
356
357
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
358
359
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
360
361
362
363
364
365
366
367
368
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
369
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
370
            n = o[1].copy()
371
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
372
373
374
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
375
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
376
377
            uncond[temp[1]] = [o[0], n]

378

379
380
381
382
383
384
def encode_adm(noise_augmentor, conds, batch_size, device):
    for t in range(len(conds)):
        x = conds[t]
        if 'adm' in x[1]:
            adm_inputs = []
            weights = []
385
            noise_aug = []
386
387
388
389
            adm_in = x[1]["adm"]
            for adm_c in adm_in:
                adm_cond = adm_c[0].image_embeds
                weight = adm_c[1]
390
391
392
                noise_augment = adm_c[2]
                noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
393
394
                adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
                weights.append(weight)
395
                noise_aug.append(noise_augment)
396
397
                adm_inputs.append(adm_out)

398
399
400
401
402
403
404
            if len(noise_aug) > 1:
                adm_out = torch.stack(adm_inputs).sum(0)
                #TODO: add a way to control this
                noise_augment = 0.05
                noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
                adm_out = torch.cat((c_adm, noise_level_emb), 1)
405
406
407
408
409
410
411
        else:
            adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
        x[1] = x[1].copy()
        x[1]["adm"] = torch.cat([adm_out] * batch_size)

    return conds

412

comfyanonymous's avatar
comfyanonymous committed
413
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
414
    SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
415
416
417
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
                "dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
418

419
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
420
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
421
        self.model_denoise = CFGNoisePredictor(self.model)
comfyanonymous's avatar
comfyanonymous committed
422
        if self.model.parameterization == "v":
comfyanonymous's avatar
comfyanonymous committed
423
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
424
        else:
comfyanonymous's avatar
comfyanonymous committed
425
426
427
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
        self.model_wrap.parameterization = self.model.parameterization
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
435
436
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
437
        self.set_steps(steps, denoise)
438
        self.denoise = denoise
439
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
440
441
442
443
444

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
445
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
comfyanonymous's avatar
comfyanonymous committed
446
447
448
449
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
450
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
451
452
453
454
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
455
456
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
461
462
463
464
465
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
466
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


474
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
comfyanonymous's avatar
comfyanonymous committed
475
476
477
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
478
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
479
480
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
481
482
483
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
484
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
485
486
487
488
489
490
491
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
492

comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
498
499
500
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

501
502
        apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
503

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
508
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

509
510
511
512
        if hasattr(self.model, 'noise_augmentor'): #unclip
            positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device)
            negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device)

513
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
comfyanonymous's avatar
comfyanonymous committed
514

comfyanonymous's avatar
comfyanonymous committed
515
        cond_concat = None
516
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
517
518
519
520
521
522
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
523
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
524
525
526
527
528
529
530
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

531
532
533
534
535
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

536
        with precision_scope(model_management.get_autocast_device(self.device)):
537
            if self.sampler == "uni_pc":
538
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
539
            elif self.sampler == "uni_pc_bh2":
540
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
comfyanonymous's avatar
comfyanonymous committed
541
542
543
544
545
546
547
            elif self.sampler == "ddim":
                timesteps = []
                for s in range(sigmas.shape[0]):
                    timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
                noise_mask = None
                if denoise_mask is not None:
                    noise_mask = 1.0 - denoise_mask
comfyanonymous's avatar
comfyanonymous committed
548
                sampler = DDIMSampler(self.model, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
549
550
551
552
553
554
555
556
557
558
559
560
561
                sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
                z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
                samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                     conditioning=positive,
                                                     batch_size=noise.shape[0],
                                                     shape=noise.shape[1:],
                                                     verbose=False,
                                                     unconditional_guidance_scale=cfg,
                                                     unconditional_conditioning=negative,
                                                     eta=0.0,
                                                     x_T=z_enc,
                                                     x0=latent_image,
                                                     denoise_function=sampling_function,
562
                                                     extra_args=extra_args,
comfyanonymous's avatar
comfyanonymous committed
563
564
565
566
                                                     mask=noise_mask,
                                                     to_zero=sigmas[-1]==0,
                                                     end_step=sigmas.shape[0] - 1)

comfyanonymous's avatar
comfyanonymous committed
567
            else:
568
569
570
571
572
573
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

574
575
                if latent_image is not None:
                    noise += latent_image
576
                if self.sampler == "dpm_fast":
577
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
578
                elif self.sampler == "dpm_adaptive":
579
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
580
                else:
581
                    samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args)
582

comfyanonymous's avatar
comfyanonymous committed
583
        return samples.to(torch.float32)