samplers.py 27.6 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
import enum
6
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
7
import math
8
from comfy import model_base
9
import comfy.utils
10
import comfy.conds
11
12


comfyanonymous's avatar
comfyanonymous committed
13
#The main sampling function shared by all the samplers
comfyanonymous's avatar
comfyanonymous committed
14
#Returns denoised
15
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
16
        def get_area_and_mult(conds, x_in, timestep_in):
17
18
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
19
20
21

            if 'timestep_start' in conds:
                timestep_start = conds['timestep_start']
22
                if timestep_in[0] > timestep_start:
23
                    return None
24
25
            if 'timestep_end' in conds:
                timestep_end = conds['timestep_end']
26
                if timestep_in[0] < timestep_end:
27
                    return None
28
29
30
31
            if 'area' in conds:
                area = conds['area']
            if 'strength' in conds:
                strength = conds['strength']
32

33
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
34
            if 'mask' in conds:
Jacob Segal's avatar
Jacob Segal committed
35
36
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
37
                mask_strength = 1.0
38
39
40
                if "mask_strength" in conds:
                    mask_strength = conds["mask_strength"]
                mask = conds['mask']
Jacob Segal's avatar
Jacob Segal committed
41
42
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
43
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
44
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
45
46
47
48
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

49
            if 'mask' not in conds:
Jacob Segal's avatar
Jacob Segal committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
64
            conditionning = {}
65
66
67
            model_conds = conds["model_conds"]
            for c in model_conds:
                conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
68

comfyanonymous's avatar
comfyanonymous committed
69
            control = None
70
71
            if 'control' in conds:
                control = conds['control']
72
73

            patches = None
74
75
            if 'gligen' in conds:
                gligen = conds['gligen']
76
77
78
79
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
80
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
81
                else:
comfyanonymous's avatar
comfyanonymous committed
82
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
83
84
85
86

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
87
88

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
89
90
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
91
92
            if c1.keys() != c2.keys():
                return False
93
94
            for k in c1:
                if not c1[k].can_concat(c2[k]):
95
                    return False
comfyanonymous's avatar
comfyanonymous committed
96
97
            return True

comfyanonymous's avatar
comfyanonymous committed
98
99
100
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
101
102

            #control
comfyanonymous's avatar
comfyanonymous committed
103
104
105
106
107
108
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

109
110
111
112
113
114
115
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
116
117
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
118
119
120
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
121
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
122
            crossattn_max_len = 0
123
124

            temp = {}
comfyanonymous's avatar
comfyanonymous committed
125
            for x in c_list:
126
127
128
129
130
                for k in x:
                    cur = temp.get(k, [])
                    cur.append(x[k])
                    temp[k] = cur

comfyanonymous's avatar
comfyanonymous committed
131
            out = {}
132
133
134
135
            for k in temp:
                conds = temp[k]
                out[k] = conds[0].concat(conds[1:])

comfyanonymous's avatar
comfyanonymous committed
136
137
            return out

138
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, model_options):
comfyanonymous's avatar
comfyanonymous committed
139
            out_cond = torch.zeros_like(x_in)
140
            out_count = torch.zeros_like(x_in)
141
142

            out_uncond = torch.zeros_like(x_in)
143
            out_uncond_count = torch.zeros_like(x_in)
144
145
146

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
147

148
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
149
            for x in cond:
150
                p = get_area_and_mult(x, x_in, timestep)
151
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
152
                    continue
153
154

                to_run += [(p, COND)]
155
156
            if uncond is not None:
                for x in uncond:
157
                    p = get_area_and_mult(x, x_in, timestep)
158
159
                    if p is None:
                        continue
160

161
                    to_run += [(p, UNCOND)]
162
163
164
165

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
166
                to_batch_temp = []
167
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
168
169
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
170
171
172
173
174
175
176
177
178

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
179
180
181
182
183
184

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
185
                control = None
186
                patches = None
187
188
189
190
191
192
193
194
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
195
                    control = p[4]
196
                    patches = p[5]
197
198
199

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
200
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
201
                timestep_ = torch.cat([timestep] * batch_chunks)
202

comfyanonymous's avatar
comfyanonymous committed
203
                if control is not None:
204
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
205

206
                transformer_options = {}
207
                if 'transformer_options' in model_options:
208
209
210
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
211
212
213
214
215
216
217
218
219
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
220

221
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
222
                c['transformer_options'] = transformer_options
223

224
225
226
227
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
228
                del input_x
229
230
231
232
233
234
235
236

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
                del mult

            out_cond /= out_count
            del out_count
241
242
243
            out_uncond /= out_uncond_count
            del out_uncond_count

244
245
            torch.nan_to_num(out_cond, nan=0.0, posinf=0.0, neginf=0.0, out=out_cond) #in case out_count or out_uncond_count had some zeros
            torch.nan_to_num(out_uncond, nan=0.0, posinf=0.0, neginf=0.0, out=out_uncond)
246
            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
247
248


249
        max_total_area = model_management.maximum_batch_area()
250
251
252
        if math.isclose(cond_scale, 1.0):
            uncond = None

253
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options)
254
        if "sampler_cfg_function" in model_options:
255
256
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
257
258
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
259

comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
264
265
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
266
        return out
comfyanonymous's avatar
comfyanonymous committed
267
268
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
269
270

class KSamplerX0Inpaint(torch.nn.Module):
271
272
273
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
274
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
275
276
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
277
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
278
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
279
280
281
282
283
284
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
285

comfyanonymous's avatar
comfyanonymous committed
286
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
287
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
288
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
289
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
290
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
291
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
292
293
294
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
295
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
296
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
297
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
298
299
300
301
302
303
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
304
305
306
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313
314
315
316
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

317
318
319
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
320
        sigs.append(s.sigma(ts))
321
322
323
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

347
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
348
349
350
351
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
352
353
        if 'area' in c:
            area = c['area']
354
            if area[0] == "percentage":
355
                modified = c.copy()
356
357
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
358
                c = modified
359
360
                conditions[i] = c

361
362
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
363
            mask = mask.to(device=device)
364
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
365
366
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
367
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
368
369
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
370
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
371
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
372
373
374
375
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
376
                else:
Jacob Segal's avatar
Jacob Segal committed
377
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
378
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
379
380
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
381
382
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
383
384

            modified['mask'] = mask
385
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
386

comfyanonymous's avatar
comfyanonymous committed
387
def create_cond_with_same_area_if_none(conds, c):
388
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
389
390
        return

391
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
392
393
    smallest = None
    for x in conds:
394
395
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
396
397
398
399
400
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
401
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
402
403
                            smallest = x
                        else:
404
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
405
406
407
408
409
410
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
411
412
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
413
            return
414
415
416
417

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
418

419
def calculate_start_end_timesteps(model, conds):
420
    s = model.model_sampling
421
422
423
424
425
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
426
        if 'start_percent' in x:
427
            timestep_start = s.percent_to_sigma(x['start_percent'])
428
        if 'end_percent' in x:
429
            timestep_end = s.percent_to_sigma(x['end_percent'])
430
431

        if (timestep_start is not None) or (timestep_end is not None):
432
            n = x.copy()
433
434
435
436
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
437
            conds[t] = n
438

439
def pre_run_control(model, conds):
440
    s = model.model_sampling
441
442
443
444
445
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
446
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
447
        if 'control' in x:
448
            x['control'].pre_run(model, percent_to_timestep_function)
449

450
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
451
452
453
454
455
456
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
457
458
459
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
460
461
462
463
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
464
465
466
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
474
475
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
476
477
        if name in o and o[name] is not None:
            n = o.copy()
478
            n[name] = uncond_fill_func(cond_cnets, x)
479
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
480
        else:
481
            n = o.copy()
482
            n[name] = uncond_fill_func(cond_cnets, x)
483
            uncond[temp[1]] = n
484

485
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
486
487
    for t in range(len(conds)):
        x = conds[t]
488
        params = x.copy()
489
        params["device"] = device
490
491
492
493
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
494
495
496
497
498
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
499
500
501
502
503
504
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
505
    return conds
506

comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
511
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
512
513
514
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
515
516
517
518
519
520
521
522
523
524
525
526
527

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]

528
def ksampler(sampler_name, extra_options={}, inpaint_options={}):
comfyanonymous's avatar
comfyanonymous committed
529
530
531
532
533
    class KSAMPLER(Sampler):
        def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
            extra_args["denoise_mask"] = denoise_mask
            model_k = KSamplerX0Inpaint(model_wrap)
            model_k.latent_image = latent_image
534
535
536
537
538
            if inpaint_options.get("random", False): #TODO: Should this be the default?
                generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
                model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
            else:
                model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

            if self.max_denoise(model_wrap, sigmas):
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]

            if latent_image is not None:
                noise += latent_image
            if sampler_name == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif sampler_name == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
comfyanonymous's avatar
comfyanonymous committed
561
                samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
comfyanonymous's avatar
comfyanonymous committed
562
563
564
            return samples
    return KSAMPLER

comfyanonymous's avatar
comfyanonymous committed
565
566
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
567
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
568
569
570
571
572
573
574
575

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
576
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
577

578
579
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
580
581
582
583
584
585
586

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

587
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
588

589
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
590
591
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

592
593
594
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

595
596
597
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
598
599
600
601
602
603

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
604
605
606
607
608
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
609
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
610
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
611
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
612
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
613
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
614
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
615
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
616
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
617
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
618
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
619
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
620
621
622
623
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

624
625
626
627
628
629
def sampler_class(name):
    if name == "uni_pc":
        sampler = UNIPC
    elif name == "uni_pc_bh2":
        sampler = UNIPCBH2
    elif name == "ddim":
630
        sampler = ksampler("euler", inpaint_options={"random": True})
631
632
633
634
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
635
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
636
637
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
638

639
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
640
641
642
643
644
645
646
647
648
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
649
        self.denoise = denoise
650
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
651

comfyanonymous's avatar
comfyanonymous committed
652
653
654
655
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
656
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
657
658
659
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
660
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
661
662
663
664
665

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
666
667
    def set_steps(self, steps, denoise=None):
        self.steps = steps
668
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
669
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
670
671
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
672
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
673
674
            self.sigmas = sigmas[-(steps + 1):]

675
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
676
677
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
678

comfyanonymous's avatar
comfyanonymous committed
679
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
680
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
681
682
683
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
684
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
685
686
687
688
689
690
691
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
692

693
        sampler = sampler_class(self.sampler)
694

comfyanonymous's avatar
comfyanonymous committed
695
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)