Unverified Commit 1b2e8f76 authored by HandH1998's avatar HandH1998 Committed by GitHub
Browse files

[2/2] Support Qserve (#6521)

parent d2e0881a
...@@ -349,6 +349,7 @@ class ModelConfig: ...@@ -349,6 +349,7 @@ class ModelConfig:
"w8a8_int8", "w8a8_int8",
"w8a8_fp8", "w8a8_fp8",
"moe_wna16", "moe_wna16",
"qoq",
] ]
compatible_quantization_methods = { compatible_quantization_methods = {
"modelopt_fp4": ["modelopt"], "modelopt_fp4": ["modelopt"],
...@@ -458,6 +459,8 @@ def _get_and_verify_dtype( ...@@ -458,6 +459,8 @@ def _get_and_verify_dtype(
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct # NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None. # because config.torch_dtype can be None.
config_dtype = getattr(config, "torch_dtype", None) config_dtype = getattr(config, "torch_dtype", None)
if isinstance(config_dtype, str):
config_dtype = _STR_DTYPE_TO_TORCH_DTYPE.get(config_dtype, None)
if config_dtype is None: if config_dtype is None:
config_dtype = torch.float32 config_dtype = torch.float32
......
...@@ -67,6 +67,7 @@ from sglang.srt.layers.quantization.modelopt_quant import ( ...@@ -67,6 +67,7 @@ from sglang.srt.layers.quantization.modelopt_quant import (
ModelOptFp8Config, ModelOptFp8Config,
) )
from sglang.srt.layers.quantization.moe_wna16 import MoeWNA16Config from sglang.srt.layers.quantization.moe_wna16 import MoeWNA16Config
from sglang.srt.layers.quantization.qoq import QoQConfig
from sglang.srt.layers.quantization.w8a8_fp8 import W8A8Fp8Config from sglang.srt.layers.quantization.w8a8_fp8 import W8A8Fp8Config
from sglang.srt.layers.quantization.w8a8_int8 import W8A8Int8Config from sglang.srt.layers.quantization.w8a8_int8 import W8A8Int8Config
...@@ -80,6 +81,7 @@ BASE_QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = { ...@@ -80,6 +81,7 @@ BASE_QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"w8a8_fp8": W8A8Fp8Config, "w8a8_fp8": W8A8Fp8Config,
"moe_wna16": MoeWNA16Config, "moe_wna16": MoeWNA16Config,
"compressed-tensors": CompressedTensorsConfig, "compressed-tensors": CompressedTensorsConfig,
"qoq": QoQConfig,
} }
# VLLM-dependent quantization methods # VLLM-dependent quantization methods
......
...@@ -22,9 +22,11 @@ def _per_token_quant_int8( ...@@ -22,9 +22,11 @@ def _per_token_quant_int8(
x_ptr, x_ptr,
xq_ptr, xq_ptr,
scale_ptr, scale_ptr,
x_sum_ptr,
stride_x, stride_x,
stride_xq, stride_xq,
N, N,
CAL_SUM: tl.constexpr,
BLOCK: tl.constexpr, BLOCK: tl.constexpr,
): ):
# Adapted from https://github.com/InternLM/lmdeploy/blob/086481ed84b59bee3b8e4274e5fc69620040c048/lmdeploy/pytorch/kernels/cuda/w8a8_triton_kernels.py#L282 # Adapted from https://github.com/InternLM/lmdeploy/blob/086481ed84b59bee3b8e4274e5fc69620040c048/lmdeploy/pytorch/kernels/cuda/w8a8_triton_kernels.py#L282
...@@ -38,16 +40,23 @@ def _per_token_quant_int8( ...@@ -38,16 +40,23 @@ def _per_token_quant_int8(
scale_x = absmax / 127 scale_x = absmax / 127
x_q = x * (127 / absmax) x_q = x * (127 / absmax)
x_q = tl.extra.cuda.libdevice.round(x_q).to(tl.int8) x_q = tl.extra.cuda.libdevice.round(x_q).to(tl.int8)
if CAL_SUM:
x_sum = tl.sum(x, axis=0)
tl.store(x_sum_ptr + row_id, x_sum.to(x_sum_ptr.dtype.element_ty))
tl.store(xq_ptr + row_id * stride_xq + cols, x_q, mask=mask) tl.store(xq_ptr + row_id * stride_xq + cols, x_q, mask=mask)
tl.store(scale_ptr + row_id, scale_x) tl.store(scale_ptr + row_id, scale_x.to(scale_ptr.dtype.element_ty))
def per_token_quant_int8(x): def per_token_quant_int8(x, scale_dtype=torch.float32, cal_sum=False):
M = x.numel() // x.shape[-1] M = x.numel() // x.shape[-1]
N = x.shape[-1] N = x.shape[-1]
x_q = torch.empty_like(x, device=x.device, dtype=torch.int8) x_q = torch.empty_like(x, device=x.device, dtype=torch.int8)
scales = torch.empty(x.shape[:-1] + (1,), device=x.device, dtype=torch.float32) scales = torch.empty(x.shape[:-1] + (1,), device=x.device, dtype=scale_dtype)
if cal_sum:
x_sum = torch.empty(x.shape[:-1], device=x.device, dtype=x.dtype)
else:
x_sum = None
BLOCK = triton.next_power_of_2(N) BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps # heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8) num_warps = min(max(BLOCK // 256, 1), 8)
...@@ -57,15 +66,19 @@ def per_token_quant_int8(x): ...@@ -57,15 +66,19 @@ def per_token_quant_int8(x):
x, x,
x_q, x_q,
scales, scales,
x_sum,
stride_x=x.stride(-2), stride_x=x.stride(-2),
stride_xq=x_q.stride(-2), stride_xq=x_q.stride(-2),
N=N, N=N,
CAL_SUM=cal_sum,
BLOCK=BLOCK, BLOCK=BLOCK,
num_warps=num_warps, num_warps=num_warps,
num_stages=1, num_stages=1,
) )
if cal_sum:
return x_q, scales return x_q, scales, x_sum
else:
return x_q, scales
@triton.jit @triton.jit
......
from typing import Any, Callable, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from sglang.srt.layers.linear import LinearMethodBase
from sglang.srt.layers.parameter import (
ChannelQuantScaleParameter,
GroupQuantScaleParameter,
ModelWeightParameter,
)
from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8
from sglang.srt.utils import is_cuda
_is_cuda = is_cuda()
if _is_cuda:
from sgl_kernel import qserve_w4a8_per_chn_gemm, qserve_w4a8_per_group_gemm
QoQ_SUPPORTED_WEIGHT_BITS = [4]
QoQ_SUPPORTED_GROUP_SIZES = [-1, 128]
class QoQConfig(QuantizationConfig):
"""Config class for QoQ Quantization.
- Weight: static, per-channel/group, asymmetric
- Activation: dynamic, per-token, symmetric
Reference: https://arxiv.org/abs/2405.04532
https://github.com/mit-han-lab/omniserve
"""
def __init__(self, weight_bits: int, group_size: int) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
# Verify
if self.weight_bits not in QoQ_SUPPORTED_WEIGHT_BITS:
raise ValueError(
f"QoQ does not support weight_bits = {self.weight_bits}. "
f"Only weight_bits = {QoQ_SUPPORTED_WEIGHT_BITS} "
"are supported."
)
if self.group_size not in QoQ_SUPPORTED_GROUP_SIZES:
raise ValueError(
f"QoQ does not support group_size = {self.group_size}. "
f"Only group_sizes = {QoQ_SUPPORTED_GROUP_SIZES} "
"are supported."
)
# 4 bits packed into 8 bit datatype.
self.pack_factor = 8 // self.weight_bits
def __repr__(self) -> str:
return "QoQConfig(weight_bits={}, group_size={})".format(
self.weight_bits, self.group_size
)
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.float16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_name(self) -> str:
return "qoq"
@classmethod
def get_config_filenames(cls) -> List[str]:
"""List of filenames to search for in the model directory."""
return [
"quant_config.json",
"quantize_config.json",
]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "QoQConfig":
weight_bits = cls.get_from_keys(config, ["wbits"])
group_size = cls.get_from_keys(config, ["group_size"])
return cls(weight_bits, group_size)
def get_quant_method(
self,
layer: torch.nn.Module,
prefix: str,
) -> Optional["QuantizeMethodBase"]:
from sglang.srt.layers.linear import LinearBase
if isinstance(layer, LinearBase):
return QoQLinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class QoQLinearMethod(LinearMethodBase):
"""Linear method for QoQ.
Args:
quant_config: The QoQ quantization config.
"""
def __init__(self, quant_config: QoQConfig):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
weight_loader = extra_weight_attrs.get("weight_loader")
# Validate output_size_per_partition
output_size_per_partition = sum(output_partition_sizes)
if output_size_per_partition % 32 != 0:
raise ValueError(
f"Weight output_size_per_partition = "
f"{output_size_per_partition} is not divisible by 32."
)
# Validate input_size_per_partition
if input_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"pack_factor = {self.quant_config.pack_factor}."
)
if (
self.quant_config.group_size != -1
and input_size_per_partition % self.quant_config.group_size != 0
):
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible by "
f"group_size = {self.quant_config.group_size}."
)
qweight = ModelWeightParameter(
data=torch.empty(
output_size_per_partition,
input_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int8,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("qweight", qweight)
s1_scales = ChannelQuantScaleParameter(
data=torch.empty(output_size_per_partition, dtype=torch.float16),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("s1_scales", s1_scales)
if self.quant_config.group_size == -1:
s1_szeros = ChannelQuantScaleParameter(
data=torch.empty(output_size_per_partition, dtype=torch.float16),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("s1_szeros", s1_szeros)
else:
s2_scales = GroupQuantScaleParameter(
data=torch.empty(
(
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition,
),
dtype=torch.int8,
),
input_dim=0,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("s2_scales", s2_scales)
s2_zeros = GroupQuantScaleParameter(
data=torch.empty(
(
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition,
),
dtype=torch.int8,
),
input_dim=0,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("s2_zeros", s2_zeros)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
layer.qweight = Parameter(layer.qweight.data, requires_grad=False)
layer.s1_scales = Parameter(layer.s1_scales.data, requires_grad=False)
if self.quant_config.group_size == -1:
layer.s1_szeros = Parameter(layer.s1_szeros.data, requires_grad=False)
else:
layer.s2_scales = Parameter(layer.s2_scales.data, requires_grad=False)
layer.s2_zeros = Parameter(layer.s2_zeros.data, requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
):
assert x.dtype == torch.float16, "QoQ only supports float16 input now"
if self.quant_config.group_size == -1:
x_q, x_scale, x_sum = per_token_quant_int8(
x, scale_dtype=x.dtype, cal_sum=True
)
out = qserve_w4a8_per_chn_gemm(
x_q, layer.qweight, layer.s1_scales, x_scale, layer.s1_szeros, x_sum
)
else:
x_q, x_scale = per_token_quant_int8(x, scale_dtype=x.dtype)
out = qserve_w4a8_per_group_gemm(
x_q,
layer.qweight,
layer.s2_zeros,
layer.s2_scales,
layer.s1_scales,
x_scale,
)
if bias is not None:
out = out + bias
return out
...@@ -577,6 +577,7 @@ class ServerArgs: ...@@ -577,6 +577,7 @@ class ServerArgs:
"w8a8_int8", "w8a8_int8",
"w8a8_fp8", "w8a8_fp8",
"moe_wna16", "moe_wna16",
"qoq",
], ],
help="The quantization method.", help="The quantization method.",
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment