server_args.py 97.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.function_call.function_call_parser import FunctionCallParser
27
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
28
from sglang.srt.layers.utils import is_sm90_supported, is_sm100_supported
29
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
30
from sglang.srt.reasoning_parser import ReasoningParser
31
from sglang.srt.utils import (
32
33
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
34
    configure_ipv6,
35
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
36
    get_device_memory_capacity,
37
    is_cuda,
38
    is_flashinfer_available,
HAI's avatar
HAI committed
39
    is_hip,
40
    is_port_available,
41
    is_remote_url,
42
    is_triton_kernels_available,
43
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
44
    nullable_str,
45
)
46

47
48
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
55
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
56
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
57
    load_format: str = "auto"
58
    model_loader_extra_config: str = "{}"
59
    trust_remote_code: bool = False
60
    context_length: Optional[int] = None
61
    is_embedding: bool = False
62
    enable_multimodal: Optional[bool] = None
63
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
64
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
65

Lianmin Zheng's avatar
Lianmin Zheng committed
66
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
69
70
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
71
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
72

Lianmin Zheng's avatar
Lianmin Zheng committed
73
74
75
76
77
78
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
79
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
80
    mem_fraction_static: Optional[float] = None
81
    max_running_requests: Optional[int] = None
82
    max_queued_requests: Optional[int] = sys.maxsize
83
    max_total_tokens: Optional[int] = None
84
    chunked_prefill_size: Optional[int] = None
85
    max_prefill_tokens: int = 16384
86
    schedule_policy: str = "fcfs"
87
    schedule_conservativeness: float = 1.0
88
    cpu_offload_gb: int = 0
89
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
90
91
92
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
93

Lianmin Zheng's avatar
Lianmin Zheng committed
94
95
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
96
    tp_size: int = 1
97
98
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
99
    stream_interval: int = 1
100
    stream_output: bool = False
101
    random_seed: Optional[int] = None
102
    constrained_json_whitespace_pattern: Optional[str] = None
103
    watchdog_timeout: float = 300
104
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
105
    download_dir: Optional[str] = None
106
    base_gpu_id: int = 0
107
    gpu_id_step: int = 1
108
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
109
110
111

    # Logging
    log_level: str = "info"
112
    log_level_http: Optional[str] = None
113
    log_requests: bool = False
114
    log_requests_level: int = 2
115
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
116
    show_time_cost: bool = False
117
    enable_metrics: bool = False
118
    enable_metrics_for_all_schedulers: bool = False
119
120
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
121
    bucket_e2e_request_latency: Optional[List[float]] = None
122
    collect_tokens_histogram: bool = False
123
    decode_log_interval: int = 40
124
    enable_request_time_stats_logging: bool = False
125
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
126

127
    # API related
128
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
129
    served_model_name: Optional[str] = None
130
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
131
132
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
133
    file_storage_path: str = "sglang_storage"
134
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
135
    reasoning_parser: Optional[str] = None
136
    tool_call_parser: Optional[str] = None
137
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
138

139
140
141
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
142

143
    # Multi-node distributed serving
144
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
145
    nnodes: int = 1
146
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149

    # Model override args in JSON
    json_model_override_args: str = "{}"
150
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
151

152
    # LoRA
153
    enable_lora: Optional[bool] = None
154
    max_lora_rank: Optional[int] = None
155
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
156
157
158
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
159
    max_loaded_loras: Optional[int] = None
160
    max_loras_per_batch: int = 8
161
    lora_backend: str = "triton"
162
163

    # Kernel backend
164
    attention_backend: Optional[str] = None
165
166
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
167
    sampling_backend: Optional[str] = None
168
    grammar_backend: Optional[str] = None
169
    mm_attention_backend: Optional[str] = None
170

171
172
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
173
    speculative_draft_model_path: Optional[str] = None
174
175
176
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
177
178
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
179
    speculative_token_map: Optional[str] = None
180

181
182
    # Expert parallelism
    ep_size: int = 1
183
184
185
186
187
188
189
190
191
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
192
    enable_flashinfer_allreduce_fusion: bool = False
193
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
211
212
213
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
214
215
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
216
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
217
    hicache_storage_prefetch_policy: str = "best_effort"
Lianmin Zheng's avatar
Lianmin Zheng committed
218

219
220
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
221
    ds_channel_config_path: Optional[str] = None
222
223
224
225
226
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

227
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
228
    disable_radix_cache: bool = False
229
230
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
231
    disable_cuda_graph: bool = False
232
    disable_cuda_graph_padding: bool = False
233
    enable_profile_cuda_graph: bool = False
234
    enable_cudagraph_gc: bool = False
235
    enable_nccl_nvls: bool = False
236
    enable_symm_mem: bool = False
237
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
238
    enable_tokenizer_batch_encode: bool = False
239
    disable_outlines_disk_cache: bool = False
240
    disable_custom_all_reduce: bool = False
241
    enable_mscclpp: bool = False
242
    disable_overlap_schedule: bool = False
243
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
244
    enable_dp_attention: bool = False
245
    enable_dp_lm_head: bool = False
246
    enable_two_batch_overlap: bool = False
247
    tbo_token_distribution_threshold: float = 0.48
248
    enable_torch_compile: bool = False
249
    torch_compile_max_bs: int = 32
250
    torchao_config: str = ""
251
    enable_nan_detection: bool = False
252
    enable_p2p_check: bool = False
253
    triton_attention_reduce_in_fp32: bool = False
254
    triton_attention_num_kv_splits: int = 8
255
    num_continuous_decode_steps: int = 1
256
    delete_ckpt_after_loading: bool = False
257
    enable_memory_saver: bool = False
258
    allow_auto_truncate: bool = False
259
    enable_custom_logit_processor: bool = False
260
    flashinfer_mla_disable_ragged: bool = False
261
    disable_shared_experts_fusion: bool = False
262
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
263
    disable_fast_image_processor: bool = False
264
    enable_return_hidden_states: bool = False
265
    scheduler_recv_interval: int = 1
266
267
268
269
270

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
271
    debug_tensor_dump_prefill_only: bool = False
272

Lianmin Zheng's avatar
Lianmin Zheng committed
273
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
274
    disaggregation_mode: str = "null"
275
    disaggregation_transfer_backend: str = "mooncake"
276
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
277
278
279
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
280
    disaggregation_ib_device: Optional[str] = None
281
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
282
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
283

284
285
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
286
    weight_loader_disable_mmap: bool = False
287

288
289
290
291
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

292
293
294
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
295
296
297
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
298
    enable_flashinfer_mxfp4_moe: bool = False
299

Lianmin Zheng's avatar
Lianmin Zheng committed
300
    def __post_init__(self):
301
302
303
304
305
306
307
308
309
310
311
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
327
328
329
330
331
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
332

333
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
334
335
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
336
337
        if self.served_model_name is None:
            self.served_model_name = self.model_path
338
339
        if self.device is None:
            self.device = get_device()
340
341
342
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
343
        gpu_mem = get_device_memory_capacity(self.device)
344

345
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
346
        if self.mem_fraction_static is None:
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
375
                else:
376
377
378
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

379
                if self.speculative_algorithm is not None:
380
381
382
383
384
385
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
386
            else:
387
                self.mem_fraction_static = 0.88
388

389
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
390
            # Multimodal models need more memory for the image processor
391
392
393
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
394
395
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
396

397
398
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
399
400
401
402
403
404
405
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
406
            else:
407
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
408

409
410
411
412
413
414
415
416
417
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

418
        # Set kernel backends for hpu device
419
420
421
422
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

423
424
425
        # Model-specific adjustments
        self.model_specific_adjustments()

Lianmin Zheng's avatar
Lianmin Zheng committed
426
        # Set kernel backends
427
428
429
430
431
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

432
        if self.sampling_backend is None:
433
434
435
436
437
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
438
            logger.warning(
439
440
441
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
442

443
444
445
446
447
448
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

449
450
451
452
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
453
454
455
456
457
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

458
459
460
461
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
462
463
464
465
466
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
467
468
469
470
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
471
472
473
474
475
476
477
478
479
480
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
481
482
483
484
485

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
486

487
488
489
490
491
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
492
493
494
495
496
497
498
499
500
501
502
503
504
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

            if self.speculative_algorithm is not None:
                raise ValueError(
505
                    "trtllm_mha backend does not support speculative decoding yet."
506
                )
507

508
509
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
510
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
511
512
513
514
515
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

516
517
518
519
520
521
522
523
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

524
525
526
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
527

528
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
529
        if self.enable_dp_attention:
530
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
531
532
533
534
535
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
536
            logger.warning(
537
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
538
            )
539

540
541
542
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
543
            ), "Please enable dp attention when setting enable_dp_lm_head. "
544

545
        # MoE kernel
546
        if self.moe_runner_backend == "flashinfer_cutlass":
547
548
549
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
550
551
552
553
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
554

555
        if self.moe_runner_backend == "flashinfer_trtllm":
556
557
558
559
560
561
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

562
        # DeepEP MoE
563
        if self.moe_a2a_backend == "deepep":
564
565
566
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
567
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
568
            logger.warning(
569
570
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
571

572
573
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
574
            logger.warning(
575
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
576
577
578
579
580
581
582
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

583
        if self.enable_eplb:
584
            assert self.ep_size > 1
585

586
587
588
589
590
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

591
        if self.expert_distribution_recorder_buffer_size is None:
592
593
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
594
595
596
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
597
598
599
600
601
602
603
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
604
        # Hicache
605
606
607
608
609
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

610
        # Speculative Decoding
611
612
613
614
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
615
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
616
            if self.max_running_requests is None:
617
                self.max_running_requests = 48
618
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
619
            logger.warning(
620
                "Overlap scheduler is disabled because of using "
621
                "eagle speculative decoding."
622
            )
623
624
625
626
627
628
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
629

Lianmin Zheng's avatar
Lianmin Zheng committed
630
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
631
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
632
                # Auto set draft_model_path DeepSeek-V3/R1
633
634
635
636
637
638
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
639

640
641
642
643
644
645
646
647
648
649
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
650
                ) = auto_choose_speculative_params(self)
651

652
653
654
655
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
656
                logger.warning(
657
658
659
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
660

661
            # The token generated from the verify step is counted.
662
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
663
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
664

665
666
667
668
669
670
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

671
        # Model loading
672
673
        if is_remote_url(self.model_path):
            self.load_format = "remote"
674
675
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
676

Byron Hsu's avatar
Byron Hsu committed
677
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
678
679
680
681
682
683
684
685
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
686
            self.disable_radix_cache = True
687
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
688
689
690
691
692
693
694
695
696
697
698
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
699

700
        # Propagate env vars
701
702
703
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
704
705
706
707
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
708

Lianmin Zheng's avatar
Lianmin Zheng committed
709
710
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
711
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
712
713
        parser.add_argument(
            "--model-path",
714
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
715
716
717
718
719
720
721
722
723
724
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
725
726
727
728
729
730
731
732
733
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
734
735
736
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
737
            help="If set, skip init tokenizer and pass input_ids in generate request.",
738
        )
739
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
740
741
742
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
743
744
745
746
747
748
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
749
                "sharded_state",
750
751
                "gguf",
                "bitsandbytes",
752
                "layered",
753
                "remote",
754
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
755
756
757
758
759
760
761
762
763
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
764
            "which is mainly for profiling."
765
766
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
767
768
769
770
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
771
        )
772
773
774
775
776
777
778
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
779
780
781
782
783
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
855
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
856
            "--dtype",
Cody Yu's avatar
Cody Yu committed
857
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
858
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
859
860
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
861
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
862
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
863
864
865
866
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
867
868
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
869
870
871
872
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
873
874
875
876
877
878
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
879
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
880
                "bitsandbytes",
881
                "gguf",
882
                "modelopt",
883
                "modelopt_fp4",
884
                "petit_nvfp4",
885
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
886
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
887
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
888
                "qoq",
889
                "w4afp8",
890
                "mxfp4",
Ying Sheng's avatar
Ying Sheng committed
891
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
892
893
            help="The quantization method.",
        )
894
895
896
897
898
899
900
901
902
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
903
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
904
            "--kv-cache-dtype",
905
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
906
907
908
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
909
        )
910

911
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
912
913
914
915
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
916
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
917
        )
918
919
920
921
922
923
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
924
925
926
927
928
929
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
930
931
932
933
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
934
935
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
936
        )
937
938
939
940
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
941
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
942
943
944
945
946
947
948
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
949
        parser.add_argument(
950
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
951
            type=str,
952
            default=ServerArgs.schedule_policy,
953
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
954
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
955
        )
956
957
958
959
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
960
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
961
        )
962
963
964
965
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
966
            help="How many GBs of RAM to reserve for CPU offloading.",
967
        )
968
969
970
971
972
973
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
974
975
976
977
978
979
980
981
982
983
984
985
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
986
987
988
989
990
991
992
993
994
995
996
997
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
998

Lianmin Zheng's avatar
Lianmin Zheng committed
999
1000
1001
1002
1003
1004
1005
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1006
        parser.add_argument(
1007
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1008
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1009
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1010
            default=ServerArgs.tp_size,
1011
            help="The tensor parallelism size.",
1012
        )
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1026
1027
1028
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1029
            default=ServerArgs.stream_interval,
1030
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1031
        )
1032
1033
1034
1035
1036
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1037
1038
1039
1040
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1041
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1042
        )
1043
1044
1045
1046
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1047
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1048
        )
1049
1050
1051
1052
1053
1054
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1055
1056
1057
1058
1059
1060
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1061
1062
1063
1064
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1065
            help="Model download directory for huggingface.",
1066
        )
1067
1068
1069
1070
1071
1072
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1073
1074
1075
1076
1077
1078
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1079
1080
1081
1082
1083
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1084
1085

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1086
1087
1088
1089
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1090
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1091
        )
1092
        parser.add_argument(
1093
1094
1095
1096
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1097
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1098
        parser.add_argument(
1099
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1100
            action="store_true",
1101
1102
1103
1104
1105
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1106
            default=ServerArgs.log_requests_level,
1107
1108
1109
1110
1111
1112
1113
1114
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1115
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1116
1117
1118
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1119
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1120
        )
1121
1122
1123
1124
1125
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1126
1127
1128
1129
1130
1131
1132
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1160
1161
1162
1163
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1164
            help="The log interval of decode batch.",
1165
        )
1166
1167
1168
1169
1170
1171
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1172
1173
1174
1175
1176
1177
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1178

1179
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1180
1181
1182
1183
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1184
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1185
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1186
1187
1188
1189
1190
1191
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1192
1193
1194
1195
1196
1197
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1210
        parser.add_argument(
1211
            "--file-storage-path",
1212
            type=str,
1213
            default=ServerArgs.file_storage_path,
1214
1215
            help="The path of the file storage in backend.",
        )
1216
1217
1218
1219
1220
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1221
1222
1223
1224
1225
1226
1227
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1228
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1229
1230
1231
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1232
            choices=tool_call_parser_choices,
1233
            default=ServerArgs.tool_call_parser,
1234
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1235
        )
1236
1237
1238
1239
1240
1241
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1242

1243
1244
        # Data parallelism
        parser.add_argument(
1245
            "--data-parallel-size",
1246
1247
1248
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1249
            help="The data parallelism size.",
1250
1251
1252
1253
1254
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1255
            help="The load balancing strategy for data parallelism.",
1256
1257
1258
            choices=[
                "round_robin",
                "shortest_queue",
1259
                "minimum_tokens",
1260
1261
            ],
        )
1262

1263
        # Multi-node distributed serving
1264
        parser.add_argument(
1265
            "--dist-init-addr",
1266
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1267
            type=str,
1268
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1269
1270
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1271
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1272
        )
1273
1274
1275
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1276

Lianmin Zheng's avatar
Lianmin Zheng committed
1277
1278
1279
1280
1281
1282
1283
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1284
1285
1286
1287
1288
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1289

1290
        # LoRA
1291
1292
1293
1294
1295
1296
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1297
1298
1299
1300
1301
1302
1303
1304
1305
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1306
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1307
1308
            nargs="*",
            default=None,
1309
1310
1311
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1312
        )
1313
1314
1315
1316
1317
1318
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1319
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1320
1321
1322
1323
1324
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1325
1326
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1327
1328
1329
1330
1331
1332
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1333
1334
1335
1336
1337
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1338
1339
1340
        )

        # Kernel backend
1341
        ATTN_BACKENDS = [
Lianmin Zheng's avatar
Lianmin Zheng committed
1342
1343
1344
1345
            # Common
            "triton",
            "torch_native",
            # NVIDIA specific
1346
1347
1348
1349
1350
1351
1352
            "cutlass_mla",
            "fa3",
            "flashinfer",
            "flashmla",
            "trtllm_mla",
            "trtllm_mha",
            "dual_chunk_flash_attn",
Lianmin Zheng's avatar
Lianmin Zheng committed
1353
1354
            # AMD specific
            "aiter",
1355
            "wave",
Lianmin Zheng's avatar
Lianmin Zheng committed
1356
1357
1358
            # Other platforms
            "intel_amx",
            "ascend",
1359
        ]
1360
1361
1362
        parser.add_argument(
            "--attention-backend",
            type=str,
1363
            choices=ATTN_BACKENDS,
1364
1365
1366
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1367
1368
1369
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1370
            choices=ATTN_BACKENDS,
1371
1372
1373
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1374
1375
1376
1377
1378
1379
1380
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=ATTN_BACKENDS,
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1381
1382
1383
1384
1385
1386
1387
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1388
1389
1390
        parser.add_argument(
            "--grammar-backend",
            type=str,
1391
            choices=["xgrammar", "outlines", "llguidance", "none"],
1392
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1393
            help="Choose the backend for grammar-guided decoding.",
1394
        )
1395
1396
1397
1398
1399
1400
1401
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1402

1403
1404
1405
1406
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1407
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1424
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1425
1426
            default=ServerArgs.speculative_eagle_topk,
        )
1427
1428
1429
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1430
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1431
1432
            default=ServerArgs.speculative_num_draft_tokens,
        )
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1445
1446
1447
1448
1449
1450
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1451
1452
1453
1454
1455

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1456
            "--ep",
1457
1458
1459
1460
1461
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1462
1463
            "--moe-a2a-backend",
            type=str,
1464
            choices=["none", "deepep"],
1465
1466
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1467
        )
1468
        parser.add_argument(
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1480
1481
        )
        parser.add_argument(
1482
1483
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1484
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1485
        )
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1563

Lianmin Zheng's avatar
Lianmin Zheng committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1596
1597
1598
1599
1600
1601
1602
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1603
1604
1605
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1606
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1607
1608
1609
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1610
1611
1612
1613
1614
1615
1616
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1617

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1655
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1656
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1657
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1658
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1659
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1660
        )
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1673
1674
1675
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1676
            help="Disable cuda graph.",
1677
        )
1678
        parser.add_argument(
1679
1680
            "--disable-cuda-graph-padding",
            action="store_true",
1681
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1682
        )
1683
1684
1685
1686
1687
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1688
1689
1690
1691
1692
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1693
1694
1695
1696
1697
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1698
1699
1700
1701
1702
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1703
1704
1705
1706
1707
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
1708
1709
1710
1711
1712
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1713
        parser.add_argument(
1714
            "--disable-outlines-disk-cache",
1715
            action="store_true",
1716
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1717
        )
1718
1719
1720
1721
1722
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1723
1724
1725
1726
1727
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1728
        parser.add_argument(
1729
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1730
            action="store_true",
1731
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1732
        )
1733
1734
1735
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1736
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1737
        )
Ke Bao's avatar
Ke Bao committed
1738
1739
1740
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1741
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1742
        )
1743
1744
1745
1746
1747
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1748
1749
1750
1751
1752
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1753
1754
1755
1756
1757
1758
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1759
1760
1761
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1762
1763
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1764
        parser.add_argument(
1765
            "--torch-compile-max-bs",
1766
            type=int,
1767
            default=ServerArgs.torch_compile_max_bs,
1768
1769
            help="Set the maximum batch size when using torch compile.",
        )
1770
1771
1772
1773
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1774
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1775
        )
1776
1777
1778
1779
1780
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1781
        parser.add_argument(
1782
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1783
            action="store_true",
1784
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1785
        )
1786
        parser.add_argument(
1787
            "--triton-attention-reduce-in-fp32",
1788
            action="store_true",
1789
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1790
            "This only affects Triton attention kernels.",
1791
        )
1792
1793
1794
1795
1796
1797
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1798
1799
1800
1801
1802
1803
1804
1805
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1806
1807
1808
1809
1810
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1811
1812
1813
1814
1815
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1816
1817
1818
1819
1820
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1821
1822
1823
1824
1825
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1826
        parser.add_argument(
1827
            "--flashinfer-mla-disable-ragged",
1828
            action="store_true",
1829
            help="Not using ragged prefill wrapper when running flashinfer mla",
1830
        )
1831
        parser.add_argument(
1832
1833
1834
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1835
        )
1836
1837
1838
1839
1840
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1841
1842
1843
1844
1845
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1846
1847
1848
1849
1850
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
1851
1852
1853
1854
1855
1856
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1877
1878
1879
1880
1881
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1882

Lianmin Zheng's avatar
Lianmin Zheng committed
1883
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1884
1885
1886
1887
1888
1889
1890
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1891
1892
1893
1894
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1895
            choices=["mooncake", "nixl", "ascend"],
1896
1897
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1898
1899
1900
1901
1902
1903
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1922
1923
1924
1925
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1926
1927
1928
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1929
        )
1930
1931
1932
1933
1934
1935
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1936
1937
1938
1939
1940
1941
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1942
1943

        # Custom weight loader
1944
1945
1946
1947
1948
1949
1950
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1951
1952
1953
1954
1955
1956
1957
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
1958
1959
1960
1961
1962
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1963

1964
1965
1966
1967
1968
1969
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
1970

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
1997
1998
1999
2000
2001
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2002

Lianmin Zheng's avatar
Lianmin Zheng committed
2003
2004
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2005
        args.tp_size = args.tensor_parallel_size
2006
        args.pp_size = args.pipeline_parallel_size
2007
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2008
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
2009
2010
2011
2012
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2013
        if is_valid_ipv6_address(self.host):
2014
2015
2016
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2017

Lianmin Zheng's avatar
Lianmin Zheng committed
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2029
    def check_server_args(self):
2030
        # Check parallel size constraints
2031
        assert (
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2042
        assert not (
2043
2044
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2045

2046
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2047
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2048

Lianmin Zheng's avatar
Lianmin Zheng committed
2049
2050
2051
2052
2053
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2054
        # Check LoRA
2055
2056
        self.check_lora_server_args()

2057
2058
2059
2060
2061
2062
2063
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2064
2065
2066
2067
2068
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2069

2070
    def check_lora_server_args(self):
2071
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2072

2073
2074
2075
2076
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2077
                logger.warning(
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2088
                self.lora_paths = []
2089
                for lora_path in lora_paths:
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2108
                        )
2109
                    else:
2110
2111
2112
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2113
                        )
2114
                    self.lora_paths.append(lora_ref)
2115
            elif isinstance(self.lora_paths, dict):
2116
2117
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2118
                    for k, v in self.lora_paths.items()
2119
                ]
2120
            elif self.lora_paths is None:
2121
                self.lora_paths = []
2122
2123
2124
2125
2126
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2141

2142
2143
2144
2145
2146
2147
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2148
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2149
2150
2151
2152
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2153
2154
2155
2156
2157
2158
2159
2160
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2161
2162
2163
2164
2165
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2166
                if is_cuda() and is_sm100_supported():
2167
                    self.attention_backend = "trtllm_mha"
2168
                elif is_cuda() and is_sm90_supported():
2169
2170
2171
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2172
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2173
2174
2175
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2176
2177
2178
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2179
2180

            if is_sm100_supported():
2181
2182
2183
2184
2185
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2186
2187
2188
2189
2190
2191
2192
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2193
                self.moe_runner_backend = "flashinfer_mxfp4"
2194
2195
2196
2197
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2198
                if self.moe_runner_backend == "triton_kernel":
2199
2200
2201
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2202
2203
2204
2205
2206
2207
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
        elif "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2269

Lianmin Zheng's avatar
Lianmin Zheng committed
2270
def prepare_server_args(argv: List[str]) -> ServerArgs:
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2283
    raw_args = parser.parse_args(argv)
2284
2285
2286
2287
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2288
2289
2290
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2291
2292
@dataclasses.dataclass
class PortArgs:
2293
2294
2295
2296
2297
2298
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2299

2300
2301
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2302

2303
2304
2305
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2306
2307
2308
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2309
    @staticmethod
2310
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2311
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2312
            nccl_port = server_args.port + random.randint(100, 1000)
2313
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2314
                if is_port_available(nccl_port):
2315
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2316
2317
                if nccl_port < 60000:
                    nccl_port += 42
2318
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2319
                    nccl_port -= 43
2320
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2321
            nccl_port = server_args.nccl_port
2322

2323
2324
2325
2326
2327
2328
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2329
                nccl_port=nccl_port,
2330
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2331
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2332
2333
2334
2335
2336
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2337
2338
2339
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2340
2341
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2342

2343
2344
2345
2346
2347
2348
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2349
2350
2351
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2352
            if dp_rank is None:
2353
                # TokenizerManager to DataParallelController
2354
                scheduler_input_port = port_base + 4
2355
            else:
2356
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2357
2358
2359
2360

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2361
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2362
                nccl_port=nccl_port,
2363
2364
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2365
            )
2366

2367
2368
2369

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2396
2397


2398
2399
2400
2401
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


2402
def auto_choose_speculative_params(self: ServerArgs):
2403
2404
2405
2406
2407
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2408
    hf_config = self.get_hf_config()
2409
2410
    arch = hf_config.architectures[0]

2411
2412
2413
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
2414
2415
2416
2417
2418
2419
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
    ]:
        # The default value for deepseek and gpt-oss
2420
        return (3, 1, 4)
2421
2422
2423
2424
2425
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)